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Synaptic modifications depend on synapse location and activity: a
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In spike-timing-dependent plasticity (STDP) the synapses are potentiated or depressed depending on the tem-
poral order and temporal difference of the pre- and postsynaptic signals. We present a biophysical model of STDP
which assumes that not only the timing, but also the shapes of these signals influence the synaptic modifications.
The model is based on a Hebbian learning rule which correlates the NMDA synaptic conductance with the post-
synaptic signal at synaptic location as the pre- and postsynaptic quantities. As compared to a previous paper
(Saudargiene et al., 2004), here we show that this rule reproduces the generic STDP weight change curve by using
real neuronal input signals and combinations of more than two (pre- and post-synaptic) spikes. We demonstrate
that the shape of the STDP curve strongly depends on the shape of the depolarising membrane potentials, which
induces learning. As these potentials vary at different locations of the dendritic tree, model predicts that synaptic
changes are location-dependent. The model is extended to account for the patterns of more than two spikes of
the pre- and postsynaptic cells. The results show that STDP weight change curve is also activity-dependent.
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1. Introduction

It is believed that learning and memory in
biological neurons are based on the modifica-
tions of the synaptic strengths (Benett, 2000).
Synapses are weakened or strengthened depend-
ing on the order and temporal difference of the
pre- and postsynaptic activity. If the presynap-
tic spike precedes the postsynaptic spike (T >
0), the synapse is potentiated, while it is de-
pressed if the temporal order is reversed (T <
0). This phenomenon is called spike-timing-
dependent-plasticity (Markram et al., 1997; Bi
and Poo, 2001).

However, recent physiological experiments sug-
gest that the properties of synaptic modifica-
tions may depend not only on timing, but also
on the location of the synapse (Golding et al.,
2002). i.e. synaptic strength is regulated by
local learning rules. This assumption is sup-
ported by the fact the signals which drive synap-
tic plasticity strongly depend on the location at
the neuron where a synapse is located (Häusser

and Mel, 2003; Golding et al., 2002). Close to
the soma back-propagating or, more distally, den-
dritic spikes provide the necessary post-synaptic
depolarisation (Magee and Johnston, 1997; Gold-
ing et al., 2001, 2002; Larkum et al., 2001).

The natural activity of biological neurons is
much more complex than that used in the ex-
perimental conditions of STDP induction. In
these experiments the synaptic inputs are paired
with postsynaptic action potentials (Magee and
Johnston, 1997; Markram et al., 1997; Bi, 2002)
or a synapse is stimulated with low or high fre-
quency inputs (Bear, 1995). In natural conditions
of learning multiple pre- and postsynaptic spikes
may occur within milliseconds and bursting is ob-
served (Paulsen and Sejnowski, 2000; Bi, 2002).
How such neuronal activity influences synapse po-
tentiation and depression still remains under de-
bate (Bi, 2002). It has been argued that the spike
pairs may cause independent effects (Kempter
et al., 1999; Song et al., 2000; van Rossum et al.,
2000) or interact with each other (Froemke and
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Dan, 2002; Eisele and Miller, 2002) such that the
contribution of one given spike pair depends on
the presence of other spikes. For example, it was
observed that the first spike pair diminishes the
influence of the following spike pair in layer 2 and
3 Pyramidal neurons (Froemke and Dan, 2002)
implying that synaptic modifications are activity-
dependent.

