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Abstract The development of programming paradigms

for industrial assembly currently gets fresh impetus from

approaches in human demonstration and programming-

by-demonstration. Major low- and mid-level prerequisites

for machine vision and learning in these intelligent

robotic applications are pose estimation, stereo recon-

struction and action recognition. As a basis for the

machine vision and learning involved, pose estimation is

used for deriving object positions and orientations and

thus target frames for robot execution. Our contribution

introduces and applies a novel benchmark for typical

multi-sensor setups and algorithms in the field of dem-

onstration-based automated assembly. The benchmark

platform is equipped with a multi-sensor setup consisting

of stereo cameras and depth scanning devices (see Fig. 1).

The dimensions and abilities of the platform have been

chosen in order to reflect typical manual assembly tasks.

Following the eRobotics methodology, a simulatable 3D

representation of this platform was modelled in virtual

reality. Based on a detailed camera and sensor simulation,

we generated a set of benchmark images and point clouds

with controlled levels of noise as well as ground truth

data such as object positions and time stamps. We dem-

onstrate the application of the benchmark to evaluate our

latest developments in pose estimation, stereo recon-

struction and action recognition and publish the bench-

mark data for objective comparison of sensor setups and

algorithms in industry.

Keywords Industrial assembly � Machine vision �
Machine learning � Virtual reality

1 Introduction

In typical setups to implement new programming para-

digms based on human demonstration and PbD [6, 33, 36,

37], multiple sensors observe the given workspace shared

by the robotic system and a human operator. The human

operator then demonstrates a sequence of object manipu-

lations to the system, which—after a few trials—the robot

should be able to reproduce by reasoning from the gener-

ated sensor data.

Sensors for observing robotic workspaces are stereo

cameras which offer RGB image streams and allow for
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deriving depth information. Since depth information is

crucial for evaluating 3D object poses as well as spatial

relations, sensors based on scanning mechanisms to

directly generate depth information are widely used: Laser

scanners, PMD cameras and ‘‘Microsoft Kinect’’ [13, 29,

50] compile arrays of distance measurements from probing

their field of view with a given sample density. Associ-

ating the measurements with (quantized) reference depths

then results in clouds of points in sensor coordinates—or

colored point clouds if the depth data is combined with

RGB data of the same view, yielding RGB-D data. For

enlarging the field of view, canceling shadows and

avoiding systematic errors, often multiple sensors and

combinations of different sensors are used at the same

workspace. And software libraries such as ‘‘OpenCV’’ [7]

and ‘‘Point Cloud Library’’ (PCL) [41] are offering quasi-

standardized methods for the calibration and evaluation of

such multi-sensor setups. Still, to the knowledge of the

authors, there are no benchmarks available that would

allow for the independent comparison of multi-sensor

setups or algorithms working on them—mostly due to the

fact that reliable and precise ground truth measurements

are missing.

1.1 Benchmark platform

The benchmark platform is equipped with two 6-DOF

robots for object manipulation, and a multi-sensor setup

consisting of four RGB stereo cameras, three ‘‘Microsoft

Kinect’’ RGB-D devices and two projectors for shedding

structured light on the scene (see Fig. 1). The sensors are

arranged with overlapping fields of view for covering a

large part of the robot’s workspace.1 In order to reflect

typical manual assembly tasks, the benchmark describes

common situations during the assembly of the well-estab-

lished ‘‘Cranfield’’ set [10, 27, 42, 46] (see Fig. 7). The

projectors are used to project texture on objects to improve

the stereo processing, since object structure improves cor-

respondance finding. Figure 2 shows a subset of the Cran-

field objects with such a projected texture. In general, the

platform allows for complex manipulation of objects as well

as pose estmation with high precision. It has been used in a

PbD context in the IntellAct project (see Acknowledge-

ments) in which the assembly processes of the Cranfield

benchmark have been taught by human demonstration.

Overall, the platform has a functionality which is also

imaginable in a future industrial setup. Multiple cameras

may be required for dealing with occlusions, and two

robots may be required for performing complex actions

such as screw mounting.

