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Bootstrapping the Semantics of Tools: Affordance
Analysis of Real World Objects on a Per-part Basis

Markus Schoeler and Florentin Wörgötter

Abstract—This study shows how understanding of object func-
tionality arises by analyzing objects at the level of their parts
where we focus here on primary tools. First, we create a set of
primary tool functionalities, which we speculate is related to the
possible functions of the human hand. The function of a tool is
found by comparing it to this set. For this, the unknown tool is seg-
mented, using a data-driven method, into its parts and evaluated
using the geometrical part constellations against the training set.
We demonstrate that various tools and even uncommon tool-ver-
sions can be recognized. The system “understands” that objects
can be used as makeshift replacements. For example, a helmet
or a hollow skull can be used to transport water. Our system
supersedes state-of-the-art recognition algorithms in recognition
and generalization performance. To support the conjecture of a
possible cognitive hand-to-tool transfer we analyze, at the end
of this study, primary tools by also incorporating tool-dynamics.
We create an ontology of tool functions where we find only 32 of
them. Being such a small set this would indeed allow bootstrap-
ping tool-understanding by exploration-based learning of hand
function and hand-to-tool transfer.
Index Terms—Function analysis, object recognition, tool boot-

strapping, tool ontology.

I. INTRODUCTION

T HE complexity of shapes and arrangements of all objects,
which we encounter every day, as well as just their sheer

number, is humongous. Most of them, today, are human-made.
But even during the advent of humankind, some million years
ago, early hominids were faced with very many different nat-
ural objects in their environment. Different from all other an-
imals they were able to handle this complexity and began “to
make sense of them” arriving at an early semantics of objects
and their potential use (e.g., as tools). Starting from this, su-
pervision, teaching, and communication—hence cultural inher-
itance—allowed us to build our complex world. Still, it is puz-
zling how the process of understanding objects (tools) can be
bootstrapped. The complexity of the world of natural objects
seems just too high!
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Essentially we would like to speculate that our hand allows
bootstrapping the understanding of basic tools. The association
of possible hand-shapes plus the way we use these different
shapes1 leads to a rather small set of options, which can be onto-
logically ordered into a manageable system of tools. Hence, the
claim is that understanding your hand allows transferring this
understanding without too much effort to a set of primary tools.
The set of arising options from using these tools is already rich
enough to entail a wide variety of tool-induced changes at the
target substrate(s). As a consequence we want to argue that the
understanding of the thus-induced cause-effect relations may
well have been a powerful drive towards cognitive complexity.
The current study addresses this issue in two interlinked parts:

On the one hand, we provide a rigorous computer-vision algo-
rithm that makes use of these speculations to perform proba-
bilistic reasoning about the potential roles of objects. Hence, we
show that our speculations might not be entirely unfounded. On
the other hand, we extend our idea in a discussion on how this
bootstrapping problem could have been solved and how an early
ontology of tools and their uses could have been generated. This
matter can be debated and is certainly opening the door to con-
troversies.
It seems generally agreed that the fundamental properties

of monkeys’ and especially hominids’ hands (e.g., opposing
thumb, third metacarpal styloid process2) and the fact that the
hands became free to be used as tools, as soon as we started to
walk on two feet, amplified cognitive development [1]. Much
less is known with respect to the possible mental transfer of
hand-function to tool-function. More advanced primates show
indeed a much wider variety of actions performed with their
hands on objects [2]. It is, thus, indeed tempting to assume that
at some point such a mental transfer might have taken place,
for example realizing that using a stick instead of your finger
makes a better borer, using a seashell instead of your cupped
hand makes a better cup, etc. While it is generally agreed that
already infants at the age of 1–2 years are able to understand
which geometric properties of objects are important for certain
tasks (like a rigid stick for pulling an objects closer) [3], as far
as we see there are no studies in archeology, primatology, or
child developmental psychology that specifically address the
issue of a mental hand to tool transfer, such that this hypothesis
has not been much considered.
The current study, though, adopts this hypothesis and we now

introduce a computer vision based system that makes predic-

1For example, a fist can be used as a hammer, a single finger as a borer, a flat
hand as a paddle.

2By this the hand can lock better to the wrist, allowing for larger pressure to
be applied to wrist and hand while grasping.
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Fig. 1. Primitive functions, their associated hand shapes and tools meant to
substitute and improve efficiency.

tions about the possible functions of simple tools. This system
uses “labeled data” for training. One central claim, related to
our above speculations, is that there are only very few basic tool
functions existing which are related to the shape and function of
the human hand. Hence, understanding your hand-function pro-
vides youwith all the labels for training the system “free of addi-
tional charge” (see Fig. 1). This argument is much strengthened
in Section IX where we show how to structure such a system
ontologically, thereby demonstrating its rather low complexity,
which can well facilitate the here-suggested bootstrapping of
tools by hands.
One problem is the fact that objects (also tools) consist of

parts, where some contribute to the fundamental tool function
(cup-container), while others might subserve a different func-
tion (cup-handle) or just be decorative. Also the number of parts
might be different for the same tool-type (forks with different
numbers of tips, cups with one or more handles), which do not
fundamentally alter the functionality of the tool. Thus, we de-
sign a system that considers object-parts and part combinations
to assign (tool-)functions. The advantage of this is that one does
not have to train the system to wantonly different individual
objects (an artist’s rendering of a cup with 8 handles is still a
cup, see Fig. 1). As soon as the system has learned the funda-
mental requirements for “being a cup” (rather “being a small
container”) these details do not matter anymore and categories
are formed across objects with vastly different visual appear-
ance.
We now, first, describe the algorithmic aspects and, second,

in Section IX extend the speculative part of this paper by intro-
ducing our ontology of tools bootstrapped by hand shape and
function.

