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Abstract

An originally chaotic system can be controlled into various periodic dynam-

ics. When it is implemented into a legged robot’s locomotion control as a

central pattern generator (CPG), sophisticated gait patterns arise so that

the robot can perform various walking behaviors. However, such a single

chaotic CPG controller has difficulties dealing with leg malfunction. Specif-

ically, in the scenarios presented here, its movement permanently deviates

from the desired trajectory. To address this problem, we extend the single

chaotic CPG to multiple CPGs with learning. The learning mechanism is

based on a simulated annealing algorithm. In a normal situation, the CPGs

synchronize and their dynamics are identical. With leg malfunction or dis-

ability, the CPGs lose synchronization leading to independent dynamics. In

this case, the learning mechanism is applied to automatically adjust the re-
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maining legs’ oscillation frequencies so that the robot adapts its locomotion

to deal with the malfunction. As a consequence, the trajectory produced by

the multiple chaotic CPGs resembles the original trajectory far better than

the one produced by only a single CPG. The performance of the system is

evaluated first in a physical simulation of a quadruped as well as a hexapod

robot and finally in a real six-legged walking machine called AMOSII. The

experimental results presented here reveal that using multiple CPGs with

learning is an effective approach for adaptive locomotion generation where,

for instance, different body parts have to perform independent movements

for malfunction compensation.

Keywords: multi-legged robot, central pattern generator (CPG), learning

mechanism, neural control, malfunction compensation

1. Introduction

Humans, mammals, insects, and other arthropods employ legs for move-

ment. Common to all of them is that their walking pattern usually shows

a high level of proficiency adapted to the different terrains of their natural

habitat. Legged robots, on the other hand, have not yet achieved this level

of performance.

Optimized biomechanics and (neural) control create these efficient and

often very elegant walking patterns in animals and some robots have copied

this strategy with varying levels of success. Many reports have demonstrated

gait generations in animals which are achieved through oscillations originat-

ing from the spinal cord (vertebrate) or from different ganglions (inverte-

brate) [18, 9]. This is known as the concept of central pattern generators
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(CPGs) and has been applied to different types of legged robots, such as the

bipedal robot designed by Taga et al. [52] and Aoi and Tsuchiya [2], Aoi

et al. [1], the quadruped robot Tekken by Fukuoka et al. [24], Kimura et al.

[38], the hexapod robots by Arena et al. [3, 4], Inagaki et al. [34, 35] and in

our previous works [42, 51, 46]. Bio-inspired amphibious robots [44, 33, 11]

and snake-like robots [10] also employed this kind of control strategy. Fur-

ther details on CPG-based locomotion control have been reviewed in Ijspeert

[32].

CPG-based locomotion is directly inspired by the way animals control

their movement. It has many advantages, such as distributed control, the

ability to deal with redundancies, and fast control loops. It also allows modu-

lation of locomotion by simple control signals [32, 39]. When applied to robot

control, we do not need to know the precise mechanical model of a robot. We

can also easily integrate sensory information and adjust the control signal due

to the simple structure of a CPG. Therefore, CPG-based control has already

become an effective approach to perform legged locomotion in robots.

However, there are several problems yet to be solved. Although previ-

ous CPG-based algorithms can generate sophisticated gait patterns and deal

with irregularities of the terrain to some extent [39], the problem of leg mal-

function compensation in CPG-based control is still a challenging task. A

troubling control problem can arise from the fact that the main controller

usually contains CPGs which always control all legs with identical frequency

[30]. If a robot suffers from leg failures, the other – still functioning – legs

cannot immediately tune their oscillations appropriately. In contrast, insects

can adjust the frequency of each leg individually [5, 49]. If their legs are mal-
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functioning or disabled, they can still perform proper locomotion by changing

the oscillation frequencies of the legs independently. Such a phenomenon also

appears in mammals. For example, a cat can walk with the hind legs over a

treadmill belt while the fore legs rest on a stationary platform [48] even after

spinal cord injury. This indicates that the cat can independently adjust each

leg’s movement to achieve stable locomotion.

Traditional robotic methods for compensating leg malfunction are com-

plicated [56, 37]. They are mostly based on kinematics or dynamics models

[23]. Robots usually have to detect where a malfunction happens, then replan

the gait pattern and choose another proper foot contact point. For different

legs, the different foot trajectories are recalculated using inverse kinematics.

Hence, all situations have to be considered and, as such, the procedure is

computational intensive.

In contrast to the traditional control methods, we develop a CPG-based

control strategy not only to generate multiple gaits but also to deal with

leg malfunction. Inspired by multiple oscillators found in the neural system

of insects [5, 16, 15], we extend our previously proposed chaotic CPG con-

troller [51] to multiple CPGs, according to the number of legs of the robot.

The CPGs can be synchronized or desynchronized to produce uniform or

non-uniform patterns, respectively. If all CPGs are synchronized, the neural

outputs are the same. If they are desynchronized, the neural outputs can

oscillate at different frequencies. Thus, if some joints are disabled, other legs

can change their oscillation frequencies independently. A simulated anneal-

ing (SA) based approach [20, 6] is applied to our robots in order to learn a

suitable combination of leg oscillation frequencies, allowing leg malfunction
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compensation to be achieved automatically. Furthermore, the applications

to a hexapod robot and a quadruped robot demonstrate the effectiveness of

our proposed algorithm and its generalization properties. To verify our al-

gorithm in a real world application, our hexapod robot AMOSII is employed

to evaluate the control strategy and learning. The proposed methods allow

AMOSII to perform multiple gaits and to adapt its locomotion in case of

disabled legs. Therefore, the main contribution of this paper is a novel con-

trol strategy relying on multiple chaotic CPGs with an additional automatic

learning mechanism for leg malfunction compensation.

This article is structured as follows. Section 2 presents the overall control

algorithm where the chaotic CPG is briefly introduced as a single oscillator.