1.2 Ground truth from VR

Our benchmark provides RGB and RGB-D data sets (stills

and streams) which have been generated using a simulat-

able 3D representation of this benchmark platform in a VR

system (see Fig. 1). Following the eRobotics methodology,

the VR system features interactive 3D visualization and

simulation of robot kinematics, dynamics, sensors and

control in the context of the target environments [35]. Here,

in particluar the detailed camera and sensor simulation

allows for offering benchmark images and point clouds

with controlled levels of quality, reaching from ‘‘ideal’’ to

Fig. 2 A view of the real platform containing a subset of the

Cranfield objects, with a texture projection for better stereo

reconstructions
Fig. 1 Benchmark platform with two robot manipulators and three

bundled pairs of RGB stereo cameras and ‘‘Microsoft Kinect’’ RGB-

D devices with overlapping fields of view (left, right and behind the

farthest robot). Bottom left sensor bundle in detail. Bottom Right

virtual benchmark platform with simulated RGB stereo cameras and

RGB-D devices

1 It is well-known that multiple Kinect sensors sharing a common

field of view will cause IR interference, resulting in poor depth

reconstructions. A known solution, which our platform also incorpo-

rates, is the use of vibrating motors mounted on the Kinect sensors

[9]. This method has been shown to effectively blur out the noisy

contributions of external sensors, while maintaining a high depth

reconstruction quality.
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‘‘close to reality’’. Here, ‘‘close to reality’’ is defined by the

similarity of outcomes when key factors of the real and

simulated data are processed by libraries such as OpenCV

and PCL, e.g. color histograms (RGB deviation, RGB

saturation), edge detection, SURF feature detection and

RANSAC feature similarity. In addition, assembly actions

in VR have been carried out and tracked with a dataglove,

thus generating accurate, objective ground truth data, e.g.

exact object positions from CAD data as well as detailed

information on the timing and existence of object manip-

ulations and spatial relations between manipulated objects.

The major advantage of generating ground truth from VR

is the full transparency and control of data acquisition and

the world model at each time step, thus providing other-

wise unavailable details of the significant parameters [39].

Comparisons of real and virtual images were made in the

project FastMap [40] and showed, that artificial and real

images led to very similar result in the computer vision

algorithms. In this work we used the standard depth error of

the Kinect as our lowest noise level and compared the

algorithms with less accurate testdata.

2 State of the art

This contribution is focusing on the analysis of pose esti-

mation and action recognition based on ground truth from

VR, resp. from camera and sensor simulation, as examples

for similar algorithms in machine vision and learning.

2.1 Pose estimation

A number of databases for the evaluation of full 6D pose

estimation algorithms exist. One of the most widely used is

the object recognition dataset of Mian et al. [28], consisting

of 5 models and 50 scenes, all acquired by a laser scanner.

For this data, each scene contains ground truth pose

information, however, this information has been obtained

by running the pose estimation algorithm followed by fine

registration by ICP [5]. More recently Lai et al. [26] pro-

posed the extensive RGB-D database consisting of a large

set of RGB-D views of a variety of objects and scenes. The

objects are acquired from multiple views using a turntable.

The ground truth information of this database consists only

of the approximate turntable angle, making this database

effectively unusable for benchmarking full 6D pose esti-

mation algorithms. Finally, Aldoma et al. [3] as well as

Glover and Popovic [17] have presented more challenging

datasets from real scenes with clutter and occlusions. For

these datasets, ground truth information is also available,

but again based on a prior fine registration. In our bench-

mark, we provide similar information, but with guaranteed

accurate ground truth information. Additionally, we

provide an extension compared to previous datasets in the

form of multi-view scenes.

2.2 Action recognition

Our action recognition framework relies on the concept of

semantic event chains which encodes the semantics of

actions from spatiotemporal relations between objects in

the scene and does not use any assumption or prior

knowledge in the object or action domain. Ideas to utilize

spatial relations to reach semantics of actions can be found

as early as in 1975 [4]. Still there are only a few approaches

attempting to reach the semantics of actions for the rec-

ognition task [22, 44, 45, 49]. Although all those works to a

certain extent improve the classification of manipulations

and/or objects, none of them can track multiple objects in

the scene and extracts key events of individual manipula-

tions, at which richer action descriptors such as trajectory

and pose information can be embedded.

Multi-Target Visual Tracking is a well-established field,

which goes back over thirty years. In this work we use

Sequential Bayesian Filtering (SBF), a technique which

recursively estimates the time-changing posterior distribu-

tion of target states given all previous observations. We use

a Sequential Monte Carlo method known as Particle Fil-

tering to approximate the posterior, an approach which was

first introduced to the vision community by Isard and Blake

[23] and has been the subject of much subsequent research

extending it to multiple targets [21, 48]. We adopt a fil-

tering model which uses a separate (independent) particle

filter for each target. Interactions between targets are

resolved using changes to the observation and process

models of the filters in order to explicitly model occlusions,

similar to our previous work [32] and that of Khan et al.