II. OVERVIEW

The core idea of this work is the assumption that functional
objects should be described by their parts and part relations. This
holds for tools, which are mostly considered in this study, but
also for most, if not all, other objects. For example an object

for cutting may consist of a blade and a handle, an object for
hitting has a handle and a head most of the time. But objects for
the same function can have different number of parts. Moreover
the way parts are attached to each other plays an important role
for an object’s functionality. The objects in the lower part of
Fig. 7 consist of the same parts, but can be used differently or
not at all because of their part-to-part relations. This leads to
huge intraclass variance in case of functional categories, which,
as we show in this paper, can be faced by analyzing objects on
the part level. Thus, our algorithm uses features of the different
parts, but also their geometrical configurations relative to each
other (“relative pose”) to define an object.
Fig. 2 shows all algorithmic components. It looks complex,

but there are only 3 blocks existing: (A) preprocessing (yellow),
(B) object Signature extraction (red), and (C) object similarity
calculation (green). In the middle, we show the object signa-
tures being the output of block B and the input to block C. Small
section numbers refer to the sections where the different algo-
rithmic components are described in this article.
Preprocessing (yellow) is the step where objects are being

segmented into their parts employing a dedicated algorithm,
constrained planar cuts, (CPC) [4] which uses the transition be-
tween convex and concave 3-D-image structures as indicator for
a potential part-cutting plane.
Object signature extraction (red) contains three components:

left, extraction of the individuals signatures of all parts; right,
extraction of the pose relations between parts; middle, gener-
ation of a graph that contains at its nodes the part-signatures
whereas the edges represent the pose-relations between the two
parts at the connected nodes (see example graphs in the blue
box below). We use the scores of a support vector machine to
create second order part signatures. Pose signatures fundamen-
tally consist of how parts are aligned (Alignment) and how they
are attached (Attachment) to each other.
Object graphs of two or more objects–here object X, solid ar-

rows and Y, dashed arrows–can now be compared (Object Sim-
ilarity Calculation, green). This requires an association algo-
rithm [see Fig. 2(b) Top], because it is a priori unknown which
node in graph X corresponds to which in graph Y. All these
checked (red arrows), we can finally calculate the actual object
similarity (dark blue box).

III. RELATED WORK

In this section, we discuss related work found in the literature
and focus on the relevant biological as well as computer vision
aspects.

A. Biological Background
The idea of using subentities and their relations to describe

objects is not new. Most prominent has been the suggestion to
subdivide objects using so-called “Geons” [5]. Biederman [6]
put it this way: In analogue to same letters forming different
words, relations among the same set of parts (geons) can form
different objects. Geons, however, are more related to abstract
geometrical entities than to functional object parts and the here
obtained parts are clearly “more than geons.” In a different study
[4] we had shown that the here usedmethod (CPC algorithm, see
Section IV-A) is able to obtain parts, which correspond to mean-
ingful entities. Those have their own function, which can be
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functionally named. Hence, we usually have a semantic (name-
able) cognitive concept for these parts, which does not hold for
geons (they can be named but these names carry no functional
meaning).
The importance of parts for the visual system is additionally

supported by the experiments of Biederman [7] which show
that objects can be identified as long a single parts of an ob-
ject can be recognized. As drivers for the part segmentation in a
human brain Richards and Hoffman [8], [9] indicated concavi-
ties (cusps) between parts, which is the mechanism that we also
use in the CPC algorithm to obtain the parts for this study.
In addition to parts as such, it also seems that the geometrical

relation between them (their pose relation) does indeed carry
very fundamental information for us, because part-pose is repre-
sented in a certain brain area, the lateral occipital (LO) area [7].
This coding is independent of the actual parts or their local fea-
tures, which is supported by the results of Behrmann et al. [10]
noting that a male patient who suffered a left occipital-temporal
lesion could distinguish parts, but no part-to-part pose relations.

B. Computer Vision

A wide variety of (computer vision) approaches exist which
try to classify and categorize objects, however, here we discuss
only those approaches that use secondary constraints (e.g., con-
text, part-relations, semantics, etc.), which are related to the cur-
rent study. We do not discuss less related approaches that train
classifiers “just on objects as such” or only with minimal con-
straints. The latter are nowadays many times successful in the
context of “deep learning” [11], but quite unrelated to this ap-
proach as they do not generalize well to completely new (e.g.,
artistic) versions of tools. Several types of models exist here,
that try to address the “object problem” from a higher-level per-
spective, which shall be discussed next.
Scene segmentation and object partitioning approaches

can be categorized into three groups: First, purely bottom–up
approaches which often use hierarchies to create a rank order
that builds bottom–up from small local superpixels to higher
level semantic regions [12], [13]. Second, purely top–down
approaches employing multiscale sliding window detectors
[14], consequently progressing to finer grained segmentations
using the concept of object parts [15]. Third, a combination
of bottom–up hierarchy building and top–down object and
part-detectors [16]–[18]. While pure and partial top–down
approaches generally yield good results they need trained
classifiers, thus can only be applied to low intraclass variance
categories or known objects. Both is not the case in the here
presented work. Clustered viewpoint feature histograms [19]
also split objects into parts by clustering smooth surface,
consequently parts are patches rather than complete functional
entities. In contrast to this, in our former works [20] locally
convex connected patches (LCCP) as well as [4] constrained
planar cuts CPC() we presented model- and learning-free
bottom–up 3-D point cloud segmentation algorithms, which
showed state-of-the-art results in several benchmarks. Both
allow to split objects into nameable parts by analyzing con-
cavities in the object (resembling the findings from [8]). While
LCCP is better suited for bottom–up object segmentation, CPC
has proven itself very powerful in segmenting parts of objects.