After which, we show how to design multiple CPGs and also state how the

multiple CPGs synchronize and desynchronize with each other. Section 3

introduces the learning algorithm (simulated annealing) and the principle of

selecting a suitable combination of leg oscillation frequencies for malfunc-

tion compensation. Section 4 demonstrates the implementation of the pro-

posed multiple CPGs and the learning strategy on simulated hexapod and

quadruped robots. Section 5 introduces our real hexapod walking platform

- AMOSII. The learning results obtained from simulation are applied to the

robot and the effectiveness of the results is successfully verified. Section 6

discusses the results, and finally in Section 7 we present our conclusion.
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Figure 1: Single CPG with the chaos controller.

2. Multiple chaotic central pattern generators and synchronization

mechanism

Our multiple CPGs-based locomotion controller is derived from the chaotic

CPG controller, introduced in [51]. First, we describe a single CPG oscillator

and then show how it can be extended to multiple CPGs. The synchroniza-

tion and desynchronization mechanisms are also presented. The multiple

CPGs generate either different periodic patterns independently, or they be-

come synchronized and generate the same pattern. Here, they will be syn-

chronized for basic locomotion generation and desynchronized for malfunc-

tion compensation.

2.1. Single chaotic CPG

The chaos control CPG unit is shown in Fig. 1. In this figure, x1 and

x2 indicate the neurons that generate the oscillation, while c1 and c2 are

the control inputs depending only on the period p with a control strength

µ. w11, w12, w21 represent the synaptic weights and θ1 and θ2 indicate the
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biases. Dynamics of the chaos control CPG can be exploited to generate

complex patterns for legged robots, like chaotic leg motion and different

walking patterns (multiple gaits). To achieve different walking patterns, we

simultaneously add inputs to the two neurons, i.e., the control signals c1

and c2. These act as extra biases that depend on a single parameter p (the

period of the output to be controlled). The output of the neurons is detected

every p steps and the chaos is controlled to a p-period orbit by adjusting

the control input. The discrete time dynamics of the activity (output) states

xi(t) ∈ [0, 1] of the circuit satisfies:

xi(t+ 1) = σ(θi +
2∑
j=1

wijxj(t) + c
(p)
i (t)) for i ∈ {1, 2} (1)

where σ(x) = (1 + exp(−x))−1 is a sigmoid activation function with biases θi

and wij is the synaptic weight from neuron j to i. Here, the weight and bias

parameters are set as w11 = −22.0, w12 = 5.9, w21 = −6.6, w22 = 0.0, θ1 =

−3.4 and θ2 = 3.8 [43], such that, if uncontrolled (c
(p)
i (t) ≡ 0) it shows chaotic

dynamics. In order to obtain a given period p, the control input is given by:

c
(p)
i (t) = µ(p)(t)

2∑
j=1

wij∆j(t) (2)

It is calculated every p time steps, while for the other steps it is set to 0. In

Eq. 2, ∆j(t) indicates the activity difference between the current step and

p-steps before:

∆j(t) = xj(t)− xj(t− p) (3)

and µ(p)(t) is the control strength, which changes its value adaptively accord-

ing to:

µ(p)(t+ 1) = µ(p)(t) + λ
∆2

1(t) + ∆2
2(t)

p
(4)
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Figure 2: Different hexapod gaits for changing p and the stop status (p = 1).

with an adaption rate λ, e.g. 0.05.

Thus, using this single chaotic CPG, different oscillation periods can eas-

ily be obtained just by changing the p value. After passing through some

neural post-processing modules (see [51] for details), different gait patterns

are produced for a hexapod robot; with an increase of p, the robot walks

slower. Periods 9, 8, 6, 5, 4 indicate slow wave gait, fast wave gait, transition

gait, tetrapod gait and tripod gait, respectively (see Fig. 2). A blue area

means that this leg is in a support phase, i.e., it touches the ground, while a

white area indicates the swing phase. Note that one time step is ≈ 0.037 s.

If p = 1, there is no swing phase, i.e., the robot stops with all legs touching

the ground. Periods 7 and 3 are unstable patterns while period 2 cannot

generate a proper walking gait due to fast oscillation switching between two

fixed points. Therefore, these periods are not used for locomotion generation.

Another useful function of this mechanism is the chaotic output. If we set
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(a) Single CPG controller (b) Multiple CPGs controller

Figure 3: Single chaotic CPG (a) and multiple chaotic CPGs (b) for a multi-

legged robot.

the control signal c
(p)
i (t) ≡ 0, the neural CPG circuit shows chaotic dynamics,

which can be applied for self-untrapping, e.g., when a leg falls into a hole. It

is important to note that in principle chaotic dynamics is exploited not only

for the self-untrapping but also mainly for obtaining a stable period from

a large number of unstable periods embedded in chaotic dynamics. Thus,

without chaotic dynamics, different stable periods cannot be obtained in

this scheme. Usually, the outputs of the CPG are passed to motor neurons,

which activate the leg joints, through two hierarchical neural modules: neural

CPG post processing and neural motor control (see Fig. 3(a) for an abstract

diagram and [51] for the complete neural circuit). Since the neural CPG post

processing and motor control have already been presented in our previous

studies [42, 51], we only discuss them briefly here.

The neural CPG postprocessing, which directly receives the CPG outputs,
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shapes the CPG signals to allow for smooth leg movements. Subsequently,

the post-processed CPG outputs are transmitted to the neural motor control

module. This module (see Fig. 3(a)) consists of one phase switching network

(PSN) and two velocity regulating networks (VRNs). The PSN is a generic

feed-forward network, which can reverse the phase of the processed CPG

outputs with respect to a given input [42, 51]. It is implemented to achieve

a proper phase shift between the CTr- and FTi-joints and allow for sideward

walking [42]. The VRNs are also simple feed-forward networks, with each

VRN controlling the three ipsilateral TC-joints on one side. Since the VRNs

act qualitatively like a multiplication function [40], they have the capability

to increase or decrease the amplitude of the TC-joint signals and even reverse

them with respect to their control input. Controlling the TC-joint signal in

this way results in various walking directions, such as forward/backward or

turning left/right (see [42] for walking experiments). Finally, the outputs of

the PSN and VRNs are sent to the motor neurons through delay lines. The

ipsilateral lag is determined by a delay τ (i.e., 16 time steps or ≈ 0.6 s, see

Fig. 3(a)) and the phase shift between both left and right sides are given

by another delay τL (i.e., 48 time steps or ≈ 2 s, see Fig. 3(a)). This setup

leads to biologically motivated leg coordination, since the legs on each side

perform phase shifted waves of the same frequency [54]. The frequency of the

waves is defined by the period p of the CPG, resulting in different gaits. In

addition, sensory feedback can be integrated into the controller by targeting

the VRNs; thereby leading to sensor-driven orienting behavior [42, 41].

