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Spike-timing-dependent plasticity (STDP) is described by long-term po-
tentiation (LTP), when a presynaptic event precedes a postsynaptic event,
and by long-term depression (LTD), when the temporal order is reversed.
In this article, we present a biophysical model of STDP based on a differ-
ential Hebbian learning rule (ISO learning). This rule correlates presy-
naptically the NMDA channel conductance with the derivative of the
membrane potential at the synapse as the postsynaptic signal. The model
is able to reproduce the generic STDP weight change characteristic. We
�nd that (1) The actual shape of the weight change curve strongly depends
on the NMDA channel characteristics and on the shape of the membrane
potential at the synapse. (2) The typical antisymmetrical STDP curve (LTD
and LTP) can become similar to a standard Hebbian characteristic (LTP
only) without having to change the learning rule. This occurs if the mem-
brane depolarization has a shallow onset and is long lasting. (3) It is
known that the membrane potential varies along the dendrite as a result
of the active or passive backpropagation of somatic spikes or because
of local dendritic processes. As a consequence, our model predicts that
learning properties will be different at different locations on the dendritic
tree. In conclusion, such site-speci�c synaptic plasticity would provide a
neuron with powerful learning capabilities.

1 Introduction

Hebbian (correlation-based) learning requires that pre- and postsynaptic
spikes arrive within a certain small time window, which leads to an increase
of the synaptic weight (Hebb, 1949). Originally it had been supposed that
the temporal order of both signals is irrelevant (Bliss & Lomo, 1970, 1973;
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Bliss & Gardner-Edwin, 1973). However, rather early �rst indications arose
that temporal order is indeed important (Levy & Steward, 1983; Gustafs-
son, Wigstrom, Abraham, & Huang, 1987; Debanne, Gahwiler, & Thomp-
son, 1994). Later, this was termed spike-timing-dependent plasticity (STDP),
which refers to the observation that many synapses will decrease in strength
when the postsynaptic signal precedes the presynaptic signal (de�ned here
as T < 0), while they will grow if the temporal order is reversed (thus, T > 0)
(Markram, Lübke, Frotscher, & Sakmann, 1997; Magee & Johnston, 1997; Bi
& Poo, 2001). T denotes the temporal interval between post- and presynap-
tic signals (T :D tpost ¡ tpre). This leads to the characteristic antisymmetrical
weight change curve measured by several groups.

Antisymmetrical learning curves were �rst observed in the entirely dif-
ferent context of classical conditioning models requiring much slower time-
scales. In their seminal study, Sutton and Barto (1981) introduced a learning
rule based on the temporal difference between subsequent output signals,
and they observed that this rule leads to inhibitory conditioning when the
temporal order of conditioned and unconditioned stimulus is reversed. In
their hands, this was an unwanted effect, because inhibitory conditioning
is only very rarely observed in experiments (Prokasy, Hall, & Fawcett, 1962;
Mackintosh, 1974, 1983; Gormezano, Kehoe, & Marshall, 1983). It gave, how-
ever, a hint that this class of “differential” algorithms would in general pro-
duce antisymmetrical learning curves. The TD learning rule (Sutton, 1988)
also belongs to this class of algorithms. Accordingly, Rao and Sejnowski
(2001) successfully used the TD algorithm to implement STDP. In the orig-
inal TD learning rule, one speci�c signal is used as a dedicated reward,
which is treated differently from the other inputs. Thus, Rao and Sejnowski
(2001) had to change the TD rule to some degree in order to better adapt
it to STDP (see also section 4). The differential Hebbian ISO learning rule,
recently introduced by us (Porr & Wörgötter, 2003a) in the context of ma-
chine control (Porr & Wörgötter, 2003b), on the other hand, treats all input
lines equivalently. This prompted us to query if the ISO rule could also be
applied to spiking neurons in a biophysically more realistic model of STDP.

The mechanisms that underlie STDP are associated with the biophysics
of long-term potentiation (LTP) and long-term depression (LTD; Martinez &
Derrick, 1996; Malenka & Nicoll,1999; Bennett, 2000). This involves complex
calcium dynamics and the concerted action of several enzymes such as ®-
calcium-calmodulin-dependent protein kinase II (CaMKII; e.g., see Teyler &
DiScenna, 1987). Several kinetic models have been made (Senn, Markram,
& Tsodyks, 2000; Castellani, Quinlan, Cooper, & Shouval, 2001; Shouval,
Bear, & Cooper, 2002) in order to arrive at a better understanding of some of
these aspects, and some models reach a relatively high level of biophysical
and biochemical complexity. As a consequence, however, they contain many
degrees of freedom.

The question of STDP will be addressed here in the context of a single-
compartment neuron model applying the ISO learning rule. We motivate
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the use of this rule for modeling STDP by the fact that it is a differential
Hebbian learning rule that correlates input and output signals and pro-
duces antisymmetrical weight change curves (Porr & Wörgötter, 2003a). On
the right timescale, these properties are similar to STDP such that the ISO
learning rule should in principle be applicable in this context too.

Currently it is generally assumed that backpropagating spikes provide
the necessary postsynaptic signal that represents the temporal reference
for the considered synapse. This view has recently been questioned (see
Goldberg, Holthoff, & Yuste, 2002, for a review), and a stronger emphasis
has been laid on local dendritic processes. Therefore, we will speci�cally
investigate how different possible sources of postsynaptic depolarization,
modeled by different shapes of the potential change, will in�uence learn-
ing. The central �nding of this modeling exercise is that the ISO learn-
ing rule leads in a robust and generic way to STDP, while the shape of
the input signals distinctively in�uences the shape of the weight change
curve.

We believe that this study may help to further our understanding of
more complex (compartmentalized or kinetic) models because the question
of how a certain STDP curve arises is reduced to the question of how the
cellular parameters lead to the underlying input signal shapes.

2 Methods

2.1 Components of the Membrane Model. The model represents a
small, nonspiking, dendritic compartment with synaptic connections that
can take the shape of an AMPA or an NMDA characteristic.

Thus, conductances gA of AMPA and gN of NMDA channels were mod-
eled by state-variable equations:

gi :D gA.t/ D NgA OgA.t/ D NgA t e¡t=tpeak (2.1)

gi :D gN.t/ D NgN OgN.t/ D NgN
e¡t=¿ 1 ¡ e¡t=¿ 2

1 C ´[Mg2C] e¡° V : (2.2)

This slightly morecomplexnotation is used because we will need the nor-
malized conductance time functions OgA;N.t/ on their own when introducing
the learning rule.

All equations used in this study are numerically evaluated in 0.1 ms time
steps.

V is the membrane potential. Peak conductances aregiven by the Ng values:
NgA D 5:436 nS/ms, NgN D 4 nS. The other parameters were tpeak D 0:5 ms,
¿1 D 40 ms, ¿2 D 0:33 ms, ´ D 0:33/mM, [Mg2C] D 1 mM, ° D 0:06/mV
(Koch, 1999). Reversal potentials used were EA D EN D 0 mV.
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The conventional membrane equation (equation 2.3) was used to deter-
mine the momentarily existing membrane potential:

C
dV.t/

dt
D

X

i
.½i C 1½i/gi.t/.Ei ¡ V.t// C Vrest ¡ V.t/

R
; (2.3)

with R D 100 MÄ, C D 50 pF, and Vrest D ¡70 mV (Koch, 1999). Here we
have introduced synaptic weights ½i and their weight changes 1½i. This
is done purely for convenience, because weights and peak conductances
could also be combined multiplicatively. However, as we will see below, it
makes sense to keep them separate, because the peak conductances Ng can
then serve as reference values for the growth (or shrinkage) of the synaptic
weights. These equations were modeled using C++ in the Z-domain (Köhn
& Wörgötter, 1998) in order to speed up simulations.