[24].

In contrast to other well-known data sets, our new

benchmark set captures manipulation actions where mul-

tiple objects are interacting with each other in a given

assembly task to address the occlusion, tracking and rec-

ognition problems. Actions in the proposed dataset are

recorded from multiple views with static RGB-D devices

since we are interested in understanding the spatiotemporal

interactions between the manipulated objects. The con-

ventional data sets, however, employ the entire human

body configurations and movements as main features and

therefore either do not involve hand-tool features [18, 25,

43] or are not rich to provide enough recordings required

for benchmarking [45, 49].

2.3 Camera simulation

The VR system features a camera and sensor simulation

[14, 38, 40] which is able to resemble the technical
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specifications and output data signatures (in particular

noise and errors) of the visual sensors in question. To

achieve real-time simulation, we utilize rasterization

techniques that can be implemented in modern shader-

driven GPUs for hardware accelerated real-time rendering.

At first, the camera parameters are measured according to

[19] or obtained by the documentation of the manufacturer.

The camera simulation then provides a real-time simulation

of various optical and electronic effects. It exceeds the

standard camera simulation of other simulation software as

V-Rep [11], Gazebo [31] or Microsoft Robotics Developer

Studio [30] as it allows for simulating various optical and

electronic effects in real-time. The modular and flexible

approach allows the extension of further effects as they are

needed. A simplified schematic global description of the

rendering process for different optical and electronic

effects is shown in Fig. 3. The input data consists of the

geometric description of the scene and lighting conditions

(direction, color and lighting model) which are combined

in an appropriate lighting shader to ensure real-time

visualization.

The sequential arrangement of different optical effects is

not interchangeable and needs to be computed in the right

order, e.g. lens distortion has to be added before various

noise effects are rendered. Therefore a shaderstack com-

bines the different shaders in the right order and processes

the rendered images. The different parameters of optics and

sensor are given to the shaderstack that combines these

values to a subsequent chain of different shading programs.

The resulting programs are completely GPU based and

allow for high performance simulation of different optical

and electronic effects, real-time rendering and interactive

adjustment of camera parameters. The various optical

effects have a significant impact on computer vision

algorithms and thus are important for a realistic visuali-

zation of a scenario. Radial symmetric distortion appears if

the magnification of a lens increases or decreases with the

distance from the optical center, e.g. a decrease of mag-

nification leads to barrel distortion (see Fig. 4).

Depth of field is supported by our simulation but

neglected here, since all objects are in sufficient distance

from the camera and the simulated image sensors are small.

Instead, the depth pass of our renderer is used for the

generation of point clouds as depicted in Fig. 5. Such depth

images are also the basis of adding noise to the point clouds

by adding or subtracting random values to the grey-scale

image depending on the size of the scene and the chosen

error. Optical CMOS or CCD sensors produce a varying

amount of noise [12], depending on lighting conditions,

temperature and pixel size. Our simulation allows for

multiple noise functions, such as hotpixel noise, color noise

and monochrome noise as shown in Fig. 6. The amount of

noise is taken from real images or are delivered by the

sensor manufacturers, e.g. by taking images in complete

darkness in order to obtain hotpixel noise. The resulting

noise textures are added to the rendered image in a postFig. 3 Concept of rendering the virtual scene with effects

Fig. 4 Barrel distortion with chromatic aberration. A vertical line is

inserted to demonstrate the effect

Fig. 5 Depth image as used for point cloud generation

Fig. 6 Noise textures. Left hotpixel noise. Right chromatic gauss-

distributed noise
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processing step. The reproducibility of highly dynamic

noise effects [15] can be accomplished through the active

simulation time as seeds for distribution of semi-random

noise values.

3 Benchmark experiments

Using the benchmark data from VR, we analyzed and

evaluated our latest developments in pose estimation and

action recognition as well as stereo reconstruction as an

important intermediate link between the two.

3.1 Pose estimation

We have generated multiple different virtual RGB-D

scenes for benchmarking pose estimation. All in all, we

have generated six scenarios, one scenario referring to a

random placement of a random subset of the available

objects on the table. The four objects involved in the

experiments are shown in Fig. 7. For each scenario, we

provide three views, one for each simulated RGB-D

device. Additionally, each scenario is recorded at six noise

levels, ranging from 0 mm (ideal) to 10 mm. Note that the

largest noise level is much higher than the expected noise

of the real ‘‘Microsoft Kinect’’, as pointed out in recent

studies [20]. For each scenario, we thus get 18 single-view

test scenes, and consequently 6 three-view scenes. In total,

over all six scenarios, we thus get 108 single-view scenes

and 36 three-view scenes.