10



2.2. Multiple chaotic CPGs

The single chaotic CPG is able to handle most situations where all joints

of the robot are functional. However, if one or more of the joints are dis-

abled, the robot cannot use the same gait to stay on its trajectory. In other

words, the robot cannot compensate for leg malfunction with a single CPG.

In contrast, real insects can control their locomotion to continue with their

trajectory even though some legs are malfunctioning or damaged [27]. To do

this, their legs show different frequencies in order to obtain effective walking

patterns.

Inspired by this, we extend the original single CPG to multiple CPGs

where the other modules (i.e., CPG post processing, PSN and VRN net-

works) are also replicated at each leg. The outputs of the PSN and VRNs of

each leg are still sent to the corresponding motor neurons through the fixed

delay lines, as described above. The control structure developed for hexapod

locomotion is shown in Fig. 3(b). In this figure, the blue circles represent

the CPGs. The right front neuron is the called master CPG, while other

are called client CPGs. The neural motor control modules are depicted in

gray rectangles. Each module consists of one PSN and one VRN which are

depicted by pink circles. Green circles are motor neurons. The small dark

green arrows indicate the signals from the CPG post processing modules (not

shown here but see [51]). Red lines indicate the synchronization mechanism.

Orange lines indicate delay lines transmitting the outputs of the PSN and

VRN to the motor neurons. After delaying the signals by corresponding time

steps, the outputs of the motor neurons are sent to the leg joints.

The client CPGs can synchronize to the master in order to keep pace with
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Figure 4: The inner structure of the client CPG.

the oscillation frequency. When synchronized, the controller generates the

same outputs as if there was only one chaos control CPG. If some legs are

disabled, the six CPGs automatically lose synchronization and can oscillate

at different frequencies. A similar approach can be also applied to other

walking schemes, e.g., quadruped locomotion (see below).

2.3. Synchronization and desynchronization

The inner structure of the master CPG is like that of our original chaotic

CPG (Fig. 1), but the inner structure of the client CPGs is different. We add

a synchronization mechanism to each client CPG as shown in Fig. 4. It is

similar to the master CPG except for the synchronization mechanism where

the M-neuron is introduced to enable or disable the signal from the master

CPG. When a client CPG needs to synchronize to the master CPG, the M-

neuron becomes active (i.e., value of 1) shunting the synaptic weight from the

inputs (c1, c2). Thus, the outputs of the network are uncontrolled and, the

output from the master CPG (X1master, see Fig. 4) that was inhibited before
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is passed to the client due to disinhibition. This results in the output of the

client-CPG oscillating at the same frequency as the master CPG. When the

client CPG needs to oscillate at its own frequency, the M-neuron becomes

inactive (i.e., 0) switching off the inhibition by cutting down the connection

from the master CPG. The control inputs (c1 and c2) can again pass through

to the network and, as a consequence, all the CPGs oscillate at different

frequencies.

The following equations describe the details of the client CPG. With all

legs functional, α is set to 1 such that the legs move with the same default

frequency. If some legs malfunction, they are automatically set to 0 such that

each leg can oscillate at its own frequency and learning will find a proper

combination of oscillation frequencies of the different legs for malfunction

compensation (see the next section). The outputs of the two neurons satisfy:

x1(t+ 1) = σ(a1(t)) + α(x1master − σ(a1(t)))

x2(t+ 1) = σ(a2(t))
(5)

where the activity satisfies:

ai(t) = θi +
2∑
j=1

wijxj(t) + c
(p)
i (t) (6)

and α is the synchronization parameter. It is set to 1 if the M-neuron is

active and 0 if it is inactive. The outputs of the first neuron for synchrony

and asynchrony are shown in Fig. 5. In this figure, the master CPG has

period 5 and the client CPG has period 6. Note that one time step is ≈

0.037 s.
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(a) Synchronous

(b) Asynchronous

Figure 5: The outputs of the CPG network for (a) synchrony and (b) asyn-

chrony.

3. Learning for leg period adaptation

The desynchronization of the multiple chaotic CPGs enables each leg to

oscillate at its own frequency. To adapt the leg period automatically for

malfunction compensation, here we apply simulated annealing [20, 6] as our

search algorithm to obtain feasible solutions. The algorithm is suitable to

our task since it can be used for global optimization problems and discrete

search space problems. The complete learning process is described as follows:

1) The robot starts to walk in a forward direction. While walking, its yaw
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Figure 6: The method of deviation measure in the learning algorithm.

angle is recorded to determine the heading direction of the robot. 2) After a

certain time window (400 time steps), the current yaw angle is measured and

subtracted from the last or the initial one. The angle difference ∆ϕ is used

for estimating a deviation, which is illustrated in Fig. 6. In red we depict

the disabled leg. The green dashed line indicates the walking trajectory and

the blue arrows point to the forward heading direction. ∆ϕ1 and ∆ϕ2 are

the deviation angles, which are the yaw angle differences at certain steps. If

there is no joint disabled, ∆ϕ should be approximately equal to zero, other-

wise it indicates the degree of deviation. When a deviation occurs, i.e., when

some joints are disabled, all CPGs automatically lose synchronization and

oscillate independently. 3) The oscillation period of each leg is stochastically

changed, and the deviation is re-evaluated. 4) This process is repeated un-

til the deviation is below a specific threshold and therefore leg malfunction

compensation is achieved.

Table. 1 depicts the learning process. In this table, E1,2,...,n denote the
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Table 1: Learning algorithm.