Therefore we use CPC for generating the object partitions (see
Fig. 3 for some examples).
Contextual reasoning models have shown an increase in per-

formance for object recognition in scenes [21]. Some authors
extended contextual models to activity recognition [22], [23]
by analyzing objects and pose of objects in 2-D images. For
example a bottle and a human head in a certain relation show
a drinking activity. In analogy to this we consider parts as the
atoms in our recognition framework and the full object as the
scene. Farhadi and Sadeghi [24] showed that combining two
categories to context specific categories (phrasals) improves
detection rates on images. For instance a detector trained on the
interaction “person riding horse” has better performance than
two detectors trained on “persons” and “horses” separately.
While this helps to limit the intraclass variance, it exponentiates
the number of potential classes. We on the other hand aim at
creating general super-categories, spanning many traditional
classes. We deal with the high intraclass variance by describing
objects by their parts, part-to-part relations and part graphs.
The way we combine these parts (atoms) allows for different
functionalities (scenes). Consequently, we also employ context
by not classifying each part separately, but giving the whole
object a function score and projecting it back to retrieve the
part labels. For example the head of an unknown hammer may
look very similar to the handle of a known saw. A decision in
the context of the other parts, however, allows for correctly
labeling the part.
MixtureModels and TopicModels, with Latent–Dirichlet–Al-

location [25] and probabilistic Latent Semantic Analysis [26]
being among the most popular, have proven to be successful
in 2-D object recognition. They typically model a category as
a mixture of subcategories. This helps to cope with intraclass
variations by partitioning the data into smaller clusters with
lower variability. However, the subcategories are not located in
the image, nor necessarily represent semantic entities. Our ap-
proach on the contrary names and locates the parts. Similar to
the way topics reduce variability within a category, our part-de-
composition reduces the variability of an object allowing for
comparison and generalization between vastly different objects.
Other part-based recognition systems focus on nameable

parts, too. Good performance has been achieved in face detec-
tion [15]), human-pose estimation [27] or car classification by
partitioning into front, middle and rear parts [28]. Related to our
approach is the work of Tenorth et al. [29]. They approximate
containing objects by primitive geometrical parts like spheres,
planes and cylinders and fit CADmodels which requires similar
objects in the training set. Still, all approaches focus on specific
domains where a preselected pool of parts is available. Our
approach is more generic in the sense that we do not require an
object to have a set number of parts or being made of simple
geometric primitives. Others introduced pictorial frameworks
[30], [31], which split objects into part templates together
with geometric constrains on part-to-part relations (using for
example spring models). This has successfully been applied
to human pose estimation, where parts are connected at fixed
locations. As objects do not follow this constrain this method
is not applicable to our problem. Shapira et al. [32] proposed a
method for contextual part analogies. It bases on a part-to-part
distance measure propagated through the part connectivity
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Fig. 2. Algorithm overview of the function analyzer: (A) preprocessing; (B) object signature extraction; (C) object similarity calculation.

Fig. 3. CPC algorithm applied to three different functional objects. Left: Femur
model from shapes.aimatshape.net; Middle: Hatchet model from http://tf3dm.
com; Right: WhiteCup scan from the KIT ObjectModels Web Database.

graph. It relies on characteristic appearance of parts, because
they do not store the information how parts are attached to
their neighbors (point of attachment and relative pose). We
capture this information in our pose-signature and show that it
is important to recognize function of tools (see Table. I).
In Attribute based approaches [33] classes are expressed as

a mixture of human-specified high-level descriptions, allowing
the classifier to be applied to new classes with known attributes.
Our approach, too, can deal with novel object classes like a saw
when other objects for cutting are known. In contrast to [33],
we do not need to provide attributes, but summarize all objects
allowing for certain functions into super-categories. Combined
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TABLE I
CLASSIFICATION ACCURACY IN % FOR THE BENCHMARKS M1 AND M2 USING
DIFFERENT PIPELINES. BASE ARE THE BASELINE CLASSIFIERS TRAINED AND
TESTED ON FULL OBJECTS. PART ARE CLASSIFIERS TRAINED ON PARTS.

PART+POSE SYSTEMS ADDITIONALLY MAKE USE OF THE GRAPH STRUCTURE
AS WELL AS THE POSE SIGNATURES. THE BEST RESULTS (MARKED BOLT) IN
BOTH BENCHMARKS ARE ACHIEVED BY THE CLASSIFIER USING PART

& POSE SIGNATURES

with the fact that we can assign multiple functions to objects,
we also pave the way to makeshift tool replacements. This is an
interesting concept as it allows robots for instance to bootstrap
alternative solutions to problems.

IV. OBJECT DESCRIPTION AT THE PART LEVEL
All input data are full 3-D point clouds either sampled from

publicly available mesh models/scans or using the procedural
shape generator from the Point Cloud Library3.

A. Part Segmentation using the CPC Algorithm
To segment 3-D point clouds we use our Constrained Planar

Cuts algorithm proposed in [4]. It is based on the idea that
convex surfaces, separated by concave boundaries, play a cru-
cial role for the perception of objects and their decomposition
into parts. The algorithm starts by approximating a scene with
surface patches using our supervoxel algorithm [34]. Next CPC
analyses the connection between adjacent surface patches and
classifies them as either concave or convex. The algorithm uses
concave connections to propose planar cuts through as many
concavities as possible, while minimizing the number of convex
connections cut. Details of this procedure can be found in [4].
Some examples for the object to part segmentation are shown
in Fig. 3.

B. Part Signatures
The goal of this section is to introduce methods to arrive at

a characteristic description–called part signature–of the indi-
vidual object parts. For this, visual features of the parts need
to be extracted.
For signature generation, in this work we investigate signa-

ture of histograms of orientations (SHOT) features [35], en-
semble of shape functions (ESF) features [36] as well as an ex-

3https://github.com/mschoeler/pcl/archive/shape_generator.zip

Fig. 4. Aspect Ratio dependency of the basic shape histogram for a cuboid
with .

tension of the two dimensional shape histogram proposed by
Mustafa et al. [37]. Both SHOT and ESF features are geom-
etry based and have shown state-of-the-art performance in ob-
ject classification tasks [38]. All features use 3-D information
as their input.
SHOT features are extracted at local feature points and ori-

ented to the so-called Local-Reference-Frame. They divide the
local neighborhood of a feature point using a spherical grid into
32 cells. Within each cell SHOT accumulates the neighboring
points according to their normal directions into 11 bins. This re-
sults in a dimensional histogram. For generating
global SHOT signatures we followed the procedure proposed
in [39], which calculates one SHOT descriptor for the object’s
centroid. We call them SHOT-C in this paper. Additionally, we
create global SHOT descriptors by calculating a descriptor for
each point and averaging all. We denote them as SHOT-A. As
neighbors for the feature and Local-Reference-Frame calcula-
tion we consider all other points in the cloud.
ESF is a global point cloud descriptor which encodes the

geometric information in a point cloud using 10 concatenated
64-bin histograms, including distance between two random
points, area of triangle formed by three random points, and
angle formed by three random points from the point cloud. This
results in a dimensional histogram.
Additionally, we extend the two dimensional shape-his-

tograms proposed by Mustafa et al. [37]. They are generated
by iterating through all possible point pairs within a part. For
each pair we calculate the distance between points and angle
difference between point normals in degrees. The variable
is normalized in such a way that 1 corresponds to the biggest
distance determined. Both measures are then discretized by
binning and added to a dimensional histogram with

and describing the number of distance and angle bins,
respectively. We call these histograms basic shape histograms