For benchmarking, we apply our existing pose estima-

tion method proposed in [8] which implements an opti-

mized RANSAC [16], achieved by a prerejection step

based on low-level geometric consistency of the point pairs

sampled during each iteration. Contrary to the original

work, we apply the SHOT feature [47] here, which repre-

sents state of the art in shape matching, for obtaining

feature correspondences for the estimation routine. Finally,

to obtain a high accuracy, we refine the poses using ICP

[5]. An example scenario with pose estimation results is

shown in Fig. 8.

We evaluate the single-view scenes and the three-view

scenes separately. Translation errors are evaluated as the

Euclidean distance between the estimated translation vec-

tor and the ground truth translation. For evaluation of the

rotation error, we take the geodesic manifold distance

between the estimated rotation REst and the ground truth

rotation RGT :

log RT
Est � RGT

� ��� �� ¼ arccos
trace RT

Est � RGT

� �
� 1

2

� �
ð1Þ

where the logarithmic map, when applied to a rotation

matrix in SOð3Þ, gives the Lie algebra soð3Þ, also known as

the angle-axis representation. The norm of this vector

represents the minimal angle required to align the two

rotation frames, and lies in the interval ½0; 180� deg.

For all objects, with the exception of the small bolt,

there is a two-fold symmetry around the main axis, which

is near vertical in Fig. 7. For the bolt object (rightmost in

Fig. 7), there are four symmetries around this axis, plus an

additional symmetry around the near horizontal axis, giv-

ing eight possible rotations for this object. All symmetry

rotations produce a correct alignment of the objects. Thus,

when performing evaluation, we must handle these cases

by applying the symmetry rotations to each candidate pose,

and evaluating the ground truth rotation against the nearest

matching rotation.

The results of these experiments are shown in Table 1

for the individual camera cases and in Table 2 for the three

Fig. 7 The four object models used in the pose estimation

experiments, here represented CAD models. For the experiments,

these models have been resampled to point clouds to allow for feature

extraction. The objects are named from left to right: Faceplate,

Separator, Pendulum and Bolt

Fig. 8 Qualitative pose estimation result for a single view scene. Top

left ideal input scene. Top right same scene at the highest noise level.

Bottom pose estimation result of three objects for the top right scene,

viewpoint slightly different, revealing the depth noise which has a

standard deviation of 10 mm. The aligned object models are overlaid

with random colors (color figure online)
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camera cases. We observe that the translation errors are

very small for the noise-free, ideal case, which is expected.

The reasons for that these numbers are not zero are (1) that

the single-view scenes only show partial views of the

objects, (2) that the pose estimation routine uses a sub-

sampled point cloud of the objects for speed (the voxel

resolution is set to 5 mm), and finally (3) that the ICP

refinement is limited to 10 iterations, also because of speed

considerations. We see a systematic increase in the errors

with increasing noise level, both in translation and rotation.

More importantly, we observe that the three-view case

generally provides a higher level of robustness against

noise. Indeed, the results in Table 2 reveal reduced errors

for the high noise levels. This is also an expected result,

since the full representation provided by the three-view

scenes allows for ICP to converge to a pose closer to the

centroid using observations on all sides of the object sur-

faces. In a few instances, the rotation was misestimated.

This occurred e.g. for the pendulum in the single-view

dataset at a noise level of 7.5 mm, causing a high mean

rotation error in these cases. Curiously, for this object the

three-view case resulted in higher translation and rotation

errors for all but the two highest noise levels. Again, these

errors are a result of the poor rotation estimates. Likewise,

the bolt, being very small, shows quite unstable results,

primarily due to poor rotation estimates. All row errors

have the same weight in the calculation of the average

errors (bottom rows), which allows the large errors in the

bolt rotation estimates to cause a higher average rotation

error in one three-view case (highest noise level). Apart

from this, the general picture remains, namely that the use

of three views allows for increased robustness towards

noise.

3.2 Stereo reconstruction

As an additional application of the demonstrated simula-

tion platform, we have constructed an example scene with

an added simulated texture projector as also used in the real

setup described in Sect. 1.1. This allows for a better

reconstruction of point cloud data from an RGB image

pair. The stereo cameras used in the setup are the ‘‘Point

Grey Bumblebee2’’ model [34], which have a resolution of

1024x768 px. As in the real platform, we place the texture

projector above the stereo camera, capture the virtual scene

at different noise level, and run the OpenCV block

matching algorithm to reconstruct point cloud data. The

scene, which contains three of the known objects and one

cluttering object, is shown with increasing pixel noise in

Fig. 9.