Initialize C(1) = [4, 4, 4, 4, 4, 4]; ∆ϕ = 0.0;E1 = 0.0

Repeat:

At trials n

(1) randomly pick a leg l, l ∈ [R1, R2, R3, L1, L2, L3]

(2) change the period of leg l to a random value, P (l) ∈ [4, 5, 6, 8, 9]

(3) compare this combination of leg period, C ′(n), to the walking records

(4) repeat (1) to (3) until C ′(n) is a new combination of leg periods

(5) run the robot

(6) calculate the evaluation function and its variation

En = ∆ϕ

∆E = En − En−1

(7) decide the combination of leg periods

if ∆E < 0 then

C(n) = C ′(n)

else

if x ≤ e−β∆E then

C(n) = C ′(n)

else

C(n) = C(n− 1)

end if

end if

Until: The evaluation function En is less than a required value Ereq
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evaluation function in different trial. The function is calculated from the

deviation angle, ∆ϕ. Ereq indicates the required minimum evaluation func-

tion. ∆E = En − En−1 is the difference of the evaluation function between

two trials. β is the adaption rate. X is a random value between 0 and 1.

C ′(n) and C(n) indicate the randomly selected combination of leg periods

and the chosen combination of leg periods in the nth trial, respectively. If a

deviation which is larger than a threshold occurs, the learning loop starts.

A random leg is selected and one of the five oscillation periods (period 4, 5,

6, 8, 9) are randomly assigned to this leg. Then the combination of periods

is compared to the previous states. If this particular combination of periods

has already been performed, the trial is aborted, and another random leg

is selected and randomly assigned to another period. Once a combination

has been selected, the robot moves forward and the deviation angle ∆ϕ is

measured. We set En = ∆ϕ; if En is less than our required evaluation Ereq,

which means the deviation has already been compensated, the learning pro-

cess is stopped and the loop is exited. If En is less than the evaluation of the

last trial, i.e., ∆E = En−En−1 < 0, which means the deviation angle in this

trial is less than last time, this combination of periods is stored and the next

trial starts. If ∆E > 0, this combination of periods is stored with probability

X < e−β∆E, which is in the range from 0 to 1 and decreases as ∆E increases.

For example, if ∆E is very large, which means the deviation is much larger

than last time, the acceptance probability e−β∆E is very close to 0. Thus,

it is much more probable to return to the combination of periods of the last

trial. Conversely, if the deviation is very small, it is more probable to keep

the new combination of periods, and a new loop will start based on this new
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combination of periods. The learning loop will be exited once the robot can

walk straight even with disabled joints. With this learning process, the robot

can automatically learn to find a feasible combination of its leg periods. In

this implementation, the search algorithm is conducted continuously until a

suitable solution is found.

In the learning process, β is an important parameter which creates a

tradeoff between acceptance probability and convergence speed (small β →

higher acceptance probability & slower learning and vice versa). We addi-

tionally observe that for large β the learning algorithm will often find inap-

propriate solutions. In this work, β is selected empirically (usually to 0.5)

to balance this trade off. This, together with the use of a cost function (the

“deviation angle”) and a small, finite set of leg periods assures convergence

of the simulated annealing method [6].

4. Implementation on different walking robots

4.1. Simulated six legs (6 CPGs)

LPZROBOTS1 was employed as a simulation environment. For testing

our multiple CPGs and the learning algorithm, a six CPGs controller was

implemented on a simulated hexapod robot as shown in Fig. 7. The controller

is updated with a frequency of 27Hz. With all the legs initially working well,

we switched on the M-neuron to synchronize the client-CPGs to the master

CPG. At the same time, the master CPG was set to periods 4, 5, 6, 8, 9,

respectively (see. Fig. 2). All legs performed at the same frequency and

1It is based on the Open Dynamics Engine (ODE). For more details of the

LPZROBOTS simulator, see http://robot.informatik.uni-leipzig.de/software/.
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Figure 7: A hexapod robot in LPZROBOTS.

achieved tripod gait, tetrapod gait, transition gait, fast wave gait and slow

wave gait, respectively. In synchrony, the robot performed just as if there

was only one CPG.

To simulate leg malfunction, we disabled the movement of one or more

legs by setting the outputs of the three joints of the leg to constant values.

As a consequence, the affected leg could not move normally but only sustain

part of the body weight intermittently (depending on the other legs’ status).

After disabling, the robot could not stay on a straight trajectory. In the sim-

ulation, an orientation sensor was implemented on the robot to measure its

yaw angle. If the orientation sensor detected a deviation, the six CPGs auto-

matically lost their synchronization and oscillate independently. Afterward,

the learning process began as described in Section 3. For every 400 time

steps, we calculate the deviation angle by subtracting yaw at the start from

the end of this time window. This deviation was evaluated against the cur-

rent combination of leg periods and the robot tested different combinations

until a suitable one is found. As a result, leg malfunction was compensated
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NO. R1 R2 R3 L1 L2 L3 
Deviation Angle 

(degree) 
Decision 

0 4 4 4 4 4 4 37.8604 Start 

1 4 4 4 5 4 4 21.4578 Keep 

2 4 4 9 5 4 4 64.1167 Return to No.1 

3 4 4 4 5 9 4 14.0168 Keep 

4 4 4 4 5 6 4 9.5276 Keep 

5 4 5 4 5 6 4 9.6890 Keep 

6 4 5 4 5 6 8 21.8642 Return to No.5 

7 4 5 4 5 6 5 0.2451 End 

Figure 8: The learning process for one scenario (see text for details).

for, and the robot maintained its forward walking in a straight line. It is

important to note that in our implementation the disabled leg was not taken

into account for period change since changing its period does not affect the

walking behavior. Thus, its period was kept fixed.

As an example, Fig. 8 illustrates the learning process for one scenario.

In this figure, the first column indicates the nth trial. R1 = right front, R2

= right middle, R3 = right hind, L1 = left front, L2 = left middle, L3 =

left hind. These six columns show the periods of the corresponding legs.

The deviation in this trial is shown in degree. The last column shows the

decision to keep this new period combination or return to a former one. In

this scenario, the R1 leg was disabled (depicted in red) and its period was

ignored in the learning process. Initially, the robot walked with tripod gait,

i.e., every CPG oscillated with period 4. When the right front leg (R1) was

disabled, the robot performed a right turning curve since it cannot provide

enough propelling force to balance the body. After 400 time steps, the robot

deviated to the right with an angle of deviation ≈ 37.86◦. In step 1, the
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left front leg (L1) was randomly selected and randomly changed to period 5.