. Example basic shape histograms showing the aspect ratio
dependency for a cube are shown in Fig. 4.
We extend the histogram by additionally checking if the pair

is convex- or concave-connectable. Points are convex-con-
nectable if there could exist a closed surface containing both
points which is purely convex (see also Fig. 5). If there is no
such surface, we call the pair concave-connectable. We can
check this for two points and with normals and and
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Fig. 5. Showing an example of convex versus concave connectable point pairs
introduced in (1). The red lines denote a potential surface connecting both
points. .

Fig. 6. Here we show three convex (top) and three concave shapes (bottom)
together with their extended shape histogram . Each pair of points in
the convex shapes are convex connectable (positive angles). This is why we do
not have entries for concave connectable pairs (negative angles) in contrast to
the concave shapes. See Eq. (1).

displacement vector , pointing from to , using the
following equation:

(1)

This extension is similar to the inside/outside classification used
in ESF-features. The extended shape histogram accordingly re-
sults in a dimensional histogram. Instead of showing
2 histograms, we use negative difference-values to denote the
concave connectable pairs. Naturally, point pairs on convex ob-
jects are always convex connectable. This is why only objects
with concavities have pairs with negative angles (see Fig. 6).
The usage of extended shape histograms is denoted by the su-
perscript .

Fig. 7. Visualization of the influence of changing part shape (top) and relative
orientation (bottom) on the variance blobs, intersection blobs, and the alignment
number. , : Variance blobs for the green parts (A) and the blue parts (B).
The bins of both variance blobs sum up to 1, i.e.,
(see Eq. (3)). : Intersection of and using Eq. (4). : Calculated
Alignment number by summing over all bins of , Eq. (5), i.e.,

. Please note that only reaches 100% if both parts are
in-line (like the 0 object at the bottom) and have the exact same aspect ratio.

C. Pose Signature

The second required descriptor is addressing the question
how parts are attached to each other, for which we calculate the
so-called pose signature consisting of an alignment and an at-
tachment component. Hence, we define
• the way parts are rotated in respect to one another: the
alignment ;

• the locations at which parts are attached to one another: the
attachment .

Whenever wewrite “pose signature” it means both properties.
1) Alignment : We define the alignment number between

two parts A and B, , as a scalar in the range of 0 to 1. It
should change as soon as a part is rotated in respect to the other
one. Still, to preserve overall rotational invariance, is not al-
lowed to change, if identical transformations are applied to both
parts. The more the parts are in-line, the bigger should be.
One obvious solution to this would be to calculate each part’s
axis of elongation (for example by applying principal compo-
nent analysis (PCA) on the part’s point cloud and using the first
principal component axis). The angle between these axes could
than be used to calculate . This, however, only works for
parts which are elongated enough, which many times is not the
case. An example is shown in Fig. 7 top: The more the blue part
is scaled down, the harder it is to define a proper axis of elonga-
tion. This would lead to a discontinuous jump in the alignment
number close to the 1:1:1 case.
In the following, we show how to circumvent this problem

and how we define : First, we represent each part with a
so-called variance blob . The variance blob represents the
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Fig. 8. Three objects consisting of identical parts. The blue part A (cube) is
shifted from the long end of the green part B (elongated cuboid) to the middle.
We did not draw the directions for the vectors since values on opposite sites of
the variance blobs are equal (the variance calculation ignores orientation). The
parts are not rotated in respect to each other, which leads to a stable alignment
number. In contrast to this the attachment of the Part A (blue) in respect to Part
B (green) (A at B) changes significantly. Since Part A (blue) is a cube, the B at
A attachment is not influenced nearly as much.

variance of the point distribution of a part in all possible di-
rections. To denote a direction in 3-D we use spherical coor-
dinates, i.e., . denotes the polar angle (measured from
the pole), and represents the azimutal angle. is L2-normal-
ized, such that . The variance of the point cloud along
a direction is calculated using

(2)

Here is the number of points in the part’s point cloud, is
the coordinate of the th point and is the centroid of the part’s
point cloud.
If points in direction of the part’s elongation, it results in

a bigger variance as compared to a direction which is, for ex-
ample, perpendicular to the elongation.
To make calculations feasible we only calculate the variance

at discrete uniform steps using and bins. Therefore, this
results in a two dimensional histogram with entries in
total.
Visualizations of these variance blobs, , can be done

using spherical plots as shown in Figs. 7 and 8. In the plots the
variance is denoted by the radius of the surface from the origin.
In case of constant variance this results in a constant radius in all
directions, thus in a perfect sphere (e.g., the blue part in Fig. 8).
A variance blob represents the variance in the Euclidean

space of the point cloud. This is why the aspect ratio / elonga-
tion of a part is directly visible in the elongation of its variance

blob. Exact shape detail (like round, cylindric, etc.) is, in
contrast, ignored.
We further want to ignore the total size of the parts, as this

should not influence the alignment number between two parts.
Therefore, we now normalize the variance blobs. Because we
calculate the variance at uniform steps in spherical coordinates,
the size of a bin (in Euclidean space of the point cloud) scales
with the sine of the polar angle, . This effect is visible in
smaller bin sizes close to the poles of the variance blobs.
Taking the changing bin size into account we can define the

sum of all bins of a variance blob, , as

(3)

with iterating through all bins of the variance blob and and
denoting the variance and polar angle of the th bin.
Each part’s variance blob is normalized such that