A single synapse was assumed as the so-called plastic synapse (PS) on
which the in�uence of the ISO learning rule was tested. This synapse can
consist of varying NMDA and AMPA components, and we will call it ½1.
Note that only the NMDA component drives the learning (see below), the
AMPA component will only (mildly) in�uence the membrane potential,
thereby possibly exerting a second-order in�uence on the learning. It will,
however, turn out in the course of this study that the secondary AMPA in-
�uence is so small that it can be neglected in most cases. The plastic synapse
receives the presynaptic spikes modeled as ±-function input to equations 2.1
and 2.2. The in�uence of the NMDA component of the plastic synapse on
the membrane potential is dependent on the membrane’s depolarization
level. We assume in this model that this is determined by the postsynap-
tic activity, and we tested how different postsynaptic events in�uence the
weight change curve. To this end, three cases will be discussed: a postsynap-
tic in�uence that takes the shape of (1) an AMPA response, (2) an NMDA
response, and (3) a backpropagating spike (BP spike; see Figure 1A). We
will call these in�uences the postsynaptic depolarization source (DS). Since
we will treat these cases one by one, we can associate them with the same
weight (i.e., amplitude factor) ½0. When using a BP spike, we have generally
set ½0 D 1.

Technically this was achieved by triggering the depolarization source
with another ±-pulse that was shifted by a temporal interval T in relation
to the presynaptic event. Physiologically this is meant to be linked to the
postsynaptic spike. Strictly, this association, however, is valid only for the
BP spike, which is causally related to the postsynaptic spike. The other
(AMPA- or NMDA-) depolarization source events need not arise from such
a causal relation but can be associated with other independently converging
in�uences from other synapses. The possibility for neuronal synchroniza-
tion (Singer & Gray, 1995) with different lead or lag supports the possibility
that clusters of other synapses could lead to the required depolarization.
At this point, we note that it is not possible to rigorously de�ne T in all
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Figure 1: Schematic diagram of the model. (A) Components of the membrane
model. The inset shows how to match the NMDA conductance function OgN (see
equation 2.2)with a resonator impulse response h1. (B) Components of ISOlearn-
ing. (C) Typical weight change curve obtained with ISO learning. Parameters to
obtain this curve were Q D 0:51, f D 0:1 Hz.

instances. Experimentally, T is associated with the difference between pre-
and postsynaptic spike. At the site of the plastic synapse, one would, how-
ever, expect a 1 to 2 ms larger T due to the delay in backpropagating the
spike. If other clusters of synapses are driving the (heterosynaptic) plastic-
ity, T would have to be de�ned as the interval between the cluster activity
and that at the plastic synapse.

Figure 1A shows the different modeled depolarization sources in the
context of a single-compartment model. At the summation point, the mem-
brane potential is determined by the three depicted DS in�uences (see equa-
tions 2.1–2.3) as well as by the in�uence that comes from the plastic synapse.
For practical purposes, we de�ne T as the difference between the events as
it occurs at the site of the plastic synapse, thus neglecting possible delays
that are currently experimentally unresolvable.

One can assume that all active processes involved in generating BP spikes
will cease at (or close to) the synaptic density. Thus, locally, only the electro-
tonic membrane properties will prevail. They are at the synaptic density de-
termining the membrane potential, which in turn in�uences the state of the
Mg2C block at the NMDA channels and thus, the Ca2C in�ux, which enters
the CaMKII second messenger chain (Teyler & DiScenna, 1987). Therefore,
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we have decided to model the BP spike also through a conductance change
gBP at the summation point (see equation 2.4), which mimics the physio-
logically measured shapes of BP spikes without having to implement active
processes (active channels). Note that the actual equations used do not have
any physiological meaning; they are used only to design realistic backprop-
agating spike shapes:

gBP.t/ D NgBP

³
1

1 C e¡t=¿ rise
¡ 0:5

1 C e¡.t¡¿BP/=¿ fall
¡ 0:5

´
: (2.4)

With the help of this equation, rising (¿rise) and falling �anks (¿f all), as well
as the total width (¿BP) of our backpropagating spikes, can be adjusted
independently, while their amplitude is controlled by NgBP. This allowed us
to design different shapes of backpropagating spikes in a very speci�c way.

BP spikes modeled according to equation 2.4 always have a typical shape.
In order to cover transitory cases of a BP spike with a shape that is intermedi-
ate to the different shapes obtainable by equation 2.4, we used equation 2.5
(Krukowski & Miller, 2001):

gBP.t/ D NgBP . f e¡t=¿ a C .1 ¡ f / e¡t=¿ b ¡ e¡t=¿ c/: (2.5)

Actual parameters for equations 2.4 and 2.5 shall be given in the �gure
legends. To calculate the membrane potential, we assumed in all cases EBP D
0 mV.

A paired pulse protocol was used to stimulate the inputs. The pulse
interval between both inputs (de�ned as T) was varied between ¡50 and
+50 ms.The interval between pulse pairs was T D 250 ms inorder to prevent
second-order interactions between pulse pairs (steady-state condition).

2.2 Components of ISO Learning. Figure 1B shows the circuit diagram
of rate-based ISO-learning for only two (±-pulse) inputs x0; x1 (for a more
general description, see Porr & Wörgötter, 2003a). The inputs are �rst band-
pass �ltered by means of heavily damped resonators h de�ned by

h.t/ D
1
b

eat sin.bt/; (2.6)

with a :D ¡¼ f=Q and b :D
p

.2¼ f /2 ¡ a2, where f is the center frequency of
the resonator and Q ¸ 0:5 the damping factor. Generally we used Q D 0:51
(Porr & Wörgötter, 2003a), and this strong damping leads essentially to a
low-pass behavior. Elsewhere, we have discussed that this would suf�ce for
learning, while using the equations for bandpass �lters renders several ad-
vantageous mathematical properties (Porr & Wörgötter, 2003a). However,
in the context of this study, the “bandpass” �lters used are really rather low-
pass �lters. Such a bandpass (low-pass) �ltering takes place in a generic way
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at almost all membrane processes, and this allows us to easily associate the
abstract operations h to more realistic cellular operations below. The trans-
formed inputs u0;1 converge onto the learning unit with weights ½0;1, and
its output is given by

v.t/ D ½0.t/u0.t/ C ½1.t/u1.t/ where u0;1.t/ D x0;1.t/ ¤ h.t/: (2.7)

The ¤ denotes a convolution. In this study, we keep the weight ½0 �xed. The
other weight ½1 changes by the ISO learning rule that uses the temporal
derivative of the output:

d
dt

½1 D ¹u1.t/v0.t/ ¹ ¿ 1: (2.8)

In the original article, we had shown that ISO learning produces a linear
weight change that can be calculated for all t ¸ 0 by solving

½1 ! ½1 C 1½1 (2.9)

1½1.T/ D ¹

Z 1

0
u1.T C ¿ /v0.¿ /d¿: (2.10)

This integral can be solved analytically and leads to the ISO learning
weight change curve shown in Figure 1C for two identical bandpass �lters
h. Note that this curve becomes skewed if two different bandpass �lters are
used, which indicates that the shapes of the input functions u are critical in
determining the shape of the weight change curve.