After 400 time steps, the deviation angle was ≈ 21.46◦. This combination

of periods was kept since the deviation angle decreased. In step 2, the right

hind leg (R3) was selected and changed to period 9 and the deviation was

64.12◦. As β = 0.5, the acceptance probability of this combination of periods

satisfies:

P = e−β∆E = e−0.5×(64.12−21.46) = 5.45× 10−10, (7)

which is very small. As a result, this trial was aborted and the robot returned

to step 1. Hence, step 3 was derived from step 1 rather than step 2. The

deviations in step 3 and step 4 decreased so they were kept. In step 5, the

deviation was a little larger than in step 4. However, the probability of

keeping this combination of periods was close to 1, and it was kept. This

shows the advantage of the simulated annealing method: it accepts worse

situations which provide an opportunity to approach a better solution. Step

6 was aborted. In step 7, we obtained a final solution through changing the

left hind leg (L3) from period 4 (in step 5) to period 5. Final deviation was

only ≈ 0.25◦.

According to this, a possible solution to cope with the problem of the R1

leg malfunction was a combination of the following periods: R2 = 5, R3 = 4,

L1 = 5, L2 = 6 and L3 = 5. The joint angles of the 18 actuators performed

as shown in Fig. 9. In this figure, the outputs of the FTi- joints of hind legs

(e.g., Leg L3 and R3) were reversed in order to push the leg outwards to

stabilize the body. Note that one time step is ≈ 0.037 s.

The foot contact forces were recorded to see how the robot interacts with

the environment (see Fig. 10). In this figure, the signals have a range from 0

21



1000 1200 1400
-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

-1.5

-1.0

-0.5

0.0

CPG0 (Master)

 TR
1

Time (steps)

 

C
R
1

 

 FR
1

(a) Leg R1: disabled
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(b) Leg R2: p5
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(c) Leg R3: p4
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(d) Leg L1: p5
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(e) Leg L2: p6
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(f) Leg L3: p5

Figure 9: Outputs of the 18 motor neurons. The FTi-, CTr- and TC- joints

are depicted in blue, red and green, respectively. Leg R1 (a) was disabled

(i.e., the outputs of the three joints were kept at a constant value) while L2

(e) oscillated with period 6. The oscillation of R2 (b), L1 (d) and L3 (f) were

decreased to period 5 and R3 (c) stayed on period 4.
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Figure 10: The foot contact signals of the six legs. Here, the leg R1 was

disabled.

to 1. Positive 1 means the leg fully touches the ground (stance phase), while

negative 1 means the leg is in the air (swing phase). The functional legs

performed similar patterns relating to the input oscillation: for example, the

R3 leg touched the ground with p4 and the L2 leg touched the ground with

p6. However, the disabled R1 leg still touched the ground intermittently to

support the body, especially when the neighboring legs attempted to swing

(e.g., R2 and L1), even though its joints were fixed.

Other scenarios for learning to compensate leg malfunction were also
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Leg 

status 

Disabled 

leg(s) 

Example of 

periods after 

learning 

Average 

deviation angle 

(deg) + SD 

Trials + 

SD 

 
R1 4, 5, 4, 5, 6, 5 3.61± 2.10 2.8± 1.99 

 
R2 4, 4, 4, 6, 4, 4 3.52± 2.00 1.9± 1.51 

 
R3 4, 4, 4, 9, 4, 4 3.45± 2.45 7.9± 9.05 

 
L1 4, 6, 4, 4, 4, 4 4.57± 2.30 2.4± 1.69  

 
L2 4, 4, 6, 4, 4, 4 4.88± 1.98 2.6± 2.11 

 
L3 4, 6, 4, 4, 4, 4 4.47± 1.66 4.6± 4.72 

 
R2, R3 4, 4, 4, 5, 8, 9 4.24± 2.69 8.0± 5.31 

 
R1, R3 4, 4, 4, 6, 4, 9 2.64± 2.05 6.1± 3.94 

 
R1, R2 4, 4, 4, 8, 9, 6 4.35± 1.59 7.6± 2.20 

 
R1, L3 4, 5, 4, 4, 5, 4 3.29± 2.16 10.9± 5.84 

 
R2, L3 8, 4, 4, 4, 8, 4 4.17± 2.29 10.7± 6.77 

 
R1, L2 4, 4, 4, 4, 4, 4 0.83± 0.04 0.0± 0.0 

 
R1,R3,L1 4, 4, 4, 4, 5, 5 4.39± 2.09 7.7± 6.51 

 
R1,R3,L3 4, 4, 4, 4, 9, 4 5.08± 1.29 3.6± 3.83 

 
R1,R3,L2 4, 4, 4, 4, 4, 9 2.01± 1.61 5.7± 5.92 

 
R1,R2,L1 4, 4, 5, 4, 8, 8 4.67± 2.50 4.9± 3.08 

 
R1,R2,L3 4, 4, 4, 5, 9, 4 3.81± 2.31 5.8± 4.04 

 
R1,R2,L2 4, 4, 4, 4, 4, 9 2.98± 2.21 3.5± 2.46 

 
R2,R3,L1 4, 4, 4, 4, 8, 5 2.49± 2.07 3.8± 2.52 

 
R2,R3,L3 4, 4, 4, 6, 5, 4 4.94± 2.37 3.7± 2.10 

 
R2,R3,LM 4, 4, 4, 4, 4, 8 5.03± 1.93 3.3± 1.55 

Figure 11: Combination of periods after learning for the hexapod. The first

two columns illustrate the functional and disabled legs. The third column is

the combination of periods after learning. In red we depict the disabled legs.

The last two columns represent the deviation angle and how many trials are

on average required with standard deviations (SD).