. To calculate between part A and B, we use
the histogram intersection similarity between and . This
is done by calculating the intersection of each bin of variance
blob A with each corresponding bin in variance blob B such
that for the th bin of the intersection blob we can write

(4)

Finally, we calculate the alignment number as the sum
of the bins of the intersection blob, again taking the varying bin
size into account, by using (3) and (4)

(5)

An example how the alignment changes when rotating one
part in respect to another is depicted in Fig. 7 bottom. Since the

operation is commutative, the alignment number is com-
mutative as well: .
2) Attachment : The attachment number reflects

at which location of part A, part B is connected. Accordingly, if
a part is attached at the tip of a long rod, in contrast to its side,
the number should reflect that change. To determine , we,
first of all, calculate the vector connecting centroid A to centroid
B, . Please see Fig. 8 for more details. For we retrieve
the value on the variance blob of part A, , in direction of .
Since is normalized, the values of single bins scales reciprocal
with the number of total bins. This is why we multiply by the
total number of bins. Thus, the attachment number is defined as

(6)

To calculate we use the value on B’s variance blob in-
stead. This is why . The noncommutative prop-
erty of the attachment is best explained looking at Fig. 8. Since
the blue part is highly rotational symmetric it does not matter if
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we attach another part to the top or any of the sides. On the con-
trary, the green part is anisotropic, hence it makes a big differ-
ence for the functionality/usability in which direction/locations
we attach other parts.

D. Object Representation
To be able to combine these signatures and describe an object
as a whole, we use a graph representation

with the th part signature corresponding to th attributed node
and the pose signature between part and forming the

attributed directed edges between node and . We define
edges in the graph only between parts which are touching. To de-
termine part proximity we first estimate the point density within
both part’s point clouds. We do this by generating kd-trees for
each. Next we select random points for both parts and de-
termine the distance to their nearest neighbors within their own
part. From these distances we take the maximum and set
the threshold .
Again using the kd-trees, we calculate the closest distance for
random points from part A to the points in part B and vice

versa. If any of these distances is smaller than , we consider
the parts as touching. For the experiments we use and

. Often parts are separated by a large margin, which
makes this part of the algorithm robust.

V. FUNCTION ANALYZER

In the following sections we describe how the algorithm al-
lows comparing objects and assigning functional meanings to
them. Thus, we want the function analyzer to have the following
properties:
1) object as well as parts should be recognized;
2) the analyzer should be able to generalize across objects

with different number of parts, to recognize the function of
a cup having 6 handles, as shown in Figs. 1 and 10, should
not require cups with six handles in the training set;

3) multiple function assignment should be possible. One ob-
ject may be used for different functions with parts used for
different purposes.

A. Training
The function analyzer’s training procedure is outlined in Fig.

9. As input it uses labeled and segmented synthetic data. We
used synthetic data for the training in order to create minimal-
istic stereotypical examples of tools, without including unnec-
essary details found in real-world objects.
Full objects get a primary function label (contain, cut, poke,

hit, …), and each part gets its part-functionality attached (con-
tain:container, cut:blade, hit:head, …). We will, in the Discus-
sion section, address the question how much complexity arises
from such a labeling procedure.
In the next step we calculate part and pose signatures (see

Section IV-B and IV-C) for the training set. Inspired by the
idea of Torresani et al. [40], we use the output of a sup-
port-vector-machine (SVM) to convert the raw part signatures
to second order signatures. Using a support-vector-machine
at this level allows the function analyzer to better generalize
across parts with the same function. At the same time it em-
phasizes properties of the raw signatures, which are important
for the discrimination of different functional parts. We train

Fig. 9. Training procedure for the function analyzer.

a one-versus-rest SVM with a Chi-square kernel on the part
signatures using each unique combination of function and
part-name as a label (cut:blade, hit:head, contain:container,
…). For functions with parts each, this would result in

classes, which accordingly results in a dimensional
second order part signature. These signatures, the pose signa-
tures, the graph structure, and the labels (for full objects and
parts) are then stored for the later testing. Please note that we
neither require all objects to have the same number of parts,
nor that they should be composed of all possible parts. For
example, a fillable object does not need a handle or can have
multiple handles and still retains its functionality.

B. Testing

For a new object we first generate its graph representation
by calculating the part (nodes) and pose (edges) signatures.

Edges are only drawnwhere parts touch (see Section IV-D). The
part signatures are again transformed into SVM scores.
Since we want the function analyzer to generalize to objects

with an arbitrary number of parts and graphs with different num-
bers of nodes and edges, we now define a similarity metric
which allows all objects to be compared and at the same time
leveraging on as much information as possible from the training
(more specifically the part and pose signatures as well as the
graph structure). As we do not know a priori which part from
might correspond to which part from , we need a association
algorithm to allow checking all possible combinations.
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Fig. 10. Eighteen example objects from the M2 benchmark.

Let us assume object consists of 5 parts, , and
object consists of two parts, . To compare both, we
can assign each of the parts of , , one of the
parts of , . A possible association (the mapping
from to ) can thus be written using a -tuple of
the elements in the set . The tuple would
for example denote the parts being assigned to and
to . We further require the number of unique elements in the
tuple

(7)

In the case of this corresponds to a surjective map-
ping, for to a bijective mapping, and in the case of

to an injective mapping. For each association we
create an association graph by replacing the parts/nodes in
the graph of , , with the associated parts/nodes of graph .
If two parts in object are touching, we add the edge
to the graph . Only if the graph has no additional or missing
edges compared to the graph , we call it compatible and con-
sider it further.
This pruning is not only important for eliminating cases

where required parts for a functionality are not being assigned,
but it is mandatory when comparing two objects with many
parts, as the number of total associations grows exponentially.
For example comparing the 6 handle cup ( ) to any of
the forks with 4 tips ( ) shown in Fig. 10 starts with 16
807 possible associations ( ), reduces to 2520 associations
after the surjective mapping test and again reduces to 360 after
checking the graph structure.
All remaining association graphs have now the same

structure as the graph , thus we next calculate association
scores. For this we compare part and pose signatures sepa-
rately and combine part and pose scores and in a
weighted sum