As expected, we get a strong dependency between the

amount of pixel noise, and the ability of the block matching

algorithm to compute reliable stereo correspondences.

Qualitative results are shown in Fig. 10.

Finally, we have executed our pose estimation algorithm

on these point clouds. In Fig. 11, we show estimation

results for the ideal case and the lowest noise level. For the

noisy scene, a false positive occurs for the bolt. This

happens because the reconstruction noise accidentally

creates local structures similar to those of the bolt. For the

last four noise levels, the local shape features computed on

Table 1 Ground truth median pose errors over all single-view RGB-

D scenes for all noise levels

Noise level (mm) None 1 2.5 5 7.5 10

Faceplate

Trans. error (mm) 0.050 3.7 3.8 4.7 6.6 8.3

Rot. error (deg) 0.0 0.35 0.34 0.58 0.53 0.83

Separator

Trans. error (mm) 0.21 5.2 5.4 6.2 7.7 8.7

Rot. error (deg) 1.2 1.6 1.6 1.1 1.2 0.94

Pendulum

Trans. error (mm) 0.080 2.8 2.9 4.3 6.1 9.2

Rot. error (deg) 0.77 0.75 0.93 1.8 3.5 2.4

Bolt

Trans. error (mm) 0.26 5.2 5.2 5.5 8.9 10

Rot. error (deg) 1.8 2.4 2.3 1.2 1.0 2.3

Average

Trans. error (mm) 0.15 4.2 4.3 5.2 7.3 9.1

Rot. error (deg) 0.94 1.3 1.3 1.2 1.6 1.6

For the small bolt object, rotation errors are not available due to

multiple symmetries. In few cases for the separator and the pendulum,

the orientation is completely misestimated, causing a high rotation

error

Table 2 Ground truth median pose errors over all three-view RGB-D

scenes for all noise levels

Noise level (mm) None 1 2.5 5 7.5 10

Faceplate

Trans. error (mm) 0.030 3.4 3.5 4.3 5.9 6.9

Rot. error (deg) 0.18 0.23 0.23 0.37 0.95 0.87

Separator

Trans. error (mm) 0.020 3.5 3.8 4.1 4.8 5.4

Rot. error (deg) 0.65 0.76 0.75 0.85 1.2 1.6

Pendulum

Trans. error (mm) 0.3 4.1 4.7 5.2 5.9 8.6

Rot. error (deg) 1.1 0.77 0.39 2.0 1.2 1.4

Bolt

Trans. error (mm) 0.24 3.4 3.6 6.2 5.5 11

Rot. error (deg) 1.5 0.89 2.2 0.66 1.2 3.8

Average

Trans. error (mm) 0.15 3.6 3.9 5.0 5.5 8.0

Rot. error (deg) 0.86 0.66 0.89 0.97 1.1 1.9
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the point cloud are severely distorted, leading to failure

during matching.

3.3 Action recognition

We have recorded the Cranfield assembly task with 3 vir-

tual RGB-D devices for evaluating the action recognition

stage. Our recognition framework utilizes action semantics

which are bootstrapped from consistently tracked objects in

the scene. We applied the framework introduced in [32] to

the fused point clouds to separately track all objects present

in the scene. Figure 12 illustrates the tracked 3D positions

of Cranfield parts (Bolt, Faceplate, Pendulum, and Sepa-

rator) at each frame compared to the ground truth.

In the assembly task all consistently tracked objects are

represented by graphs in which nodes represent manipu-

lated objects and edges indicate whether two objects touch

each other or not. By using an exact graph matching

technique, the framework discretizes the entire graph

sequence into decisive main graphs. A new main graph is

identified whenever a new node or edge is formed or an

existing edge or node is deleted. Thus, each main graph

represents a key frame in the manipulation sequence.

Sequences of all extracted key frames are employed for

measuring the semantic similarities, yielding action rec-

ognition as described in [1, 2]. Figure 12 depicts sample

key frames with tracked objects (each is indicated with a

different color) and corresponding graphs, at which a new

action is recognized.

4 Benchmark data

The benchmark presented in our contribution is publicly

available and contains stills and action sequences from

multiple setups at various levels of noise. The benchmark

data is available at http://www.mmi.rwth-aachen.de/

exchange/data/pesi2014/benchmark.htm.