2.3 Associating the Membrane Model to ISO Learning. We need to
associate the parameters of the ISO learning rule with those in the membrane
model for the plastic synapse ½1:

² x1: We assume that the presynaptic spike train at the plastic synapse
represents the signal x1 of ISO learning.

² h1: The bandpass �lter operation h1 is represented by the conductance
functions g of the plastic synapse, and we de�ne

h1.t/ :D OgN.t/: (2.11)

² u1: Since we are only dealing with spike trains modeled as ±-functions,
we get u1.t/ D h1.t/ D OgN.t/. Corresponding curves are shown in the
inset of Figure 1A. This shows that the conductance function essentially
captures the characteristic of low-pass �ltering the spike at the input.
The match between the curves, however, is not exact, immediately
indicating that the results of the membrane model will not be identical
to those of ISO learning.
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² v: The membrane potential V is associated straightforwardly to the
output function v from ISO learning. Note, as opposed to the original
linear ISO learning rule, that we observe that the biophysically adapted
version introduced here is no longer linear. The results presented later,
however, will show that the adapted rule will still lead to generic
antisymmetrical weight change curves. The nonlinearities introduced
by the reversal potentials, as well as by the voltage dependence of the
NMDA channel, in�uence the results only qualitatively.

² x0: The signal x0 from ISO learning is associated with three possible
signals: with a spike arriving at input 1 (AMPA) or 2 (NMDA) or with
a BP spike (see equation 2.3) in Figure 1A.

² u0: It is not necessary to associate u0 with any component of the mem-
brane model because it does not in�uence the plastic synapse ½1 di-
rectly. Instead, this happens only via the derivative of the membrane
potential.1 Essentially u0 represents the conductance change for any
of the three introduced depolarization sources (see equations 2.1–2.3
and Figure 1A).

² ½0;1: Synaptic weights had been directly introduced into the membrane
equation (see equation 2.3). ½1 is the initial value of the synaptic weight
of the plastic synapse. ½0 is used as the amplitude factor for a possible
second synapse or the BP spike. Thus, ½0 de�nes the strength of the
depolarization source.

² Learning rule: As a consequence of these settings, the learning rule of
ISO learning is rephrased in the context of this model to

d
dt

½1 D ¹u1.t/v0.t/ D ¹ OgN.t/ V0.t/: (2.12)

In section 4, we will address the question of the physiological relevance
of the different parts of this learning rule and show how to associate
pre- and postsynaptic events with the different terms. Here we only
note that this rule in its derivative form can be associated to calcium
�ow through NMDA channels or in its integrated form to the calcium
concentration (see section 4).

Note that this rule is (as usual) treated in an adiabatic condition
assuming that multiple spike pairs (with interspike interval T), which
occur with a temporal distance of T between them, do not in�uence
each other. Thus, for the actual weight change 1½ obtained with one

1 In a symmetrical learning situation (with ½0 changing also), one could
associate u0 with the corresponding conductances Og in a similar way as for
u1.
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spike pair at the inputs, we use equation 2.10 and calculate

1½1 D
Z t

0

d½1

dt
dt; (2.13)

where T ¿ t ¿ T . We call 1½ an integrated weight change.
The learning rate ¹ takes the unit of Volt¡1, because this way 1½

is rendered unit free. To regard ¹ as a voltage-dependent entity may
make sense given the observation that predepolarization enhances the
induction of LTP and vice versa (Sourdet & Debanne, 1999).

The physiological meaning behind the concept of a synaptic weight
is still under debate. Several pre- and postsynaptic mechanisms con-
tribute to the weight (Malenka & Nicoll, 1999), which in this study are
subsumed under a single number ½. However, using these settings,
½ can be treated as a multiplicative factor of the peak conductance Ng,
which, multiplied together, can be interpreted as the strength of a given
connection in the context of this model. At this point, it is important
to note that the �nal value of ¹ is rather arbitrary, because it is just a
multiplicative factor that changes the slope of the (linear, see below)
learning curve. In physiology, there exist (intracellular) ampli�cation
mechanisms that could in principle be associated with such a ¹-factor.
This does not make sense in the context of this model because such
mechanisms are not implemented. Thus, we will set the value of ¹ D 1
and provide an analysis about the range of ¹ within which the model
operates linearly (see Figure 7).

3 Results

In this section, we present results obtained when using a pure NMDA-
synapse as the plastic synapse. At the end of this section, we discuss the
physiologically more realistic case of a mixed AMPA/NMDA synapse,
showing how to infer the corresponding results from what we have pre-
sented before. We use the three different sources for a postsynaptic depo-
larization introduced in section 2: a BP spike (3 in Figure 1A), which is
currently believed to be the most likely source of depolarization, but also a
pure AMPA in�uence (see 1 in Figure 1A) or a pure NMDA in�uence (see
2 Figure 1A). The goal of this section is to distinguish unrealistic from more
realistic cases and to arrive at some conclusions concerning the robustness
of the obtained results.

In all the cases, we set the relative initial strength of the plastic synapse
to ½1 D 0:5, which means that the synaptic weight of this connection was
initially at 0:5 NgN. The weight ½0, usually set to 1, is kept constant.

3.1 Individual Weight Change Examples. Figure 2A shows the conduc-
tance gN, Figure 2B the membrane potential and Figure 2C its derivative,
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Figure 2: Detailed curves for a single pulse pair experiment with T D 10 ms
and a BP spike as the depolarization source, ½0 D 1. (A) Conductance change
gN arrising from the presynaptic input and as a consequence of the BP spike
leading to positive feedback at the e¡° V-term in equation 2.2. (B) Membrane
potential change. (C) Derivative of the membrane potential. (D) Resulting inte-
grated weight change. The weight stabilizes as soon as all curves have returned
to their equilibrium.

and Figure 2D the development of the plastic synapse ½1 for a single input
pulse pair with the �rst spike arriving at t D 10 ms at the plastic synapse
(presynaptic spike) and the BP spike arriving at t D 20 ms. Thus, we have a
positive value for T D C10 ms. The initial membrane potential was at rest-
ing level (¡70 mV) for this simulation. The plastic synapse was assumed to
be a pure NMDA synapse.

The small increase in the NMDA conductance gN (see Figure 2A) starting
at t D 10 ms is caused by a spike at the plastic synapse. The following
large peak is due to the rising membrane potential as soon as the BP spike
arrives at 20 ms. The membrane potential (see Figure 2B) increases slightly
at t D 10 ms because of the activated NMDA channel and is dominated
by a BP spike later. The upper part of the membrane potential curve (see
Figure 2B) is not shown in order to make the small NMDA channel response
more visible.

An integrated weight change 1½1 (see Figure 2D) occurs throughout the
duration of the membrane potential excursion. It follows the rule given in
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Figure 3: Detailed curves for a single pulse pair experiment with T D ¡10 ms.
Panels are the same of those in Figure 2, only in this case, a negative integrated
weight change is obtained (D).

equation 2.12 integrated according to equation 2.13, and the weight �nally
stabilizes slightly above zero as soon as the membrane potential returns to
resting. The obtained change is small because only a single pulse pair was
used.