(8)

with part and pose weights and . For all experiments
we use and .
To calculate and we L2-normalize all signa-

tures and calculate the L2-distance between all associated part

and pose pairs from the graph and
. The L2-distance between two signatures ranges be-

tween 0 and 2. This follows from the triangle inequality for two
L2-normalized vectors , and : .
A normalized and can thus be calculated using

the equations

(9)

and

(10)

Here and denote the number of nodes and edges in the
graph , respectively .
After calculating the scores, , for all associations we de-

fine their maximum as the final object similarity of object to
object

(11)

Finally, the function compatibility is calculated using the max-
imum object score per function: Instead of a hard-max assign-
ment we tried other voting schemes like -nearest neighbors
voting or averaging over all object scores per function, but this
decreased performance by about 3%. Our intuition is that a
winner takes it all assignment works best, because we have a
huge variance in the appearance of training objects, such that
averaging the response of multiple objects is not meaningful.
A positive side-effect: Assuming object leads to the func-
tion score, we can easily retrieve the labels of the parts for that
functionality by using the known part-labels and winning asso-
ciation for object . Thus, we are not only able to assess
the compatibility of an object to a certain function, but can
additionally identify the parts, which are indispensable for this.
Additionally, one can assign tools and their parts multiple pos-
sible functionalities by thresholding the function scores as we
show in Fig. 12.

VI. EXPERIMENTAL EVALUATION

A. M1 and M2 Benchmarks
For testing the generalization capabilities of our algorithm

we create two benchmarks (M1 and M2) consisting of 144
models from 56 traditional classes (like saw, hatchet, sword,
dumpling spoon, pizza-cutter, cleaver, drumstick, pugil stick,
rapier). Models have been generated using the shape generator
from the Point Cloud Library.
For this experiment we let humans assign the most probable

primitive functionality (see Fig. 1) to all objects. From all the
human annotations we use the function (and the part assign-
ments) with most votes as ground-truth. For the first bench-
mark (M1) we limit the objects to two parts. The second bench-
mark (M2) drops this restriction by allowing objects to have any
number and type of parts, which increases intraclass variance.
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Fig. 11. Confusion matrices showing the importance of Pose information to the classification pipelines. It is especially important for telling hook from poke
objects, as they mostly differ in the way parts are attached and aligned.

Both benchmarks consist of 72 models. Some example objects
from M2 are shown in Fig. 10.
To compare to a baseline recognition system we use SHOT

[35] and ESF-features [36] extracted on the full objects together
with a Chi-square SVM. Since the size of objects has a very high
intraclass variance we normalize the biggest L2-distance in the
objects to one. Tests are performed using the following cross-
validation procedure: We train the framework with a random se-
lection of 70% of the objects and test on the remaining 30%.We
repeat this for 60 different partitionings of the data and average
the accuracy. We use the ground-truth segmentation for training
and testing on M1 and M2 in order to measure the performance
of the function recognition in isolation.
We use the following convention to name the classification

pipelines:
1) baseline centroid SHOT classifier trained on the full object

(SHOT-C);
2) baseline averaged SHOT classifier trained on the full ob-

ject (SHOT-A);
3) baseline ESF classifier trained on the full object (ESF);
4) classifiers trained on parts ignoring pose, superscript P

(e.g., );
5) classifiers trained on parts together with the pose signa-

tures. Superscript PP (e.g. );
6) basic shape histogram using distance and angle bins

( );
7) extended shape histogram using distance and angle

bins ( ).

B. Models and Scans

Furthermore, we investigate how well we can generalize
across domains to polygonal models and scans from the
databases 3Dcadbrowser, KIT object model web database
(OMWD), tf3dm, and thingiverse. We sample equi-density
random points on the faces of each model. Normals are cal-
culated using the first three vertices of each face. For all
objects we generate segmentations and ground truths using the
CPC-algorithm. We use the classification pipeline
together with all training images from the set M1 to determine
the functionality of the objects.

VII. RESULTS

A. M1 and M2 Benchmarks
Table I summarizes the mean accuracy achieved on the M1

and M2 benchmarks. SHOT-A, SHOT-C and ESF trained
on the full objects are considered the baseline classification
pipelines as they do not use the concept of parts and poses.
The results indicate that averaging SHOT features rather than
using a single centroid based feature yields better performance.
Introducing part-based classifiers increases performance signif-
icantly, adding to the SHOT-A classifier, which makes
this classifier comparable to some systems using Part & Pose.
ESF histograms are inferior to SHOT-A histograms, since
normal information is not used for the former. This confirms the
findings reported by Aldoma et al. [39]. Part and Pose pipelines
finally employ the proposed system. They show the best results
in both benchmarks, improving results for the M1 benchmark
by up to and results for the M2 benchmark by up to

. The fact that we combine many different objects into
one functional class leads to less detailed shape histograms (4
angular and spatial bins) being better suited for recognition than
more detailed shape histograms (20 angular and spatial bins).
Using extended shape histograms improves results by an ad-

ditional . Comparing the confusion matrices shown in
Fig. 11 we notice that pose is especially important to discern
poke and hook as objects, because these functions mainly differ
in how parts are aligned in respect to one another.
The M2 benchmark shows more intraclass variance, because

objects differ in the number of parts. This reduces performance
of the baseline classifiers, on average, by about 12% as they
cannot deal with this kind of variance. The proposed Part &
Pose pipelines, on the contrary, are not much affected by the
increased variability and can generalize from the known parts
and part-to-part relations.

