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ABSTRACT

Artificial neural networks (ANNs) are usually homoge-
nous in respect to the used learning algorithms. On the other
hand, recent physiological observations suggest that in bio-
logical neurons synapses undergo changes according to lo-
cal learning rules. In this study we present a biophysically
motivated learning rule which is influenced by theshape
of the correlated signals and results in a learning charac-
teristic which depends on the dendritic site. We investigate
this rule in a biophysical model as well as in the equiva-
lent artificial neural network model. As a consequence of
our local rule we observe that transitions from differential
Hebbian to plain Hebbian learning can coexist at the same
neuron. Thus, such a rule could be used in an ANN to cre-
ate synapses with entirely different learning properties at the
same network unit in a controlled way.

1. INTRODUCTION

Learning rules used to update the weights in artificial neu-
ral network algorithms are the same for all inputs and units.
However, recent physiological experiments suggest that in
biological neurons synaptic modifications depend on the lo-
cation of the synapse (1) i.e. synaptic strength is regulated
by local learning rules.

The same synapse may be strenghtened and weakened
depending on the temporal order of the pre- and postsynap-
tic activity. The weight grows if the presynaptic signal pre-
cedes the postsynaptic signal, and shrinks if the temporal
order is reversed. Such form of synaptic modifications is
called spike-timing-dependent plasticity (STDP) (2). How-
ever, not only the timing of the pre- and postsynaptic ac-
tivity, but also the the shapes of the signals may define the
properties of synaptic plasticity. This claim is supported
by the fact that strong depolarization, necessary to induce
synaptic changes, has a different origin and a varying shape
along the dendritic tree. Close to the soma learning is driven
by steep and short back-propagating spikes which become
more shallow and longer in duration while back-propagating

into the dendritic tree (3). In distal parts, where back- prop-
agating spikes fail to invade, slow and wide localNa+- and
Ca2+ channel-dependent dendritic spikes provide the nec-
essary depolarization (1). These observations suggest that
synaptic modifications are location-dependent.

In this paper we present a biophysical model of STDP
which captures the dependence of synaptic changes on the
membrane potential shape. The model uses a differential
Hebbian rule to correlate the NMDA synaptic conductance
and the derivative of the membrane potential at a synapse.
We will show that the model reproduces the STDP weight
change curve in a generic way and is sensitive to the dif-
ferent shapes of the membrane potential. The model pre-
dicts that learning depends on the synapse location on the
dendritic tree. Then we will describe the equivalent circuit
diagram and discuss the model referring to system-theory,
presenting it in the context of filter transfer functions at the
end of this article.

2. BIOPHYSICAL MODEL

The model represents a dendritic compartment with a sin-
gle NMDA synapse (Fig. 1 A). The NMDA channels are
essential in inducing synaptic plasticity as their blockade to
a large degree prevents STDP (1). It is believed that NMDA
channel-mediatedCa2+ influx triggers the chain reactions
involving CaMKII, calmodulin, calcineurin and in this way
affects the synaptic strenght (4). The NMDA synaptic con-
ductance, regarded as a presynaptic signal, is given by :

g(t) = ḡĝ(t) = ḡ
e−t/τ1 − e−t/τ2

1 + κe−γV (t)
(1)

whereV is the membrane potential,ḡN = 4 nS peak con-
ductance,̄gN = 4 nS τ1 = 40 ms, τ2 = 0.33 ms time
constants andη = 0.33/mM , [Mg2+] = 1 mM , γ =
0.06/mV (5). The membrane potential is expressed as:

C
dV (t)

dt
= ρ g(t)[E−v(t)]+idep(t)+

Vrest − V (t)
R

, (2)



whereρ is the synaptic weight of the NMDA-channel,g its
conductance,E = 0 mV its equilibrium potential. The cur-
rent idep is used to account for the depolarizion caused by
other sources than synaptic inputs, such as back-propagating
spikes or local dendritic regenarative potentials. The last
term represents the leakage current. The resting potential
Vrest = −70 mV , membrane capacitanceC = 50 pF and
the membrane resistance toR = 100 MΩ.

The differential Hebbian learning rule for the synaptic
change is defined as:

dρ

dt
= ĝ(t)V ′(t), (3)

whereĝ is the normalized conductance function of the NMDA
channel, the pre-synaptic influence quantity, andV ′ is the
derivative of the postsynaptic membrane potential.

The depolarizing membrane potentials, which trigger
synaptic plasticity, vary along the dendritic tree. We use a
short and steep back-propagating action potential to model
the synaptic changes close to the soma, and long and shal-
low dendritic spike to account for synaptic modifications in
the distal parts. The back-propagating spike and the den-
dritic spike, measured210µm and860µm from the soma,
respectively, are presented in Fig. 1 B and have been taken
from (6; 7). The depolarization coming from these spikes
is very strong, therefore we may neglect the contribution of
the NMDA synaptic input. Instead of using Eq. 2 we calcu-
late the change of the membrane potential using the given
shape of the spike and then substitute its derivative in the
learning rule (Eq. 3).