Essentially, the opposite situation is observed when inverting the pulse
sequence to T D ¡10 ms (see Figure 3). The negative excursion of the deriva-
tive of the membrane potential (C) is now scaled with the full gN in�uence
(A), leading to a strong drop of the integral and �nally to a reduced weight
½1 at steady state (D).

Figure 4A shows complete weight change curves obtained at different
resting potentials Vrest D ¡40 to ¡70 mV. We observe that the shape of
the curves remains essentially the same while the magnitude of the weight
change grows slightly when the membrane potential is depolarized. This
is in accordance with observations that the amplitude of LTP can be aug-
mented by predepolarizing the cell under study as a consequence of the
voltage dependence of the NMDA channel (Sourdet & Debanne, 1999). Part
B of Figure 4 has been obtained with a second synapse as the depolarization
source and shall be discussed later.
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Figure 4: Weight change curves obtained at different resting potentials. (A) Us-
ing a BP spike as depolarization source. The BP spike is modeled with equa-
tion 2.4 and parameters ¿rise D 1 ms, ¿f all D 10 ms, ¿BP D 25 ms, NgBP D 59:8 nS,
½0 D 1. (B) Using a second NMDA synapse as the depolarization source, ½0 D 10.

3.2 In�uence of the Shape of the BP Spike. Figure 5 shows 17 weight
change curves and the BP spikes with which they were obtained. Note
that some of these spike shapes do not necessarily re�ect realistic BP spike
shapes. Instead, this modeling exercise is meant to cover a rather complete
range of composable shapes such that the characteristics of a weight change
curve resulting from any other BP spike shape can be inferred from this
diagram. In general, we observe that the negative part of the weight change
curve dominates in most cases across all panels, which is in accordance with
physiology (Debanne, Gahwiler, & Thompson, 1998; Feldman, 2000).

Figure 5: Facing page. Weight change curves obtained with different BP spikes
as the depolarization source. Top panels show the weight change curves and
bottom panels the BP spikes with which they were obtained. BP spikes were
modeled using equation 2.4, adjusted to the same amplitude. A and B also
contain one example obtained with a BP spike with intermediate shape modeled
with equation 2.5. This spike starts with the shape of the �rst BP spike in B and
ends with the shape of the last spike. In all cases we used ½0 D 1. Individual
parameters for the different BP spikes were: A, B: ¿rise D 1 ms: (¿f all D 1 ms,
¿BP D 9 ms, NgBP D 56 nS); (¿f all D 5 ms, ¿BP D 15 ms, NgBP D 61:4 nS); (¿f all D 10 ms,
¿BP D 25 ms, NgBP D 59:8 nS); (¿f all D 20 ms, ¿BP D 30 ms, NgBP D 67:5 nS).
C, D, ¿rise D 5 ms: (¿f all D 1 ms, ¿BP D 20 ms, NgBP D 56 nS); (¿f all D 5 ms,
¿BP D 25 ms, NgBP D 64 nS); (¿f all D 10 ms, ¿BP D 35 ms, NgBP D 63 nS); (¿f all D 20 ms,
¿BP D 45 ms, NgBP D 67:5 nS). E, F, ¿rise D 10 ms: (¿f all D 1 ms, ¿BP D 35 ms,
NgBP D 56 nS); (¿f all D 5 ms, ¿BP D 40 ms, NgBP D 62 nS); (¿f all D 10 ms, ¿BP D 50 ms,
NgBP D 63:5 nS); (¿f all D 20 ms, ¿BP D 60 ms, NgBP D 69 nS). G, H, ¿rise D 20 ms,
(¿f all D 1 ms, ¿BP D 60 ms, NgBP D 57:5 nS); (¿f all D 5 ms, ¿BP D 70 ms, NgBP D 60 nS);
(¿f all D 10 ms, ¿BP D 80 ms, NgBP D 62 nS); (¿f all D 20 ms, ¿BP D 90 ms, NgBP D 68 nS).
Parameters for the BP spike with intermediate shape in A and B are ¿a D 7 ms,
¿b D 30 ms, ¿c D 4 ms, f D 0:9, NgBP D 10:9 nS.



How the Shape of Pre- and Postsynaptic Signals Can In�uence STDP 607



608 A. Saudargiene, B. Porr, and F. Wörgötter

By comparing the curves within each panel, it can be seen that increasing
fall times (¿f all) of the BP spike mainly lead to an increase of the positive
peak of the weight change curve, while the negative peak becomes smaller
but more spread out toward negative values of T.

By comparing curves across panels, one can assess the in�uence of in-
creasing rise times (¿rise). Here we observe that the typical STDP shape of
the curves in Figure 5A (zero crossing at about T D 0 ms) becomes similar
to standard Hebbian learning for values of T > ¡20 ms for a rather shallow
rise time ¿rise D 20 ms of the BP spikes in Figure 5G. Only for T < ¡20 ms
are negative weight changes again obtained. This effect becomes more pro-
nounced when increasing the rise times to values ¿rise > 20 ms. Such shallow
rise times may indeed occur at distal dendrites where, discounting possible
active processes, the membrane capacitance has smeared out a BP spike
substantially (Magee & Johnston, 1997; Larkum, Zhu, & Sakmann, 2001).
When cells are driven, for example, by a stimulus, pre- and postsynaptic
spikes will followeach other, often in intervals of less than 20 ms (Froemke &
Dan, 2002). Thus, the values of a weight change curve for T beyond §20 ms
are probably many times not of relevance for a cell’s synaptic plasticity
(Froemke & Dan, 2002). Therefore, the shape-dependent leftward shift of
the weight change curve leading to LTP within rather larger temporal in-
tervals could be of some theoretical interest, because it shows that we do
not have to alter the learning rule in order to get either differential Heb-
bian learning or a characteristic that is similar to standard Hebbian learning
at realistic interspike intervals. A changing input characteristic will do the
trick already.

Note that in general, the plastic NMDA synapse will contribute almost
nothing to the membrane potential change as compared to the strong in�u-
ence of the BP spike. Thus, in the speci�c case of Figures 5G and 5H, the
derivative of the membrane potential will remain positive for rather long
durations as soon as the rise time is large. This leads to positive weight
changes also for large negative T values.

The one example of a BP spike with intermediate shape (see Figures 5A
and 5B) shows, and quite expectedly so, that gradual spike shape transitions
will also lead to gradual transitions of the shape of the weight change curves.
This supports the notion that other shapes of weight change curves can be
basically inferred from these examples.