B. Models and Scans
Fig. 12 shows the segmentation and classification of several

models and scans. Shown is the highest scoring function as well
as the second highest if the difference is less than 2%. We em-
pirically determined this number. Allowing a confidences dif-
ference of 5% leads to wrong secondary function assignments
in the case of difficult objects (like the double bladed cut object,
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Fig. 12. Analysis of models and scans from Thingiverse (T), tf3dm (Tf), KIT OMWD (K), and 3Dcadbrowser (3d). All objects have been segmented using the
CPC algorithm. The object segmentation as well as the most similar object are shown as colored point clouds. Additionally, the highest scoring function (score in
brackets) as well as the part-mapping (black arrows) from the most similar object are depicted. We also include the mapping of the second highest scoring function
if the score-difference is less than 2%. Training-labels are shown in black and inferred labels in red and blue.

which has a low confidence for the first function). This can be
alleviated using a bigger training set.
The fact that vastly different objects can be classified using

the simplistic models from our M1-dataset shows the general-
ization capabilities of our algorithm. This particularly crystal-
lizes in the analysis of the hollow skull and the roman helmet
models. Although these objects have been made for a different
purpose they can be used as a makeshift replacement for trans-
porting liquids. For an application of this see [41].
The hammer in the bottom right corner shows interesting re-

sults. The function classifier retrieves two high scoring func-
tions. It can be used like an ordinary hammer for hitting. Addi-
tionally, it was labeled with the function poke, which enables an
agent to use the hammer as a improvised tool to drill holes into
soil for instance.

VIII. DISCUSSION

The here suggested computer vision algorithm relies on some
older ideas, like using geons for composing objects [42] and rep-
resenting them as graphs [43], [44].We had discussed above that
parts have their own semantics–they are meaningful for us–an
idea which goes clearly beyond a mere geometrical, geon-based
representation. The bottle-neck so far had been that there were
no efficient algorithms available that actually extract parts. In
earlier studies we had shown that convex-concave transitions
provide a very good data-driven prior for part segmentation [4],
[20] and this notion is supported by a very large number of psy-
chophysical studies, which show that humans perform part seg-
mentation at such cutting planes [5], [45]–[50]. Therefore, we
believe that the here-pursued algorithmic approach does indeed
go beyond the existing older studies, which either had to rely on
predefined entities [29] or on other, less meaningful features for
defining an object graph.
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Fig. 13. Ontology of simple tools (reduced to the manipulator) derived from hand shapes and functions. Knowing the target surface (blue line) with normal as
well as the way the manipulator acts upon it, allows us to infer the function of the manipulator in this action. Red labels in 4 denote example objects/tools to fulfill
the function. refers to the axis of rotation and to the distance of manipulator to target along the normal . For further explanation see text.

Converting the problem of traditional classification, with its
recent trend to become more fine-grained, to the problem of
classifying super-categories (here: functional categories) we are
able to show that the semantics of a whole tool can arise from
the “understanding” of the composition from its parts. The word
“understanding” relates here to the supervised training of our
system by some labeled data. Here it is important to emphasize
that our training set is very small and that–by this–we can extract
the “essence” of tools, which allows us to generalize to even
unknown classes like saws, as soon as knifes are known. This
is nontrivial. Just consider, for example, the class “saw” and
think of the very wide variety of items in this class such as those
which you could buy in a D.I.Y-shop. Thus, compared to very
tunable algorithms like Deep Convolutional Neural Networks,
which need huge amounts of training data to achieve some kind
of generalization, our algorithm only needs very few training
samples. Moreover, our method can assign multiple function-
alities to one object which allows for bootstrapping makeshift
replacements for tools (like a hammer used for drilling holes, or
a hollow skull being used to transport liquids).
However, some limitations and potential future work exists:

First, we largely ignore size of objects, both for the part-sig-
natures as well as for the pose-signatures. At this point we are
interested in the general compatibility to tool-functions without
looking at the target properties (e.g., target’s size, material, and
so on). When executing an action, the target properties will be-
come important. For this, one would likely need to add a second
layer of reasoning about tool-target compatibility. For example:

If the target is soft (e.g., soil), the tool can be made out of wood.
If the target is hard (e.g., wood), the tool needs to be made
of metal or stone. If target is 5 liters of liquid, the container
must have at least this volume. Still, for assessing general func-
tion-compatibility (not target compatibility), size can be ignored
in our opinion. For example, take a barrel and a cup. Both ob-
jects largely differ in their size, still they are both used to contain
a liquid. Therefore, ignoring size largely increases generaliza-
tion performance of the algorithm.
Second, we compare an object to all other instances and use

a classifier only for generalizing part signatures. While this has
advantages, like allowing assignment of single parts to multiple
other parts, or by providing more insight into the function of
the algorithm (by for example showing the most similar training
objects, Fig. 12), this shifts most of the algorithm’s complexity
to the testing stage. We are currently investigating possibilities
to use a classifier also at the function assignment stage, which
would provide a remarkable speed-up at testing time.
Third, if we deal with very complicated objects, like a saw

where the blade is hidden, our algorithm fails as long as such
a saw is not in the training set. However, even we, as humans,
would not be able to assess such tool’s function without having
seen a similar saw before (or reading the label).

IX. BOOTSTRAPPING TOOL USE - AN EXTENSION
In the current study we have shown our results on classi-

fying objects (tools) by considering their parts and part rela-
tions. We have motivated our approach by the use of the human



96 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 8, NO. 2, JUNE 2016

hand, which we consider as a possible structure for bootstrap-
ping the understanding of tool function. That first part of the
study was much motivated by the speculation that cognitive
ability to use ones hand in different ways allows learning to
transfer this knowledge to unknown objects, which are then
recognized as tools. To support the conjecture of a possible
cognitive hand-to-tool transfer we are, here, analyzing primary
tools by also incorporating tool-dynamics. For this we design a
tool-ontology and argue that its complexity remains quite lim-
ited.
Recognition of tool function is in our system–like in many

others–fundamentally a supervised process. We used “labeled
part data” for training where we claimed that there are only very
few basic tool functions existing, which are (all) related to the
shapes and the function of our hands. A handle is a common
entity among all objects we analyzed so far. In contrast, the ma-
nipulator, or tool-end (the actual part interacting with a target)
is more discriminative and determines most of the functionality.
Interestingly, the handle shape together with the way a handle
is attached and aligned to the manipulator–determined by the
pose-signature in the previous sections–just determines the di-
rection and motion a tool can be applied best. This concept is
supported by the fact that first prehistoric tools only consisted
of the manipulator without an attached handle. A handle was
added later to make the tool more usable by allowing for ex-
ample a longer lever or an improved grasp.
But, if one knows how the manipulator is being used (e.g.,