In this study we present a biophysical model
of STDP which can account for more realistic
spiking patterns and capture the dependence of
synaptic changes on the shapes of the pre- and
postsynaptic signals. The model correlates the
NMDA synaptic conductance and a postsynaptic
signal, dependent on the postsynaptic depolari-
sation at the location of the synapse. The influ-
ence of the activity of the pre- and post-synaptic
cells is incorporated in the model by introduc-
ing efficacies of each spike. In this study we use
real neuronal signals and triplets of spikes as com-
pared to another recent paper (Saudargiene et al.,
2004) where the simulations were based on artifi-
cial signals and only spike pairs were considered.
Also the learning rule differs. Here we will show
that the new model reproduces the generic STDP
weight change curve and is sensitive to the shapes
of the postsynaptic membrane potential, respon-
sible for learning induction. As this signal varies
along the dendritic tree, the model predicts that
STDP is location-dependent. We find that the
most pronounced differences in synaptic modifi-
cation rules should be in proximal and distal den-
drites - anti-symmetrical STDP versus symmet-
rical weight change curve where only potentia-
tion is observed, respectively. Moreover we note
that STDP characteristics are influenced by the
the spiking pattern of the pre- and post-synaptic
cells.

2. Biophysical model of STDP

The biophysical model of STDP implements
a dendritic compartment with a plastic synapse
which consists of NMDA and AMPA channels
(Fig. 1).

The AMPA channels are the ones that mainly
express the plasticity it by changing the synap-
tic strength ρ (Lisman, 1994). Our model is

concerned with plasticity induction, therefore, no
steps have been undertaken to explicitly model
processes that modify AMPA channels.

The NMDA channels are essential for plastic-
ity induction as their blockade to a large degree
prevents STDP (Nishiyama et al., 2000; Gold-
ing et al., 2002). First, they serve as a co-
incidence detector between the pre- and post-
synaptic activity (Markram et al., 1997). Sec-
ond, open NMDA channels enable Ca2+ ion in-
flux into the postsynaptic cell. It is believed
that NMDA channel-mediated Ca2+ influx trig-
gers complex chain reactions involving CaMKII,
calmodulin, calcineurin and results in plasticity
(Lisman, 1994; Bi, 2002).

In our model we associate the presynaptic sig-
nal with the time- function of the NMDA synaptic
conductance given by:

g(t) = ḡ cN (t) = ḡ
e−t/τ1 − e−t/τ2

1 + κe−γVm(t)
(1)

where ḡN = 4 nS is a peak conductance, τ1 =
40 ms, τ2 = 0.33 ms are time constants, Vm is the
membrane potential, η = 0.33/mM , [Mg2+] =
1 mM , γ = 0.06/mV (Koch, 1999).

A strong depolarisation of the postsynaptic cell
is necessary for learning induction (Golding et al.,
2002). This depolarisation not only unblocks the
NMDA channels, but also opens voltage-gated
Ca2+ channels (Medina et al., 1999). The frac-
tion IS of the total postsynaptic current I(t) =
C dVm(t)

dt may be associated with the Ca2+ influx,
where C is the membrane capacitance. We define
this current IS as a postsynaptic quantity. It has
a slower time course as the membrane potential
Vm. We note that Ca2+ influx still occurs rela-
tively fast but its elimination (for example via up-
take mechanisms) is slow (Maravall et al., 2000).
To capture this effect we filter the total current I
with the low pass filter h:

IS = ϕ I(t) ∗ h(t) = ϕ C

(
dVm

dt

)
∗ h(t), (2)

where ϕ < 1 is the constant indicating that Ca2+

is a fraction of the total current, the asterisk de-
notes the convolution and filter function h is ex-
pressed:

h(t) = σ (e−t/τh2 − e−tτh1), (3)
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σ is a scaling factor, τh1 = 1ms, τh2 = 40ms are
the filter parameters, chosen following (Maravall
et al., 2000; Shouval et al., 2002). This filtering
process is a major difference to our older study
(Saudargiene et al., 2004), where only unfiltered
signals were used.

The synaptic weight ρ of the plastic synapse
is updated according to a Hebbian learning rule
which correlates the NMDA synaptic conduc-
tance with a postsynaptic current at the location
of the synapse:

dρ

dt
= µ cN (t) IS(t), (4)

where µ is the learning rate, cN is the NMDA
channel opening function, the pre-synaptic influ-
ence quantity, and IS is the current, the postsy-
naptic quantity.