We obtain an asymmetrical weight change curve if the
depolarization is provided by a steep back-propagating spike
(Fig. 1 C). The synapse is weekened ifT < 0 and strenght-
ened ifT > 0, whereT is the temporal difference between
the presynaptic activity and the postsynaptic activity.T > 0
means that the postsynaptic signal follows the presynaptic
signal at the NMDA channel and vice versa. However, we
observe a shifted curve if the depolarization comes from the
shallow dendritic spike. The synaptic weight grows even
for negative values ofT > −20ms. Thus, we get plain
Hebbian learning between−20ms and∞.

The model reproduces the STDP curve in a generic way.
The shape of the weight change curve is strongly influenced
by the shape of the depolarizing membrane potential, which
induces plasticity. The slow rising flank of this signal is the
essential factor of the transition from an asymmetrical to a
symmetrical weight change characteristic. As the depolar-
izing potentials vary in different parts of the dendritic tree,
these results suggest that learning rules are local and depend
on the location of the synapse in biological neurons.

The electrical circuit equivalent to the model described
above is presented in Fig. 2. ElementsR1, C1 define the
shape of the presynaptic signalg. R3 corresponds to the in-

Fig. 1: Schematic diagram of the model. A) Components of
the membrane model. The inset shows the NMDA synaptic
conductance function. B) Depolarizing membrane poten-
tials: steep back-propagating spike and shallow dendritic
spike 210µm and 860µm from the soma, respectively C)
The resulting weight change curves. The shallow depolar-
izing potential leads to potentiation even for negative values
0 < T < −20ms values.

tracellular resistance,R2 andC2 describe the passive mem-
brane properties and alltogether determine the shape of the
postsynaptic signalv. The derivative ofv, obtained after
the filtering in the lastR2 andC2 circuit, is multiplied by
g. The resulting so called weight change is fed to a gain-
controlled amplifier and influences the postsynaptic signal
v. Various shapes of the postsynaptic sigalv may be ob-
tained by adjusting the values ofR2 , R3 andC2 and would
lead to different learning characteristics.

3. BIOLOGICALLY INSPIRED SITE-SPECIFIC
LEARNING ALGORITHM

We represent a further step of abstraction in Fig. 3. This
block-diagram is not directly equivalent to the circuit in
Fig. 2 but it captures the main observation emerging from
the biophysical model. Namely that learning depends on
the location of the synapse, i.e. is driven by the derivative
of a postsynaptic signal specific at a given site. In an artifi-
cial neural network system this would mean that output sig-
nal undergoes a transformation specific for each input and
only then its derivative is applied to update the weight of a
given input. The diagram of such an algorithm is presented
in Fig. 3. We can still roughly associate the NMDA char-
acteristic to the pathwaysx1,...,n representing many (possi-
bly different) inputs and the source of depolarization (e.g.,
the back-propagating spike) to the pathwayx0. Hence this
pathway enters the summation node with an unchangable
weight ρ0. This circuit is a modified version of the ISO
learning circuit (8). ISO learning is a drive-reinforcement



Fig. 2: Equivalent electrical circuit of the learning algo-
rithm. Postsynaptic signal v is differentiated by R2 C2 cir-
cuit and multiplied by the presynaptic signal g to obtain
the weight which influences the postsynaptic signal v via
a gain-controlled amplifier.

algorithm for temporal sequence learning where the weights
change according to the relative timing of the input signals.
All inputsx0, x1,...,xn are filtered using bandpass filtersh0,
h1,...,hn, weighted byρ0, ρ1,...,ρn and summed to produce
the outputv: v = ρ0u0 +

∑
i=1 ρiui, whereu = x∗h. Dif-

ferent from the ISO learning, here the output is also filtered
with the filtersh11,...,hnn, and only then the derivatives of
the obtained signalsv′1,...,v′n are used to change the weights
of the corresponding inputs:

d

dt
ρi = µuiv

′
i wherevi = v ∗ hii, µ � 1. (4)

We assume that the inputx0 is dominating the output and
its weightρ0 is fixed. We apply the analytical solution de-
rived for the ISO learning (8) to calculate the weight change
curve for different shapes of the filtered output signal (for
details see Appendix). For a steep output signal entering
the learning rule we obtain differential Hebbian learning,
and for a shallow one we get a curve similar to plain Heb-
bian learning (Fig. 3B,C). The oscillation frequency of the
filters h11,...,hnn which transforms the output signal deter-
mines this transition.