3.3 In�uence of Different NMDA Characteristics. It is known that dur-
ing development, the relative frequency of different NMDA receptor types
(NMDARA versus NMDARB) changes. This in�uences the electrophysio-
logical properties of the NMDA channel. Figures 6A and 6B show three
different NMDA characteristics, the steepest re�ecting an adult stage. The
other two stages are observed during development at postnatal days 26 to 29
(¿decay D 380 ms) and 37 to 38 (¿decay D 189 ms) in ferret at a C40 mV voltage
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Figure 6: Learning curves obtained with different NMDA characteristics. (A)
EPSC, (B) conductance of the NMDA synapse, both at C40 mV voltage clamp.
(C) Weight change curves. Parameters for equation 2.2 were as follows. Normal
(adult) NMDA: NgN D 4 nS, ¿1 D 40 ms, ¿2 D 0:33 ms which gives an EPSC with
¿decay D 41:7 ms. Young NMDA, before eye opening (26–29 days): NgN D 4:02 nS,
¿1 D 363:1 ms, ¿2 D 0:033 ms which gives EPSC with ¿decay D 380 ms. Older
NMDA, aftereye opening (37–38days): NgN D 4:2 nS, ¿1 D 173:3 ms, ¿2 D 0:033ms
which gives EPSC with ¿decay D 189 ms. The BP spike was modeled according
to equation 2.4 with parameters ¿rise D 1 ms, ¿f all D 10 ms, ¿BP D 2:5 ms, NgBP D
59:8 nS, ½0 D 1.

clamp preparation, where there is no more Mg2C blockage of the NMDA
channel. The single decay values for ¿decay were taken from Roberts and
Ramoa (1999), but we still modeled the NMDA characteristic using equa-
tion 2.2 by �tting our two ¿ -values to yield the curves reported by Roberts
and Ramoa. To obtain the weight change curves, we used a BP spike with a
short rise time (1 ms) and a medium fall time (10 ms; compare Figure 5B).
Interestingly we observe that both “young” NMDA synapses yield rather
asymmetrical weight change curves with a strongly dominated LTD part.
To our knowledge, so far very little is known about the actual physiological
learning characteristics of early synapses. There are, however, indications
that synaptic elimination dominates the early developmental stages (ana-
lyzed in a theoretical study by Chechik, Meilijson, & Ruppin, 1998). The
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theoretical results obtained with our learning rule would possibly point
toward this direction.

3.4 Multiple Spike Pairs. Figures 7A and 7B show how weights develop
when using a sequence of 30 pulse pairs with interpair intervals of T D
100 ms,which still guarantees the adiabatic conditionfor interspike intervals
below T § 50 ms (see Figure 7C). Different learning rates ¹ ¸ 100 and
varying amplitudes of the BP spike were applied to obtain Figures 7A and
7B. These high learning rates were used in order to be able to use only a few
pulse pairs for measuring the whole curve. We �nd two different types of
behavior. Curves 1 to 6 show a gradual increase with almost unchanging
slope (until saturation, curves 5 and 6); curves 7 to 9 show weak growth until
a certain point, from which they grow much faster. Curves with gradual,
unchanging growth (1–6) are obtained as soon as the amplitude of the BP
spike is large. To obtain them, we have kept the same BP spike amplitude
and increased the learning rate. This way, weight growth can be adjusted
to different values to match it to the physiologically obtained percentage
weight changes if desired (Bi & Poo, 2001). Curves 7 to 9 were obtained
with (very) small amplitudes of the BP spike. We observe that the left part
of the curves still shows a very shallow increase, followed by a kink (or
bend), which continues into a second steeper part of the curve followed by
saturation in curves 8 and 9.

These differences can be explained by looking at how the membrane
potential develops over time for the two different cases as shown in Fig-
ure 7B. Each depolarization represents the response of the model to a pulse
pair (T D 25 ms). Most of the time, two peaks are seen in the potential; the

Figure 7: Facing page. (A) Progress of the weight growth for a plastic NMDA
synapse with initial value ½1 D 0:5 and BP spikes of different amplitudes. We
used T D 5 ms as the temporal interval between pulses. Different slopes of the
curves were obtained with different learning rates ¹, which were for curves 1–6
increasing as ¹ D 100; 200; 300; 500; 1000, 3400, curve 7, ¹ D 1000, curves 8 and
9, ¹ D 3400. The BP spike was modeled according to equation 2.4 for all curves
with parameters, ½0 D 1, ¿rise D 1 ms, ¿f all D 10 ms, ¿BP D 25 ms; for curves 1–6,
NgBP D 59:8 nS; for curves 7 and 9, NgBP D 4 nS; for curve 8, NgBP D 0:4 nS. The
resulting BP spike amplitude Vmax was for curves 1–6 Vmax D ¡20 mV, curves 7
and 9 Vmax D ¡61 mV, curve 8, Vmax D ¡69 mV. Interpair interval T D 100 ms.
(B) Membrane potential traces comparing the cases with and without steep
increase. Here we used T D 25 ms to make the individual contributions of both
pulses more visible. The top panel corresponds to curve 9, the bottom panel
to curve 3. Interpair interval T D 100 ms. (C) Weight change curves obtained
with multiple spike pairs at different interpair intervals T D 100; 50; 25 ms.
Parameters were: ¹ D 1, ½0 D 1, ¿rise D 1 ms, ¿f all D 10 ms, ¿BP D 25 ms,
NgBP D 59:8 nS.
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�rst comes from the plastic synapse and the second from the BP spike. The
bottom trace represents a case where the amplitude of the BP spike was
relatively large (as for curves 1–6). As a consequence, the general shape of
the potential is very strongly dominated by the BP spike; the plastic synapse
does not contribute much to it. In the top trace, we have used a very small
BP spike amplitude (as for curves 7–9). This time, the potential is dominated
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by the growing plastic synapse. Given that this is a pure NMDA synapse,
we obtain positive feedback through the e¡° V term in equation 2.2. Hence,
we get a very steep increase as soon as this synapse gets “overly” strong.
As a result, we get a slope in curves 8 and 9 that is the same as that in curve
6, which was obtained by a large BP spike and the same high learning rate
(¹ D 3400). For the same reason, the slopes of curves 5 and 7 at the right side
of the diagram are also similar. Note that if we use the small learning rate
of ¹ D 1 that we normally applied, we still expect the same basic behavior
but only after many more input pairs and with a much shallower nonlinear
increase as soon as the positive feedback sets in.

It is not conceivable that the situation shown in curves 7 to 9 directly
corresponds to physiology, because one rarely �nds pure NMDA synapses
that at the same time would have to grow very strongly before being able
to elicit this effect. However, a cluster of mixed AMPA and NMDA plastic
synapses at the peripheral dendrite (or at a spine) where the BP spike might
be small could indeed lead to local nonlinear potential changes resulting in
such effects.

Figure 7C shows weight change curves obtained with different interpair
intervals T , as indicated in the �gure. This shows that the adiabatic con-
dition is violated as soon as interspike intervals T approach the interpair
interval. As a consequence, secondary LTP (or LTD) regions appear as ex-
pected from the results of Froemke and Dan (2002). Bi (2002) discusses vari-
ous cases of spike pair combinations that could lead to such results; explicit
experimental proof of this model prediction, however, is at the moment still
lacking.

3.5 Weight Change Curves Obtained with a Second Synapse as Depo-
larization Source. Its is known that the postsynaptic depolarization signal
is needed in order to remove the Mg2C block at the NMDA channels, with-
out which no Ca2C could enter the cell. A BP spike provides a very strong
source of depolarization. More locally, however, other sources of postsy-
naptic depolarization also can exist, especially when considering clusters of
synapses. Here “any other” synapse could lead to a local depolarization af-
fecting the plastic NMDA synapse under consideration. This would lead to
heterosynaptic plasticity, and Goldberg, Staff, and Spurston (2002) discuss
the biophysical implications of this alternative.