The quantity cNIS can be understood as the
Ca2+ influx which is gated by a channel opening
function cN . Thus, the final weight change ∆ρ,
given by the integral, is determined by the Ca2+

concentration.
This final weight change ∆ρ after one pre-post

pairing is expressed as (T = tpost − tpre):

∆ρ(T ) = µ

∫ ∞

0

IS(t− T )cN (t)dt, T ≥ 0 (5)

∆ρ(T ) = µ

∫ ∞

0

IS(t)cN (t + T )dt, T < 0 (6)

The correlation is performed in a temporally
causal way by applying the shift operation to ei-
ther the current IS for T ≥ 0 or to the NMDA
channel function for T < 0 in Eqs. 5, 6).

3. STDP curves at different locations of
the dendritic tree

We applied our learning rule (Eq. 4) to model
the synaptic changes using real depolarising sig-
nals, which trigger synaptic plasticity. These po-
tentials vary along the dendritic tree. We use a
short and steep BP action potential to obtain the
synaptic changes close to the soma, and long shal-
low dendritic spike to account for synaptic mod-
ifications in the distal parts. The dendritic spike
and BP-spike, measured 860µm and 210µm from

the soma, respectively, are presented in Fig. 2 A,
C) and have been adopted from (Larkum et al.,
2001; Stuart et al., 1997). The depolarisation
coming from these spikes is very strong, there-
fore we may neglect the contribution of the plas-
tic synapse. We calculate the derivative of the
membrane potential using the recorded shapes of
spikes Vm, filter it with the filter h to account
for a slower Ca2+ dynamics and substitute the
obtained current IS in the learning rule (Eq. 4).
We do not model the processes of plasticity ex-
pression, therefore for the sake of simplicity we
absorb the constant ϕ, membrane capacitance C
from Eq. 2 and the learning rate µ from Eq. 4
into a product µ ϕ C = 1 while using Eqs. 5, 6.
In principle, µ could be chosen to account for the
amplification mechanisms which, however, were
not meant to be implemented in this model.

The results are presented in Fig. 2 B, D. We
obtain an anti-symmetrical weight change curve,
corresponding to differential Hebbian learning, if
the depolarisation is provided by a steep back-
propagating spike (Fig. 2 D). The synapse is
weakened if T < 0 and strengthened if T > 0.
However, we observe a curve more similar to Heb-
bian learning if the depolarisation comes from
the shallow dendritic spike. The synaptic weight
grows even for negative T > −20ms values.
(Fig. 2 B). The shape of the depolarising potential
strongly influences the STDP curve. Although
the generic anti-symmetrical form of STDP is ob-
tained in both cases, the transition from LTD to
LTP is observed at different T values. The shift
towards a more Hebbian characteristic becomes
stronger when rising flank of the depolarisation
signal gets shallower (Saudargiene et al., 2004).

As the depolarising potentials vary in differ-
ent parts of the dendritic tree, the results sug-
gest that synaptic modifications depend on the
location of the synapse and predict that proximal
synapses are modified according to a differential
Hebbian learning rule and distal synapses more
according to a Hebbian learning rule, where LTD
induction is prevented even for negative T values
(T > −20ms in the case presented).
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4. Model extension for triplets of spikes

So far we applied the model to estimate the
synaptic modifications caused by one single pre-
and postsynaptic spike pair. However, it was ob-
served that the effect from the first pre- and post-
synaptic spike pair dominates over the following
spike pairs decreasing their influence (Froemke
and Dan, 2002). In order to account for such sup-
pression effects we modify the learning rule (Eq.
4) as follows:

dρ

dt
= µ csup

N (t) Isup
S (t), (7)

where

csup
N (t) =

∑
i

θpre(tpre
i , tpre

i−1) cN (t− tpre
i ) (8)

and

Isup
s (t) =

∑
i

θpost(tpost
i , tpost

i−1 ) Is(t− tpost
i ) (9)