the trajectory and motion relative to the target), the handle is
actually not important anymore for the recognition of the tool
function. Fig. 13 shows how one could include this information
in an ontology of primordial tools using hand-shape and func-
tion as a reference.
We distinguish five levels (red numbers). The first three levels

are strictly geometrical, where level 1 and 2 directly refer to the
hand shape and level 3 to the arrangement of the hand (or ma-
nipulator) relative to the target object. Levels 4 and 5 take the
movement patterns into account, too. Hence, here wemove from
a pure object-guided (hand shape guided) ontology to the final
one which uses manipulator shape, arrangement and the actual
action pattern for tool classification. All this remains very reduc-
tionistic and we think less is not possible. We show in the end
that such an ontology contains only 32 entries for different pos-
sible simple tools and how concept of wheels naturally emerges.
Level 1 asks about the basic hand shape: Is it convex or con-

cave? In the figure we just show the convex branch to explain
the next levels.
Level 2 addresses the aspect ratio (“AR”). For simplicity we

set (the coordinate system is given in the center of
the figure) and plot the possible aspect ratios. Hence this plot
exceeds the hand size to show by ways of the three colored
areas (blue, green, red) roughly which aspect ratios are existing
(a very limited range) when considering regular tools ranging
from: (high AR) borers to sabers, from (medium AR) small to
large hammers and from (small AR) paddles, spades to cleavers.
We use now an object with high aspect ratio (High AR in

Fig. 13–2) to explain the next three levels. The same arguments
hold for the other aspect ratios, too.
Level 3 addresses the relative orientation between hand shape

(or tool) and target object (target surface ) indicated by blue.

Using our elongated tool with the tip pointing against the target
surface, hence in a parallel way to the normal ( , Level 3, top)
could mean it is a poker. Using it in a perpendicular arrangement
( Level 3, bottom) might make it a tool for spreading some-
thing out.
In the 4th level we consider the relative motion between tool

and target surface during tool operation and whether we have
a rotational component in the movement. If the distance gets
smaller and we have a parallel arrangement ( ) then this might
mean that this is a pusher, poker, or stabber (Level 4, very top).
If, in the same arrangement, , then this is possibly a
drawing or stirring tool (Level 4, one-down from the very top).
Already at this level several configurations do not make much
sense anymore or are only very rarely found (indicated with
“ not applicable”). Hence, not all slots in this ontology
are filled.
Level 5 finally asks about the dynamics of the movement,

mainly: Is it fast or slow? The two examples shown allow dis-
tinguishing push/poke from stab.
Note that at level 4 we observe a few rotation examples. Most

indeed work using your hands but it would be much more effi-
cient if one uses a tool with an axis. Thus, this ontology sug-
gests introducing wheel-like structures. It certainly goes too far
to think that there had been a mental transfer from hand func-
tion all the way to the design of rotational tools. However, the
desire to arrive at a better functionality in these rotation-cases
might well have stimulated inspiration and ingenuity leading to
the wheeled tools we have nowadays.
Thus, it seems there are some mental transfer processes that

are easy and could indeed have taken place this way during the
evolution of hominids: fist to hammer, finger to borer (stick),
etc. Others are clearly unrealistic (grinder to wheeled grinder).
But this is not the main point. Central to our argumentation is
that the here presented ontology leads to a very small system
of primary tools, which can easily be stored and remembered
by real or artificial agents. Thus, manual tagging of training ex-
amples for tools based on their parts and part relations–as per-
formed in this study–requires not much effort and only a total
of 32 entries.
Fig. 14 shows that we have found indeed only 32 different ac-

tions with their simple tools when using this ontology. Note that
the same tool (e.g., “stick” can appear in different actions (e.g.,
“push” or “draw”). Also, there are certainly many variants of
tools and tool names existing of which we tried to only include
common examples.
Tools are ordered by their basic shape (convex versus con-

cave, top) as well as their aspect ratio as defined in Fig. 13.
The tools beneath the triple separating lines in every section are
those that require circular or turning movement patterns. Hence,
those are generally wheeled tools. Note that there are far fewer
tools existing in the concave branch, most of which are con-
tainers.
Let us consider one comparison and refer this back to the

definition of the ontology in Fig. 13. The tuple: (Action shovel,
Tool shovel) in the concave section third from above means that
here:
• a usually fast (level 5);
• forward movement is performed (level 4, shrinks);
• against the target surface (level 3, );
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Fig. 14. All entries for the tool ontology showing actions as well as the related tools. We grouped entries according to their Basic Shape (Level 1), Aspect Ratio
(Level 2), and to the property if motion is translational or rotational . A total of 32 actions and their tools are found.

• with a shovel-shaped (Level 2, small AR);
• concave tool (level 1):
where the tool is pushed into something, like a pile of sand,
to shovel it up. Now you could continue this movement
staying in the same ontological class throwing the content
off in a similar forward motion (e.g. continuing the shov-
eling motion). Or by comparison you could use the tuple
(Action “empty,” 4Tool shovel) where this is the movement
by which the filled shovel is turned to empty it and for
which a different branch in the ontology exists.

X. CONCLUSION
This paper was meant to give some speculative food for

thought about cognitive development and tool ontologies,
but at the same time we tried to provide a rather more solid
algorithmic basis for the possible underlying processes. The
here developed framework for providing object graphs based
on their parts and part constellations generalizes to all objects,
which can be segmented into their parts. Several algorithms
exist by now that achieve the latter to quite a high degree of
accuracy, which supports the viability of this approach. In
general, we advocate the idea that object recognition might be
much facilitated when considering part combinations and we
have used simple tools to show how this might work. Just by
the fact that a part can also be considered an object and since
one can combine same parts to many different objects there are
much less “parts” than “objects” in the world. One could indeed
hope that this approach might be more successful and possibly

4Means: to empty something.

“brain-like” than brute-force training of deep-learning classi-
fiers where all this variance needs to be put into the training set.
In contrast to our proposed method those will continue to fail
as soon as human invention designs (artistic) objects, which
humans–but not such machines–can easily classify.
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