For stills, the number and positions of objects vary,

while camera and lighting positions remain constant. Each

dataset contains a RGB and PCL folder, where the corre-

sponding files can be found. The filename is defined by the

camera, e.g. Kinect_1_RGB.png in folder Set_003\0.2

Noise RGBData\ is an image taken from the perspective of

the ‘‘Microsoft Kinect’’ device no. 1 with 20 % chromatic

noise. The definitions of noise levels are described in

NoiseInfo.txt files for each set. In addition, each set of stills

contains a Ground Truth.txt and a CameraPositions.txt file,

where ground truth positions and orientations of objects

and cameras are given.

Action sequences where recorded using an ‘‘Intersense

IS 9000’’ tracking system with an ‘‘Immersion Cyber

Fig. 9 An example scene with a simulated texture projector, suitable

for stereo reconstruction. Top noise-free image pair for the simulated

stereo camera, showing the projected texture used during stereo

matching. Bottom zoom of the region marked in the top image for the

ideal case (leftmost) and at the highest pixel noise level (rightmost).

We show only a small region of the noisy stereo images for visibility

purposes, and this picture is best viewed in the electronic version

Fig. 10 Stereo reconstruction results for the image pairs visualized in

Fig. 9. Pixel noise of the input stereo images increase from left to

right and top to bottom

Fig. 11 Pose estimation results for the two top point clouds in Fig.

10, viewpoint set to other side of the table. For the rightmost case, a

false positive occurs for the bolt

Prod. Eng. Res. Devel. (2014) 8:745–754 751
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Glove 2’’ for tracking the user interaction when assembling

the virtual Cranfield set. The data was recorded and played

back in simulation, where images and point clouds were

generated from the simulation data with selected levels of

noise at a rate of 33 ms (30 frames per second). The

naming scheme of action sequences is similar to stills, but

the simulation time is added to the filename e.g. simtime-

05880ms_Kinect_2_PointCloud.pcd corresponds to the

point cloud of ‘‘Microsoft Kinect’’ device no. 2 at simu-

lation time t ¼ 5:88 s. For action sequences, the file

GroundTruthPositionsLog.txt lists the frame of objects at

timestamp t and can be used to evaluate the algorithms.

5 Conclusion

In this work, we have simulated an industrial setup

equipped with multiple RGB stereo cameras and RGB-D

devices. We have provided realistic signal information in

terms of images with various noise levels partially resem-

bling the characteristics of the image and depth sensors

involved. In particular, this allowed us to provide ground

truth information for pose estimation, stereo reconstruction

and action recognition as examples of typical algorithms in

machine vision and learning.

This has been a problem so far, since ground truth for

such algorithms is very hard to define in real setups due to

the problem of estimating object poses with higher cer-

tainty than cameras would allow. Moreover, even if more

precise sensors would be used, there would still be the

problem of assigning coordinate system to objects without

requiring additional sensors with sufficient accuracy. VR

on the other hand can provide suitable ground truth data—

but generally faces the problem that images produced in

VR are too ideal due to a insufficient modeling of noise and

other effects. We could overcome this problem by a camera

and sensor simulation which supports the generation of

ideal images as well as images that closely resemble the

characteristics of current RGB and RGB-D devices.

By means of this data, we were able to benchmark the

precision of a pose estimation algorithm on images ‘‘close

to reality’’. Besides benchmarking pose estimation, we

have also used the data to investigate stereo reconstruction

from multiple cameras as well as action recognition from

sequences captured from tracking a dataglove in VR. In

future work, we want to use the framework used here to

Fig. 12 Tracked 3D positions

of Cranfield parts Bolt,

Faceplate, Pendulum, and

Separator compared to the

ground truth. Extracted key

frames indicated on the top

represent the semantic changes

in the scene and are employed

to recognize actions. Each

object is assigned with a unique

graph node and color. White

edges indicate touching

relations between objects.

Recognized action labels are

given below each key frame

(color figure online)
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investigate other vision algorithms relevant in the context

of industrial platforms such as tracking under occlusions as

well as the required number of cameras and camera posi-

tions to reach a certain amount of pose certainty. Nowa-

days such optimization processes usually are performed

manually and require a lot of resources which make robot

installations expensive. Our approach can help to reduce

such cost by extensive prior optimization in VR. In addi-

tion, the VR-based approach allows for evaluating and

furthering the application of algorithms from the fields of

machine vision and learning for industrial assembly.
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