The new quantities csup
N and Isup

s implement
the suppression of the pre- and postsynaptic ac-
tivity by weighting the channel opening function
cN and current Is with the efficacies θpre and θpost

of the ith pre- and ith postsynaptic spikes.
The efficacies θpre and θpre are expressed as:

θpre(tpre
i , tpre

i−1) = 1− e(tpre
i
−tpre

i−1)/τpre
s , (10)

and

θpost(tpost
i , tpost

i−1 ) = 1− e(tpost
i
−tpost

i−1 )/τpost
s . (11)

where ti, ti−1 are the timing of the event i
and the preceding event i − 1, parameters τpre

s ,
τpost
s are the suppression time constants of the

pre- and postsynaptic activity, respectively. The
terms θpre and θpost define the efficacy of the ith

event depending on the proximity of the preced-
ing (i− 1)th event. Influence of the ith event de-
creases if it follows the (i − 1)th event within a
narrow time window. The approach for defining
the efficacies of the spikes has been adopted from
Froemke and Dan (2002).

We applied the modified learning rule Eq. 7 to
model the synaptic changes induced by triplets
of spikes. The third additional spike was intro-
duced either pre- or postsynaptically, thus form-
ing “2/1” triplets (2 presynaptic spikes and 1

postsynaptic spike) or “1/2” triplets (1 presynap-
tic spike and 2 postsynaptic spikes). As before,
we investigated the influence of the location of
the synapse by applying a short BP-spike and a
shallow long dendritic spike as a source of depo-
larisation. The results are presented in Fig. 3.

We form a “2/1” triplet by adding a presynap-
tic spike Spre

1 (bold) after a postsynaptic spike
with a temporal difference T1 = −20ms and
keep T1 constant (Fig. 3, A). Another presynaptic
spike Spre

2 arrives at varying temporal differences
T in respect to the postsynaptic spike. Three
different temporal situations of these spikes are
shown. 1) For T < −20ms the STDP curve is
dominated by the influence of the closest presy-
naptic spike Spre

1 which occurs always at a fixed
time T1 = −20ms and suppresses the influence
of Spre

2 . 2) As soon as Spre
2 arrives earlier than

Spre
1 , the situation reverses, Spre

2 diminishes the
effect of Spre

1 and the weight change curve starts
largely depending on the Spre

1 arrival time, i.e.
on the temporal difference T . 3) A transition
from depression to potentiation is observed when
T becomes positive and the depolarisation is pro-
vided by a BP-spike (Fig. 3 A, solid). In addi-
tion, for large positive T the influence of Spre

2

becomes small and Spre
1 starts dominating which

even leads to depression. The location of the
synapse also has an important role. Depression
is very pronounced if the source of depolarisation
is a steep BP-spike which corresponds to proximal
dendritic parts (Fig. 3 A, solid). Only potentia-
tion is observed if plasticity is driven by dendritic
spikes which occur in distal parts (Fig. 3 A, dot-
ted). In principle, similar results are obtained if
spike Spre

1 occurs with T1 = −40ms. (Fig. 3, C).
If T1 > 0, we obtain mainly potentiation as the
spike Spre

1 arrives before the postsynaptic spike.
Similar simulations were carried out for triplets

“1/2” formed by introducing an additional post-
synaptic spike Spost

1 (bold) at T1 = 20ms after a
presynaptic spike (Fig. 3, B). Again, three tempo-
ral situations are presented. 1-2) Spike Spost

2 sup-
presses the contribution of Spost

1 as long as it ar-
rives earlier than Spost

1 , i.e. T < 20ms. However,
for very large negative T the Spost

1 takes over and
results even in potentiation, if the depolarisation
is provided by a BP-spike (Fig. 3 B, solid). 3) As



5

soon as Spost
2 occurs later than Spost

1 (T > 20ms),
it’s influence is suppressed by the preceding spike
Spost

1 . As before, we observe the pronounced
differences between synaptic changes close and
far away from the soma. For a short BP-spike
(proximal location) potentiation is obtained, if T
has large negative values T < −40ms (Fig. 3 B,
solid). For a shallow dendritic spike (distal loca-
tion) we get potentiation if T > −40ms (Fig. 3
B, dotted). These two cases clearly differ from
the commonly observed STDP. The similar re-
sults for a case T1 = 40ms are presented in Fig. 3
D. Negative T1 leads to the depression, as the
spike Spost

1 precedes the presynaptic spike. The
obtained results match the physiological observa-
tions of Froemke and Dan (2002).