24



tested and the results are depicted in Fig. 11. For each scenario, 10 tri-

als had been averaged. In this diagram, all simulations started from period

4. In all cases, the learning state space for the hexapod consists of 56 = 15625

different controllers. In this figure, six scenarios for one leg’s malfunction, six

scenarios for two legs’ malfunction and nine scenarios for three legs’ malfunc-

tion were tested. These scenarios include most of the situations that might

occur (see the first two columns), excluding situations that have a symmetri-

cal counterpart in this Table. For example, the situation with the L2 and L3

legs disabled is not depicted here because we can deduce it from the scenario

that has the R2 and R3 legs disabled. In Fig. 11, the best resulting period

combination of each scenario is presented.

The actual time needed to conduct a real robot experiment can be ap-

proximately estimated. As one trial takes 400 time steps and the control

frequency for a robot experiment is 27 Hz, it costs 400/27 ≈ 14.8 seconds

to try one combination of periods. From the results shown in Fig. 11, the

learning time for most of the scenarios can be normally controlled within 20

trials, i.e., it takes about 4 to 5 minutes to finish one learning experiment.

4.2. Simulated four legs (4 CPGs)

The multiple chaotic CPGs and the learning algorithm presented here are

not limited to hexapod robots but can also be applied to different walking

robots. To verify this, we simulated a quadruped robot in LPZROBOTS

(see Fig. 12). For the controller of this robot, we used 4 CPGs with, as

before, one CPG set as master CPG and the other three as clients. The

controller is updated with a frequency of 27Hz. Synchronization and learning

mechanisms were the same as for the 6 CPGs’ controller. All trials started
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Figure 12: A simulated quadruped robot in LPZROBOTS.

from period 4, i.e., a trot gait for the quadruped robot. In this simulation,

we disabled the R1, R2, L1 and L2 legs individually to test the learning

process for leg malfunction compensation (see Fig. 13). Similar to Fig. 11,

the average deviation angles (deg) and trials are shown together with the

standard deviations (SD). R1 = right front, R2 = right hind, L1 = left front,

L2 = left hind. Every scenario was tested 10 times. In all cases, the learning

state space for the quadruped consists of 54 = 625 different controllers. The

experimental results show that the controller can find feasible combinations

of periods in the different conditions of leg malfunction for the quadruped

robot. This shows that our multiple CPGs and learning mechanism can be

applied to not only a hexapod robot but also to a quadruped robot, indicating

a certain potential for generalization. In other words, this generic approach

can deal with not only small (i.e., quadruped) but also large (i.e., hexapod)

learning state space.
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Leg 

status 

Disabled 

leg 

Example of 

periods after 

learning 

Average 

deviation angle 

(deg) + SD 

Trials + 

SD 

 
R1 4, 4, 8, 6 3.19± 2.52 4.4± 2.06 

 
R2 6, 4, 9, 8 3.87± 2.33 4.8± 3.84 

 
L1 5, 8, 4, 4 5.50± 1.53 4.3± 3.29 

 
L2 5, 8, 5, 4 4.94± 2.45 4.7± 3.66 

Figure 13: Learning results for quadruped locomotion. All columns are pre-

sented similar to Fig. 11.

4.3. Influence of β

An important parameter which needs to be discussed in our learning

method is the annealing factor β. It determines the learning time and

whether it can converge globally. In our learning process, if β is set to 0

the acceptance probability is 1, i.e., every possible change of leg periods is

acceptable. Therefore, the search is performed by random permutations.

If β increases to positive infinity, the acceptance probability approaches

zero. Therefore, the current combination of periods will be discarded only

if the deviation is larger than the previous one, i.e., the learning algorithm

does not accept worse solutions. In this condition, the simulated annealing

method is reduced to a greedy search method.

Fig. 14 shows the number of trials when we set different annealing factors

β. The blue bar represents random permutations (β = 0) and the green bar

represents approximately a greedy search (β = 10). The red bars indicate

results from the simulated annealing method when we use five different β.
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Figure 14: The average number of trials with different β (see text for details).

Every situation (i.e., every β) was tested for 50 times and the mean value is

depicted by the blue numbers upon the bars. In this figure, the R1 and R2

leg were disabled while other legs were functional.

When β = 0 (random permutation), we observed the longest search time.

With increase of β, search time decreased, however, if β was too large (larger

than 10 here), learning might get stuck at a worse solution. For example, in

a scenario where R1 and L2 were disabled, the greedy search got stuck at

a solution, where the remaining legs performed with periods R2=4, R3=4,

L1=4 and L3=4. In this situation, the deviation angle remained at about

9.24◦, which is larger than the predefined threshold of 8◦. No matter how

we changed a leg’s oscillation frequency, the deviation angle increased such

that all combinations were discarded. However, as shown in Fig. 11, the

combination of R1=8, R3=4, L1=4 and L2=8 (line 11) would have been a

suitable solution (found by simulated annealing, β = 0.5).
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In summary, greedy search has a fast convergence speed but is more sus-

ceptible to getting stuck at a solution which might be worse than the solution

obtained by SA. That is, the average deviation angle from the greedy search

might be still larger than the one obtained from the simulated annealing.

Employing random permutations will converge globally but costs more time.

The simulated annealing technique lies between greedy search and random

permutations. In principle, it is globally convergent and the search time is

short if we employ an appropriate annealing factor [28]. Finally, SA is able

to find a suitable combination of periods for compensating leg malfunction.

Therefore, the simulated annealing method is a good choice for our learning

process.

5. Real robot experiments

5.1. The walking machine platform AMOSII

In order to test our algorithm in a physical system, the six-legged walking

machine AMOSII2 is employed (see Fig. 15(a)). It has identical leg structure

with three linkages (coxa, femur, and tibia, see Fig. 15(b)). Each leg has

three joints: the thoraco-coxal (TC-) joint enables forward (+) and backward

(−) movements, the coxa-trochanteral (CTr-) joint enables elevation (+) and

depression (−) of the leg, and the femur-tibia (FTi-) joint enables extension

(+) and flexion (−) of tibia. Compared to a real insect [18], the tarsus is

ignored in the current design. In general the tarsus is for absorbing outside

2AMOSII was developed by Bernstein Center for Computational Neuroscience at

Georg-August-Universität Göttingen in collaboration with Fraunhofer Institute IAIS, Ger-

many.
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(a) Walking platform (b) Leg structure

Figure 15: (a) Biologically inspired walking machine platform AMOSII with

sensors. (b) Leg structure inspired by a cockroach leg.

impact forces and to stick the leg to a walking surface [12]. Nevertheless, a

spring is installed in the leg to substitute part of the function of the tarsus;

i.e., absorbing the impact force during touchdown on the ground. In addition,

a passive coupling is installed at each joint (see Fig. 15(b)) in order to yield

passive compliance and to protect the motor shaft. The body consists of

two parts: two front legs on the front part, and the middle and hind legs

on the hind part. The two body parts are connected by an active backbone

joint which enables the rotation around the lateral or transverse axis. This

backbone joint is mainly used for climbing which is not the main focus here

(but see Goldschmidt et al. [25]). All leg joints as well as the backbone joint

are driven by digital servomotors.