Accordingly, Figure 8 shows two groups of curves obtained with a plastic
NMDA synapse and different synaptic depolarization sources. Depolar-
ization comes from a cluster of AMPA synapses for A curves and a cluster
of NMDA synapses for B curves. Both types of curves, A and B, are antisym-
metrical, but the generic shape differs. Curves A have a skewed asymmetry
and a slight positive offset, while curves B possess almost equal LTD and
LTP parts and are shifted above zero for weak depolarization.
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Figure 8: Weight change curves obtained with differently strong depolariza-
tion source amplitudes ½0. In general, an increase in depolarization source am-
plitude leads to an increase of the amplitude of the weight change curves.
Insets show the shape of the two cut-off curves pointed to with the arrows
at a reduced magni�cation. (A) Using an NMDA synapse as the depolariza-
tion source with ½0 D 0:25I 0:5I 1I 2I 5I 10. (B) Using an AMPA synapse with
½0 D 0:25I 0:5I 1I 2I 5I 10.

Nothing is known about STDP at synaptic clusters, and our results show
that plasticity may have a different form when depolarization is caused by
synchronized synapses and not a BP spike.

The different curves in Figures 8A and 8B are obtained setting ½0 between
0.25 and 10 and thus assuming different relative strengths of the depolar-
ization source.2

In all cases, we observed that the strength of the depolarization source
acts as an ampli�cation factor, leaving the shape of the curves essentially
unchanged. Asnoted above, pure ampli�cation ismeaningless in the context
of these simulations because this can be achieved by a changed learning rate
¹ or a larger number of paired pulses as well. Interestingly, we found that a
changing depolarization source strength not only affects ampli�cation but
also induces a shift of the curves with respect to zero. The smallest curves,
which were obtained with a weak depolarization source, remain above zero
all the time. Thus, in spite of their realistic looking shape, these curves do
not represent STDP. For larger values of DS (½0 ¸ 0:5), a zero crossing is
observed, and only for the largest curve (DS: ½0 D 10), the negative part
covers more area than the positive part, which seems to be the generic case
for most STDP curves.

Furthermore, weight changes are about tenfold smaller as compared to
the cases above, where we had used a BP spike as the depolarization source

2 In principle, it would be possible to keep the relative strength of DS equal to 0.5
and vary the strength of PS. This, however, is essentially symmetrical to the experiments
shown, because only the quotient between the strength of PS and DS determines the shape
of the resulting STDP curves. This holds apart from minor effects due to the recurrent
in�uence of the NMDA channel.
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(except for the cases ½0 D 10). This is due to the much stronger change in
membrane potential arising from a BP spike. As a consequence, a tonic de-
polarization of the membrane potential will lead to a stronger ampli�cation
of the weight change curves when using a second synapse as depolarization
source (see Figure 4B) as compared to the situation where we had used a
BP spike.

3.6 Mixed NMDA/AMPA Plastic Synapses. So far we have looked only
at pure NMDA synapses as the plastic synapse. This is not in accordance
with physiology because most synapses, which contain NMDA compo-
nents, are mixed NMDA and AMPA synapses (as depicted in Figure 1A),
moreovernormallywith a dominating AMPA part (Malenka & Nicoll,1999).
In addition, one �nds that during learning, the AMPA component of such
synapses undergoes much stronger changes than the NMDA component
(Lüscher & Frerking, 2001; Song & Huganir, 2002). This happens in spite
of the fact that it is the NMDA component that is the driving force of the
learning. This last observation, however, justi�es formulating the learning
rule used here by only the normalized NMDA conductance function OgN in
equations 2.11 and 2.12. Thus, the AMPA component cannot directly enter
learning at equation 2.12; it will, however, in�uence the membrane potential
V and thereby exert two effects: (1) it in�uences the e¡° V term in the NMDA
conductance function (see equation 2.2) and (2) it in�uences directly the
derivative of the membrane potential. Both effects could change learning.

However, at this stage of the analysis, we have arrived at the conclusion
that the BP spike is in most cases the strongest and most in�uential depo-
larization source, which is in accordance with others (reviewed in Linden,
1999, but see Goldberg et al., 2002). Above, we have argued that the depo-
larization that comes from a BP spike is normally much stronger than that
which occurs from the plastic synapse itself that the in�uence of the plas-
tic synapse on the membrane potential can be neglected. This still holds for
mixed AMPA and NMDA synapses. A realistic single excitatory postsynap-
tic spike potential (EPSP) is normally rather small. Thus, as long as the BP
spike is still strong, a single EPSP will not substantially in�uence learning.
As soon as the BP spike drops in amplitude, one would have to consider
the effect of a mixed plastic synapse. In this case, the learning curve will
gradually approach the shape shown in Figure 8B, where we have a pure
AMPA component assumed as the depolarization source and we will get
nonlinear learning behavior such as that observed in Figure 7, curves 7 to
9. The wide range of possible effects that might arise from this, however,
exceeds the scope of this article.

4 Discussion

This study consists essentially of two parts. The �rst part is the association
between the ISO learning model and its biophysical counterpart, and the
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second part concerns the actual �ndings obtained from the new model. We
discuss both parts consecutively. At the end of this section, we compare our
model to others found in the literature.

4.1 Discussing the Model Assumptions. ISO learning is a typical ar-
ti�cial neural network algorithm, and it is therefore rather unrelated to
biophysics. As a consequence, any kind of biophysical reevaluation can-
not immediately go all the way down toward individual channel and cal-
cium dynamics. Instead, in this study we have attempted to go one step
into this direction by adapting the ISO learning algorithm to a traditional
state-variable description of a neuronal (compartmental) model. One cen-
tral assumption of ISO learning is the �ltering of its inputs. In a neuron,
low-pass �ltering takes place in a very natural way as the consequence of
the NMDA channel properties, as well as from the low-pass characteristics
of natural membranes. Obviously these low-pass �lters are not identical to
the technical bandpass �lters used in ISO learning, but deviations are small
enough in order to yield the same basic STDP-like learning behavior.

ISO learning was designed to correlate two inputs with each other in
time (e.g., in a temporal sequence learning paradigm). STDP, however, takes
place in relation to the temporal structure between a neuron’s input (presy-
naptic) and its output (postsynaptic). In spite of this apparently different
algorithmic structure, adaptation of both models is still straightforward
when realizing that normally a postsynaptic spike has been elicited from
some presynaptic in�uence. This justi�es our approach of either assuming a
second (cluster of) synchronized synapse(s), a dendritic spike, or a BP spike
as a possible depolarization source (Linden, 1999; Goldberg et al., 2002).

The learning rule consists of two components. The second term is given
by the derivative of the membrane potential. In most cases, the membrane
potential is strongly dominated by the shape of the BP spike at the moment
of pairing, while the contribution of the plastic synapse (or other synapses)
can be neglected. This makes V0 a postsynaptic quantity. Given that V0 D I

C ,

we note that the learning rule can be rewritten also as d½
dt D ¹

C Og dQ
dt . This

shows that charge transfer dQ
dt across the (postsynaptic) membrane is a major

driving force of learning.
We can assume that a part of dQ

dt is contributed by calcium �ow (Malenka
& Nicoll, 1999). Then after integration, the �nal weight change 1½ is de-
termined by part of Q, the total amount of calcium ions that crossed the
membrane. This interpretation is valid as long as the calcium contributes an
approximately �xed part to the total current. The model does not take into
account more complex calcium dynamics, buffering, enzymatic reactions,
or others that take place during physiological weight changes. This was
clearly not intended at this level of model complexity.