5. Discussion

The typical approach to model STDP is to as-
sume a certain weight change curve which does
not depend on the local properties of the cell, e.g.
(Gerstner et al., 1996; Abbott and Song, 1999;
Song et al., 2000). A few more detailed mod-
els take into consideration the postsynaptic signal
which is associated with the membrane poten-
tial, e.g. (Rao and Sejnowski, 2001; Karmarkar
and Buonomano, 2002; Shouval et al., 2002) and
observe that its shape influences the shape of
the weight change curve. In our previous work
we presented a biophysical model of STDP and
showed that the weight change curve strongly de-
pended on the shapes of the depolarising mem-
brane potential (Saudargiene et al., 2004).

Here in the new study we investigated the in-
fluence of the realistic depolarising membrane po-
tentials on STDP. In addition, we extended the
model to account for the influence of the spik-
ing pattern of the pre- and postsynaptic cells.
The results show that the properties of the STDP
weight change curve are influenced by the location
of the synapse as the strong depolarisation, nec-
essary for plasticity induction, changes its shape
along the dendrite and is provided by different
mechanisms such as BP-spikes close to the soma
and dendritic spikes in the distal dendritic parts.
Therefore we predict that rules of synaptic mod-
ifications are location-dependent. Close to the

soma the synaptic modifications are bidirectional,
described by an anti-symmetrical STDP curve.
In the distal parts synapses undergo potentiation
even for negative values of T . The same learn-
ing rule leads to different synaptic modifications
and it is self-adjusting following the shapes of the
depolarisation source in different locations of the
dendritic tree.

The notion that site specific plasticity can ex-
ist in real neural networks is currently indirectly
supported by findings showing that the mem-
brane properties of real neurons strongly change
along its dendrites (Stuart and Häusser, 2001;
Häusser et al., 2000). Recent physiological ex-
periments also confirm the predictions of our rule
about transition from temporally anti-symmetric
to symmetric weight change curve (Kampa and
Stuart, 2003). Three postsynaptic spikes, hence
a more prolonged dendritic signal, were used to
drive plasticity and resulted in LTP for negative
values of T .

The model was modified to account for the
synaptic modifications induced not only by a sin-
gle spike pair, but also by multiple pre- and post-
synaptic spikes. Specifically, we have modeled
synaptic changes for triplets of spikes. The ob-
tained results matched physiological observations
which show that the contribution of the given
spike pair is suppressed by the preceding pre-
or postsynaptic spikes (Froemke and Dan, 2002).
This suppression effect was simulated by intro-
ducing the spike efficacies in Eq. 7 and in this way
implementing short-term depression which oc-
curs presynaptically (Wu and Borst, 1999; Wong
et al., 2003) and postsynaptically (Lisman, 1994;
Bi, 2002). In principle, it is possible to incor-
porate advanced models of short-term plasticity,
e.g.(Giugliano et al., 1999; Scheuss et al., 2002).
Our model could be applied to find synaptic mod-
ifications induced by bursting and natural spike
trains (Paulsen and Sejnowski, 2000; Froemke
and Dan, 2002).

It is known that postsynaptic signals strongly
depend both on the activity and the electrotonic
distance from the soma. BP-spikes are atten-
uated during repetitive somatic firing at con-
stant high frequency and fail to invade distal den-
dritic parts (Williams and Stuart, 2000; Colbert
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et al., 1997). However, high-frequency physiolog-
ical spike trains occurring within short tempo-
ral periods propagate back into the dendritic tree
and induce dendritic spikes (Williams and Stuart,
2000). Our learning rule not only accounts for the
activity pattern, but also for the shapes of the de-
polarising potentials and in this way combines the
effects of activity and location on STDP.