The robot has six infrared sensors (IR1,...,6) at its legs, six force sensors

(FC1,...,6) in its tibiae, three light dependent resistor sensors (LDR1,2,3) ar-
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ranged in a triangle shape on the front body part, and two ultrasonic sensors

(US1,2) at the front body part (see Fig. 15(a)). The force sensors are for

recording and analyzing the walking patterns. The infrared sensors are used

for detecting obstacles near the legs and the ultrasonic sensors are used for

detecting obstacles in front. The light dependent resistor sensors serve to

generate positive tropism like phototaxis. We use a Multi-Servo IO-Board

(MBoard) installed inside the body to digitize all sensory input signals and

generate a pulse-width-modulated signal to control servomotor position. The

MBoard can be connected to a personal digital assistant (PDA) or a personal

computer (PC) via an RS232 interface. For the robot walking experiments

presented here, the MBoard is connected to a PC on which the neural con-

troller is implemented. Electrical power supply is provided by batteries: one

11.1 V lithium polymer 2,200 mAh for all servomotors and two 7.4 V lithium

polymers for the electronic board (MBoard) and for all sensors.

5.2. Experimental results

The real robot experiments were conducted to test the validity of the

proposed multiple CPGs and learning algorithm. The controller is imple-

mented with the update frequency of 27Hz. The robot was placed in front

of a tunnel which was 300 cm long and 120 cm wide (see Fig. 16). Three

scenarios were tested: in the first, second, and third experiment, we disabled

the R1 leg, the R1 and R3 legs, and the R1, R3, and L2 legs, respectively.

Using default periods (i.e., all legs moved with period 4), the robot devi-

ated to the right and hit the right board in all three experiments, i.e., it

failed to pass the tunnel. For the R1 leg disabled, the robot deviated to

the right by 48 cm after travelling 53 cm. We reset the robot to the initial
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position and implemented the learned suitable combination of leg periods,

i.e., 5, 4, 5, 6, 5 (obtained directly from the simulation, see line 1 in Fig. 11,

in the sequence of R2, R3, L1, L2, L3). These periods enabled the robot

to pass the tunnel with a small deviation of approximately 42 cm. For the

R1 and R3 legs disabled using the default periods, the robot deviated 47

cm after travelling 120 cm. We used the learned combination of 4, 6, 4, 9

(see line 8 in Fig. 11, in the sequence of R2, L1, L2, L3) and observed only

a small deviation of 5 cm. For the R1, R3, and L2 legs disabled using the

default periods, the robot deviated 45 cm after travelling 105 cm. In this

situation, we used the learned periods 4, 4, 9 obtained directly from the

simulation (see line 11 in Fig. 11, in sequence of R2, L1, L3), resulting in

a deviation of 14 cm. The deviations are also shows as angles in Table 2.

Experimental snapshots and gait diagrams are shown in Fig. 16. The exper-

imental video can be seen in the supplementary material and at our website

http://manoonpong.com/MultiCPGs/supple_video.wmv. The video shows

that the results from our simulations can directly transfer to the real robot

resulting in the malfunction compensation in the robot’s locomotion.

The experiments demonstrate the effectiveness of the proposed multiple

CPGs with the learning mechanism. Additionally, as it is flexible, it can be

easily extended to configurations other than the six CPGs implemented here;

it can also be extended to 4 CPGs for the quadruped robot as shown in the

simulation and 8 CPGs for a possible octopod robot in future research.
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Figure 16: Three scenarios of the real robot experiments. For each subfigure,

the upper panel shows one snapshot of a fail situation (before learning) and

four snapshots of a success situation (after learning). The lower panel shows

the gait (i.e., suitable leg frequencies) after learning. The gait is observed

from the motor signals of the CTr-joints. A black area means that the leg

touches the ground, while a white area indicates that the leg is in the air.

(a) R1 leg disabled. (b) R1 and R3 legs disabled. (c) R1, R3, and L2 legs

disabled.
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Table 2: The deviation angle (deg) before learning and after learning.

Scenarios Disabled leg(s) Before learning After learning

1 R1 ≈ 42◦ ≈ 7.97◦

2 R1, R3 ≈ 21◦ ≈ 0.95◦

3 R1, R3, L2 ≈ 23◦ ≈ 2.67◦

6. Discussion

Our contribution here is an extension of our previous works [51, 46, 45].

In Steingrube et al. [51], we proposed a single chaotic CPG for generating

multiple gaits and complex behaviors, but excluded leg malfunction compen-

sation. In Ren et al. [46], we investigated three chaotic CPGs with manual

frequency tuning for malfunction compensation of a hexapod robot only. In

Ren et al. [45], only a short introduction to the work is given. The complete

technical details, analysis, or experimental results presented here have not

been published in our previous papers [51, 46, 45] or elsewhere. In general,

implementing such a CPG-based control strategy does not require the pre-

cise mechanical model. Furthermore, it does not need to calculate inverse

kinematics, which requires a lot computational resources.