As the �rst term of the learning rule, we have used the normalized NMDA
conductance function OgN, which represents the bandpass �ltered input u1
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of ISO learning’s response to a ±-pulse input. We would argue that OgN es-
sentially subsumes the time course of all processes that occur for an NMDA
receptor outside or directly at the membrane—thus, all presynaptic events,
for example, glutamate release, binding to the receptors, unbinding, and
elimination from the synaptic cleft. The ef�ciency with which this happens
is encoded in the scaling factor NgN.

Thus, our learning rule uses a product of a presynaptic ( Og) and a postsy-
naptic (V0) in�uence. From this, it is now clear that the association of V0 with
calcium �ow must be restricted to that proportion of the calcium that trav-
els through the NMDA channels. Voltage-gated calcium channels, calcium-
induced calcium release, or other calcium buffer release mechanisms are not
being considered in this model, which could potentially in�uence synaptic
changes. There is, however, wide-ranging support (especially for spines)
that synaptic plasticity is indeed strongly dominated by calcium transfer
through NMDA channels (Schiller, Schiller,& Clapham, 1998; Yuste, Majew-
ska, Cash, & Denk, 1999; Malenka & Nicoll, 1999) and that the other calcium
release mechanisms may play only a minor role (but see, e.g., Huemmeke,
Eysel, & Mittmann, 2002).

Note that in this study, we do not implement any mechanisms of short-
term plasticity (Markram & Tsodyks, 1996; Fortune & Rose, 2001). In princi-
ple, this could be done using a fast model for short term plasticity (Giugliano,
Bove, & Grattarola, 1999) as a front end that continuously adjusts the base
value of ½ as soon as an input spike train arrives. Here we are also faced
with another problem. Any input spike train, which �res the cell, will lead
to to complex “pre-post-pre-etc.” combinations (Froemke & Dan, 2002), dis-
cussed also in Bi (2002). Our model can cope with these effects too, and we
receive additional transitions from LTP to LTD or vice versa depending on
the pre-post sequence, as shown in Figure 7C.

4.2 Discussion of the Findings. We believe that three of our �ndings
could be of longer-lasting relevance for the understanding of synaptic learn-
ing, provided they withstand physiological scrutinizing: (1) the shape of the
weight change curves heavily relies on the shape of the input functions (see
Figures 5 and 8). (2) Differential Hebbian learning (STDP) can become sim-
ilar to standard Hebbian learning (LTP) if the postsynaptic depolarization
(i.e., the BP spike) rises shallow (see Figures 5A and 5B versus Figures 5F
and 5G), (3) and weight growth can strongly change its characteristic in the
course of learning if the membrane potential is locally dominated by the
potential change arising from the plastic synapse itself (see Figure 7).

4.2.1 Finding 1. Physiological studies suggest that weight change
curves can indeed have a widely varying shape (reviewed in Abbott &
Nelson, 2000, and Roberts & Bell, 2002). In our study, both the NMDA char-
acteristic and the characteristic of the depolarization source in�uence the
shape of the weight change curve. The NMDA characteristic changes during
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development, and in the ferret “young” NMDA channels are even slower
than those found in adult animals (Roberts & Ramoa, 1999). We �nd that
for “young” synapses, LTD strongly dominates (see Figure 6). Functionally
this would make sense in helping to stabilize (Song, Miller, & Abbott, 2000;
Rubin, Lee, & Sompolinsky, 2001; Kempter, Gerstner, & van Hemmen, 2001)
an immature network, where false “inverse-causal” correlations could still
be frequent.

Also, the shape of the membrane potential locally at the synapse is a
source for differences in the shapes of the weight change curves. The phys-
iological properties and morphology of dendritic trees will lead to a locally
different active back-propagation or passive attenuation of the BP spike
(Magee & Johnston, 1997; Larkum et al., 2001). It has been recently shown
that synaptic plasticity in distal dendrites may be triggered by local NaC-
and/or Ca2C- mediated dendritic spikes (Golding et al., 2002), which are
usually slower than the BP spikes (Stuart, Spruston, Sakmann, & Häusser,
1997; Schiller, Schiller, Stuart, & Sakmann, 1997; Häusser, Spruston, & Stu-
art, 2000; Larkum et al., 2001). As a consequence of these different shapes
of the depolarizing potentials, the resulting weight change curves would
differ as well.

Many theoretical studies on STDP assume some kind of “generic” weight
change curve that is applied regardless of the morphology of the neu-
ron (Gerstner, Kempter, van Hemmen, & Wagner, 1996; Song et al., 2000;
Kempter, Leibold, Wagner, & van Hemmen, 2001; Rubin et al., 2001). Oth-
ers assume a gradually changing shape following, for example, the length
of a dendrite without making speci�c assumptions about the parameters
that lead to the different weight change curves (Panchev, Wermter, & Chen,
2002; Sterratt & van Ooyen, 2002). In our study, we argue that the shape of
the inputs determines the shape of the weight change curves. It is interesting
to consider that this way, local dendritic and spine properties would lead
to different learning characteristics. For structures that are strongly elec-
trically decoupled, the temporal structure and possible synchronization of
the different inputs would be more important than the causality of pre-
and postsynaptic signals. Note, however that the electrical (de-)coupling of
spines is still a matter of debate (Koch, 1999; Kovalchuk, Eilers, Lisman, &
Konnerth, 2000; Sabatini, Maravall, & Svoboda, 2001).

4.2.2 Finding 2. Several theoretical articles have shown that differential
Hebb rules will lead to STDP-like behavior while plain (undifferentiated)
Hebb rules will lead to temporally undirected LTP (Roberts, 1999; Xie &
Seung, 2000; Roberts & Bell, 2002). Here we �nd that our differential Hebb
rule can lead to plain LTP within rather wide correlation windows T as soon
as the rising �ank of our BP spike is shallow. In this case, the product of
Og and V0 remains positive for rather large negative temporal shifts of the
postsynaptic signal. This �nding indicates that at this model level, it is not
necessary to assume fundamentally different mechanisms for LTP or STDP.
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Yet from physiology, it is known that there are different intracellular pro-
cesses involved for generating LTD or LTP. Furthermore, LTD is supposed
to arise from low calcium in�ux, while LTP arises as soon as the calcium
current is high (Nishiyama, Hong, Mikoshiba, Poo, & Kato, 2000). In an
extended version, our model could be made compatible with these two as-
pects because the duration of the depolarization (hence V0) and its temporal
location with respect to the NMDA signal will determine how much cal-
cium can �ow, and this is different for the different values of T. One could
implement two processes that are differently susceptible to these different
calcium levels and thereby extend the model accordingly. The implications
of being able to change an STDP to an LTP characteristic (or back) depending
on the shape of the membrane potential are interesting from a theoretical
point of view. Hebbian learning is usually associated with the extraction and
condensation of relevant signals (Infomax principle, principal component
analysis, Oja, 1982; Linsker, 1988), while STDP addresses the causality of
synaptic events. It seems that the same substrate would support both prin-
ciples and, in a similar way as discussed above, it could be the location at
the dendrite that determines what kind of behavior is found. Possibly distal
dendrites, where the potential changes can be shallow (Magee & Johnston,
1997; Larkum et al., 2001), discounting possible active processes, would ex-
perience LTP, proximal dendrites STDP. Also this can be a matter of further
theoretical and experimental investigations.