4. DISCUSSION

The biophysical model of STDP inspired an artificial neu-
ral network algorithm with site-specific learning rules. The
biophysical model is based on a differential Hebbian learn-
ing rule which correlates the NMDA synaptic conductance
with the derivative of the membrane potential. The results
show that the weight change curve strongly depends on the

Fig. 3: A) Algorithm for site-specific learning. Transfer
functions are denoted as h, changing weights ρ as an apli-
fier. All inputs are filtered. Weight ρ0 is fixed. Weights
ρ1,..., ρn are updated using the derivatives v′1,...,v′n of the
filtered output v. Filter functions h11 ,...,hnn differ for each
input. B) Analytically calculated weight change curve if
the filtered output has a steep rising flank C) Analytically
calculated weight change curve if the filtered output has a
shallow rising flank.

shapes of the depolarizing membrane potential at the loca-
tion of the synapse. This signal changes its shape along the
dendrite and may be provided by different mechanisms such
as back-propagating spikes close to the soma and dendritic
spikes in the distal parts. Therefore we predict that learning
rules are location-dependent. Close the soma, where learn-
ing is driven by short back-propagating spikes, the synaptic
modifications are bidirectional, described by an asymmetri-
cal STDP curve. In the distal parts, where synaptic changes
are induced mainly by long-lasting dendritic spikes, synapses
undergo potentiation even for negative values ofT . The
same learning rule leads to different synaptic modifications
and it is self-adjusting following the shapes of the depolar-
ization source in different locations of the dendritic tree.

The typical approach to model STDP is to assume a cer-
tain weight change curve which does not depend on the lo-
cal properties of the cell, e.g. (9). A few more detailed mod-
els take into consideration the postsynaptic signal which is
associated with the membrane potential, e.g. (10; 11; 12)
and observe that its shape influences the shape of the weight
change curve. These models differ from our as the rule of
(10) is based on TD learning, while (11; 12) rely on the
absoluteCa2+ concentration in the weight updating algo-



rithm.
The principles of the local learning rules which emerge

from the biophysical model have been implemented in an
artificial neural network algorithm. The learning rule cor-
relates the filtered input signal with the derivative of the
transformed output signal. The output transformationhii is
characteristic for each input pathway, therefore the weight
change is site-specific and different learning behaviour is
observed for the same input signals. As in the biophysical
model, a transformed output with a steep rising phase pro-
duces an asymmetrical weight change curve, while one with
a slow rising flank leads to a symmetrical weight change
curve. The output transformationshii determine these tran-
sitions.

Our algorithm offers the possibility to easily define a
parameter-controlled learning rule in an artificial neural net-
work. While motivated by biology, the transfer functions
which can be used to alter the learning are not restricted
to the biological ones. In principle any type of transfer
characteristic could be implemented. In the biologically
more realistic case treated here, however, we observed that
synapses can either produce differential Hebbian learning
or, instead, a more traditional symmetrical Hebbian learning
within broad ranges of±T . This property would for exam-
ple allow implementing a PCA (principal component anal-
ysis) type of input structuring using the Hebbian property
at some synapses, while temporal sequence learning could
be implemented with differential Hebb at other synapses in
parallel.

5. APPENDIX

The weight change curves are calculated using the analyt-
ical solution obtained for ISO learning (8). We assume
that the output is dominated byx0 and the contribution of
other inputs is negligible (ρi |t=0 = 0, i > 0). Then the
pairs of the filter functionsh0 andh11, h0 andh22, etc.,h0

andhnn can be considered as single filter functionsh01,...,
h0n. These filters are specific for each inputx1,...,xn path-
way and shape the output signalvi whose derivative enters
the learning rule. The filtersh are described by:h(t) =
1
b eat sin(bt) with a := −πf/Q and b :=

√
(2πf2 − a2,

wheref is the center frequency andQ is the damping. Then
the cumulative weight change at thei− th pathway is given
by: for T ≥ 0
ρi(T ) = µ biMi cos(biT )+(aiPi+2a0i|pi|2) sin(biT )

bi(Pi+2aia0i+2bib0i)(Pi+2aia0i−2bib0i)
e−Tai

and forT < 0
ρi(T ) = µ b0iMi cos(b0iT )+(a0iP+2ai|p0i|2) sin(b0iT )

b0i(Pi+2a0iai+2b0ibi)(Pi+2a0iai−2b0ibi)
e−Tai ,

whereMi = |pi|2 − |pi0|2 , Pi = |pi|2 + |pi0|2 andpi =
|ai|2 − |bi|2,p0i = |a0i|2 − |b0i|2, i > 0. The parame-
ters for the weight change curves presented in Fig. 3 are:
f01 = 0.01, Q01 = 0.6, f0n = 0.002, Q0n = 0.6, f1 =
fn = 0.01, Q1 = Qn = 0.6.
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