The strategy of using multiple CPGs is inspired by the way insects control

their locomotion. There were already experiments demonstrating that each

insect leg is controlled by an independent oscillation center [5]. Additionally,

they showed that legs are able to respond to their corresponding ganglions

to generate rhythmic motion after amputation [49, 17]. Our control strat-
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egy is similar; the multiple CPGs are a decentralized system and based on a

modular concept, with each leg controlled by an independent oscillator. Al-

though our CPG model, exhibiting chaotic dynamics, and learning used here

do not directly match biological findings, they form a powerful approach for

robot locomotion control and learning. The multiple chaotic CPGs perform

as open-loop controllers and only an orientation sensor is required and used

as sensory feedback for learning. This results in a minimalistic system where

learning can efficiently and automatically find a proper combination of oscilla-

tion frequencies of the different legs for malfunction compensation. Note that

our approach is mainly developed to benefit technical systems like the walk-

ing robots used here. In real insects certain hard-wired sensori-motor loops

are used instead of the learning mechanisms implemented in this study. For

a robot however, the modeling of any such loop requires carefully addressing

quite complex neuro-biological design issues [24, 33]. Here, we demonstrate

that learning can replace hard-wired sensorimotor loops, which for robotics

substantially reduces design demands and we show that learning can indeed

take the role of (evolutionary designed) sensori-motor structures regardless

of the robot’s specific embodiment (e.g., six- and four-legged robots shown

here).

Some other approaches also successfully showed fault tolerance. For ex-

ample, Bongard et al. [7] presented an active process that allowed a robot

to generate successful motor patterns for locomotion, before and after dam-

age, through autonomous and continuous self-modeling. This algorithm was

tested on a four legged starfish robot. Schilling et al. [49] improved the

“Walknet” by adding an analog-selector for dealing with leg amputations.
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An Artificial Immune System (AIS) was implemented on the OSCAR robot

in order to detect leg anomaly and a Swarm Intelligence for Robot Recon-

figuration (SIRR) method was applied to rearrange the body shape and to

regulate the leg behaviors [36, 22, 21]. Spenneberg et al. [50] realized fault

tolerance locomotion of their octopod robot SCORPION by changing its gait

to a hexapod gait. Yang and Kim [56] developed a fault tolerance mecha-

nism based on a modeling and planning strategy to achieve stable walking

with leg loss. Christensen et al. [8] applied learning to automatically adjust

a quadruped robot’s gait such that fault tolerance and morphology opti-

mization were realized. Compared to many of these approaches, we empha-

size here a simple but robust CPG-based mechanism with learning for both

multiple gait generation (see Fig. 2) and leg malfunction compensation (see

Fig. 11). The mechanism deals with only one parameter of each CPG for

adaptation and requires only an orientation sensor as sensory feedback for

learning. Therefore, it converges faster compared to, e.g., the results shown

in [8]. We have also shown that it is easy to combine the learning mechanism

with the multiple CPGs controller which is transferable to different platforms

(see Fig. 11 and 13).

For our robot’s locomotion control, especially for the malfunction com-

pensation experiments, the center of mass of the body was maintained at a

low level. In this configuration, the body sometimes touches the ground thus

being able to support part of the body weight. Because of this, the remaining

legs do not need to carry as much load and as a result the robot can move in a

stable manner. This is similar to the way insects (e.g., cockroaches) perform

their locomotion [47]. This configuration is especially effective when some of

36



the robot’s legs are disabled. In this situation, the functional legs are respon-

sible for propelling the robot while the body is used to support the robot. If

the robot meets with rough terrain, it can raise its body by depressing the

legs to overcome the terrain irregularity. To compensate leg malfunction dur-

ing walking on rough terrain, additional posture control might be required

for balancing. However, investigating this issue is beyond the scope of this

work.

When legs are disabled (one, two or even three), the resulting trajectory

deviation can be compensated for by the proposed algorithm. The learning

process starts as soon as the deviation exceeds the predefined threshold.

Eventually the learning algorithm will find a suitable combination of periods.

As the controller is modular, it is flexible and general [31, 53] and it can be

extended from one CPG to the four or six CPGs presented here. Furthermore,

the modularity of the system offers the future possibility of combining it

with other neural sensory processing modules to generate various sensor-

driven behaviors (like obstacle avoidance, phototropism, not discussed here,

see [42, 51]). The modules are inhibited in case of leg malfunction, thereby

not interfering with the learning process for leg malfunction compensation.

7. Conclusion

In this paper, we focus on the locomotion control of legged robots using

neuron-inspired central pattern generators for the purpose of automatic mal-

function compensation. This is a continuation of our previous investigations,

where we had already demonstrated that a chaotic CPG could generate com-

plex behaviors, such as different walking gaits as well as novel self-untrapping
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mechanism [51, 46].

The main advantage of CPG based control is that it does not require a

precise mathematical model of leg structure. However, with a single CPG,

the robot cannot compensate for leg malfunction. As such, taking inspi-

ration from multiple oscillators found in the real neural systems of insects,

here we first extended our single chaotic CPG to multiple chaotic CPGs.

The different CPGs can now synchronize to generate uniform frequency or

desynchronize to oscillate independently. Here, robot leg malfunction causes

the different CPGs to oscillate asynchronously. In this setup, in order to

deal with the leg malfunction, an on-line learning mechanism based on the

simulated annealing (SA) technique is applied. The SA algorithm allows the

robot to automatically find a suitable combination of periods (frequency)

for each leg and thereby considerably reduce any deviation from the origi-

nal movement trajectory caused due leg malfunction. Furthermore, we show

that such a SA based learning algorithm is capable of converging to a solu-

tion within acceptable time without getting stuck at a worse combination of

periods. We clearly demonstrate the effectiveness and generalization of our

learning algorithm using both simulations and real robot experiments.

In this study, although our control approach allows walking robots to

learn to compensate for leg malfunction, individual joint malfunctions and

body damage compensation have not been addressed. In the future, we will

investigate these issues which might require more complex sensory informa-

tion [29, 57] as well as additional mechanisms, such as advanced force control

[49, 26] and suitable muscle models [55] to enable leg compliance and adapta-

tion [19]. Furthermore, cognitive abilities such as memory [13] and decision
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making [14] will be also applied for goal-directed navigation learning. In ad-

dition, due to the employed chaotic CPGs controller which in principle can

reliably obtain a stable (complex) periodic pattern out of a large (often infi-

nite) number of unstable periodic patterns [51], we will also use the controller

to deal with other motor tasks, like manipulation which requires a variety of

complex patterns.
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