4.2.3 Finding 3. We had found that weight growth can be linear or can
contain a nonlinear transition when the positive feedback of the NMDA
characteristic is dominant. This could again only happen at electrically more
strongly decoupled parts of the membrane such as spines. There, small
currents elicited by an active synapse will lead to large potential changes,
which are required for this positive feedback effect. Such local potential
changes cannot be measured anymore behind the spine neck because of its
high resistance (Sabatini et al., 2001). In this case, the potential (change) that
is the driving force of the calcium current would be strongly in�uenced by
the local structure of the synaptic density, and correlation-based learning
will take place between local inputs independent of the cell’s soma (i.e.,
regardless of the �ring of the cell).

4.3 Comparison to Other Models. A wide variety of models for STDP
have been designed that can roughly be subdivided into two groups with
different biophysical complexity. Some of them are spike based and others
rate based.

Group 1 could be called abstract models. They assume a certain shape
for a weight change curve as the learning rule (Gerstner et al., 1996; Song et
al., 2000; Rubin et al., 2001; Kempter, Leibold et al., 2001; Gerstner & Kistler,
2002) that remains unchanged across the local properties of the cell. Thus,
these studies cannot discuss cellular properties but focus on network effects
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instead. One interesting �nding obtained with these models was that STDP
leads to self-stabilization of weights and rates in the network as soon as the
LTD side dominates over the LTP side in the weight change curve (Song et
al., 2000; Kempter, Gerstner, et al., 2001). In addition, it was found that such
networks can store patterns (Abbott & Blum, 1996; Seung, 1998; Abbott &
Song, 1999; Rao & Sejnowski, 2000; Fusi, 2002). More recently, these models
have also been successfully applied to generate (i.e., to develop) some phys-
iological properties such as map structures (Song & Abbott, 2001; Kempter,
Leibold et al., 2001; Leibold & van Hemmen, 2002), direction selectivity
(Buchs & Senn, 2002; Senn & Buchs, 2003) or temporal receptive �elds (Lei-
bold & van Hemmen, 2001). The biophysical realism of the used learning
rules (really: weight change curves), however, must remain limited and
cannot capture the wide variety of curves experimentally measured.

Group 2 could be called state variable models, to which we count our ap-
proach. Such models can adopt a rather descriptive approach (Abarbanel,
Huerta, & Rabinovich, 2002), where appropriate functions are being �t to the
measured weight change curves. Others are closer to the kinetic models in
trying to �t phenomenological kinetic equations (Senn et al., 2000; Castellani
et al., 2001; Karmarkar & Buonomano, 2002; Karmarkar, Najarian, & Buono-
mano, 2002; Shouval et al., 2002). Our approach tries to associate the used
functions more closely to biophysics than that of Abarbanel et al. (2002),
but, unlike some of the other models, we have not tried to �t any kinetic
equations because model complexitysubstantially increases when doing so.
As a consequence, our model is most closely related to the study of Rao and
Sejnowski (2001). These authors used a variant of the TD learning rule to im-
plement STDP. Dayan (2002) clari�es this issue and discusses that the rule of
Rao and Sejnowski (2001) is rather a temporal difference rule between out-
put activity values and not between prediction values as in the traditional
TD rule. As a consequence, their rule is strongly related to our approach, and
they also observe that the shape of the BP spike will in�uence the weight
change curve. We have, however, replaced the 10 ms discretization used by
Rao and Sejnowski (2001) for calculating the temporal difference by a real
derivative (using 0.1 ms steps), and in our model the presynaptic activity
is modeled as a conductance. This recently allowed us to solve the integral
equation for the weight change (see equation 2.10) analytically for a slightly
simpli�ed set of conductance functions (Porr, Saudargiene, & Wörgötter,
2004).

Some of the other models implement a rather high degree of biophysi-
cal detail, including calcium, transmitter and enzyme kinetics (Senn et al.,
2000; Castellani et al., 2001). The power of such models lies in the chance to
understand and predict intra- or subcellular mechanism—for example, the
aspect of AMPA receptor phosphorylation (Castellani et al., 2001), which
is known to centrally in�uence synaptic strength (Malenka & Nicoll, 1999;
Lüscher & Frerking, 2001; Song & Huganir, 2002).

The approaches of Shouval et al. (2002) as well as of Karmarkar and
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co-workers (Karmarkar & Buonomano, 2002; Karmarkar et al., 2002) are
a bit less detailed. Both models investigate the effects of different calcium
concentration levels by assuming certain (e.g., exponential) functional char-
acteristics to govern its changes. This allows them to address the question
of how different calcium levels will lead to LTD or LTP (Nishiyama et al.,
2000), and one of the models (Karmarkar & Buonomano, 2002) proposes
to employ two different coincidence detector mechanisms to this end. An
interesting aspect of our study and that of Rao and Sejnowski (2001) is that
these models require only a single coincidence detector, because essentially
the gradient of Ca2C drives the learning when using a differential Hebbian
learning rule and not the absolute Ca2C-concentration (see Bi, 2002, for a
detailed discussion of the gradient versus concentration model).

Both model types (Shouval et al., 2002; Karmarkar & Buonomano, 2002;
Karmarkar et al., 2002) were designed to produce a zero crossing (transition
between LTD and LTP) at T D 0, which is not always the case in the measured
weight change curves, which show transitions between moreLTP- and more
LTD-dominated shapes depending on the cell type and the stimulation pro-
tocol (Roberts & Bell, 2002). The differential Hebb rule we employed leads
to the observed results as the consequence of the fact that the derivative of
any generic (unimodal) postsynaptic membrane signal (like a BP spike) will
lead to a bimodal curve. The relative temporal location of the presynaptic
depolarization signal with respect to the positive (or negative) hump of this
bimodal curve will then determine if the convolution product is positive
(weight growth) or negative (weight shrinkage). The model of Shouval et
al. (2002) implicitly also assumes such a differential Hebbian characteristic
by the bimodal shape of their Ä-function, which they used to capture the
calcium in�uence. This group also discussed, among other aspects, the role
of the shape of the BP spike, and they concluded that a slow afterdepolar-
ization potential (more commonly known as repolarization) must exist in
order to generate STDP. This assumption is essentially similar to that of a
slow fall time of the BP spike in our study. Thus, also in their study, the shape
of the BP spike will in�uence the shape of the weight change curve. In gen-
eral, they �nd that the LTP part of the curve is stronger than the LTD part.
This observation would prevent self-stabilization of the activity in network
models (Song et al., 2000; Kempter, Gerstner et al., 2001a), which require
a larger LTD part for achieving this effect. Interestingly, however Shouval
et al. (2002) �nd a second LTD part for larger positive values of T, which
could perhaps be used to counteract such an activity ampli�cation. In the
hippocampus there is con�icting evidence if such a second LTD part exists
for large T (Pike, Meredith, Olding, & Paulsen, 1999; Nishiyama et al., 2000).
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