Location- and activity-dependent learning
rules can provide the neurons with a substantially
diversified set of computational properties which
has the potential to enhance the computational
power of such networks tremendously.
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Markram, H., Lübke, J., Frotscher, M., Sakmann,
B., 1997. Regulation of synaptic efficacy by co-
incidence of postsynaptic APs and EPSPs. Sci-
ence 275, 213–215.

Medina, I., Leinekugel, X., Ben-Ari, Y., 1999.
Calcium-dependent inactivation of the monosy-
naptic NMDA EPSCs in rat hippocampal neu-
rons in culture. Eur. J. Neurosci. 11, 2422–30.

Nishiyama, M., Hong, K., Mikoshiba, K., Poo,
M., Kato, K., 2000. Calcium stores regulate
the polarity and input specificity of synaptic
modification. Nature 408, 584–588.

Paulsen, O., Sejnowski, T. J., 2000. Natural pat-
terns of activity and long-term synaptic plastic-
ity. Current Opinion Neurobiol. 10, 172–179.

Rao, R. P. N., Sejnowski, T. J., 2001. Spike-
timing-dependent Hebbian plasticity as tempo-
ral difference learning. Neural Comp. 13, 2221–
2237.

Saudargiene, A., Porr, B., , Wörgötter, F., 2004.
How the shape of pre- and postsynaptic signals
can influence stdp: A biophysical model. Neu-
ral Comp. .

Scheuss, V., Schneggenburger, R., Neher,
E., 2002. Separation of presynaptic and

postsynaptic contributions to depres-
sion by covariance analysis of successive
EPSCs at the Calyx of Held Synapse. J.
Neurosci. 22, 728–739.

Shouval, H. Z., Bear, M. F., Cooper, L. N., 2002.
A unified model of NMDA receptor-dependent
bidirectional synaptic plasticity. Proc. Natl.
Acad. Sci. (USA) 99 (16), 10831–10836.

Song, S., Miller, K. D., Abbott, L. F., 2000.
Competitive Hebbian Learning through spike-
timing-dependent synaptic plasticity. Nature
Neurosci. 3, 919–926.

Stuart, G., Spruston, N., Sakmann, B., Häusser,
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Figure 1. Schematic diagram of the biophysical
model. A plastic synapse consists of NMDA and
AMPA channels and has the strength ρ. The
source of depolarisation which removes Mg2+

block from the NMDA channel may take the form
of a BP- or dendritic spike.

Figure 2. Location-dependent STDP curves. A)
In distal parts slow and wide local dendritic spikes
drives the plasticity (measured 860µm from the
soma, adopted from Larkum et al. (2001)). B)
The resulting weight change curve. Potentiation
is observed even for negative values T > −20ms.
C) Close to the soma short BP-spikes induce plas-
ticity (measured 210µm from the soma, adopted
from Stuart et al. (1997)). D) The obtained
weight change curve is anti-symmetrical. Scale
factors σ in Eq. 3: B) σ = 0.0256, D) σ = 0.0373.
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Figure 3. Activity-dependent STDP curves for
A,C) “2/1” triplets, B,D) “1/2”triplets. Source
of depolarisation: BP- (solid) and dendritic spike
(dotted) (Fig. 2 C,A). A,C) The presynaptic
spike Spre

1 (bold) occurs T1 = −20ms or T1 =
−40ms after the postsynaptic spike. The tempo-
ral interval T between the other presynaptic spike
Spre

2 and the postsynaptic spike varies. B,D) The
postsynaptic spike Spost

1 (bold) occurs T1 = 20ms
or T1 = 40ms after the presynaptic spike. The
temporal interval T between the other postsynap-
tic spike Spost

2 and the presynaptic spike varies.
τpre
s = τpost

s = 0.1s in Eqs. 10, 11.


