
Omnidirectional visual odometry for flying robots
using low-power hardware

Simon Reich1, Maurice Seer1, Lars Berscheid1, Florentin Wörgötter1, and
Jan-Matthias Braun1

1Third Institute of Physics - Biophysics, Georg-August-Universität Göttingen,
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

{sreich, mseer, lberscheid, worgott, jbraun}@phys.uni-goettingen.de

Keywords:
Visual Odometry, Embedded Hardware, Omnidirectional Vision

Abstract:
Currently, flying robotic systems are in development for package delivery, aerial exploration in
catastrophe areas, or maintenance tasks. While many flying robots are used in connection with
powerful, stationary computing systems, the challenge in autonomous devices—especially in indoor-
rescue or rural missions—lies in the need to do all processing internally on low power hardware.
Furthermore, the device cannot rely on a well ordered or marked surrounding. These requirements
make computer vision an important and challenging task for such systems. To cope with the
cumulative problems of low frame rates in combination with high movement rates of the aerial device,
a hyperbolic mirror is mounted on top of a quadrocopter, recording omnidirectional images, which
can capture features during fast pose changes. The viability of this approach will be demonstrated
by analysing several scenes. Here, we present a novel autonomous robot, which performs all
computations online on low power embedded hardware and is therefore a truly autonomous robot.
Furthermore, we introduce several novel algorithms, which have a low computational complexity
and therefore enable us to refrain from external resources.

1 INTRODUCTION

Real time computer vision in fast moving
robots remains still a very challenging task, espe-
cially when forced to use limited computing power,
e.g. when having to use embedded systems. There
are several robotic applications existing where this
is needed and one of the most challenging is visual
guided on-board-computed indoor flight. There
are no GPS signals available and the autonomous
aerial vehicle (AAV) has to navigate quickly in
often confined spaces. To enable collision detec-
tion, onboard sensors must be utilized. The prob-
ably most prominent autonomous robot is the
unmanned car Stanley, which won the DARPA
Grand Challenge in 2005 (Thrun et al., 2006).
Stanley has a wide range of different sensors, in-
cluding GPS, laser range sensors, and RADAR
sensors: The total power consumption accumu-
lates to 500 W (Thrun et al., 2006).

In recent years, energy efficient hardware,
which is still powerful enough, and batteries, which

Figure 1: The quadrocopter utilized in this work. In
the center, a camera captures omnidirectional images
via the mounted mirror (Compare Fig. 3a).

offer enough power, became available. This al-
lowed on the one hand for smaller robots and on
the other hand for complex motor control tasks
and sensor evaluation—as it is required in quadro-
copters. However, active sensors approaches often
lack in high power requirements and heavy weight.
Both problems are solved by using an RGB cam-

era, which is a passive sensor and has low power
consumption.

Previous work on autonomous flight can be
categorized into two research areas. First, a lot
of works focus on agile and accurate motion con-
trol. Most prominent is the quadrocopter swarm
of ETH Zurich, which is able to perform synchro-
nized dancing motions (Schöllig et al., 2012) or
even to build simple architectural structures (Au-
gugliaro et al., 2014). But these complex tasks
heavily rely on external tracking of the robots
and are thus restricted to lab use. In another
approach, artificial markers in the environment
simplify pose estimation (Eberli et al., 2011). For
GPS enabled areas, complete commercial solutions
exist, e.g. (Remes et al., 2013; Anai et al., 2012).

Second, there are approaches, which only use
online sensors for self localization. Still, in many
studies the computational expensive tasks are
performed on external hardware via Bluetooth
or wireless LAN links, e.g. (Engel et al., 2014;
Teuliére et al., 2010), which limit the independence
of the devices. In recent years, the miniaturization
of computers and advancement in battery design,
driven mostly by rapid cell phone development,
has made it possible to build smaller autonomous
robots and perform computations in real time
on the AAV itself. While online computations
result in maximum autonomy, even today, real
time computations on 3D data remain a complex
task. Instead of 3D sensors as LIDAR, the Asus
Xtion Pro, or the Microsoft Kinect sensor, most
systems use a monocular camera and perform 3D
reconstruction.

For example, already in 2010 in (Olivares-
Méndez et al., 2010) detection of a planar landing
zone for a helicopter using a monocular camera is
described, allowing for autonomous landing of a
helicopter. (Mori and Scherer, 2013) use a front
facing camera to detect objects in the flight path
and estimate size. Yet, all approaches with cam-
era in a specific direction face the problem of a
small observation window.

Omnidirectional monocular cameras, which
provide a 360◦ view of the environment, have been
successfully applied to these problems. In (Gas-
par et al., 2001), a slow moving robot estimates
the depth of edges in a corridor using an om-
nidirectional camera. (Rodŕıguez-Canosa et al.,
2012) apply this procedure to an unstable flying
robot; however, no quantitative results are shown.
In (Demonceaux et al., 2006) this method is shown
to be able to achieve attitude measurements.

In this work, we focus on navigating a flying

robot in unknown, GPS-denied, indoor scenarios.
All computations are performed online and in real
time—there will be no external tracking. We ask:
what is needed to safely (and therefore reliably)
detect features on a hardware platform that very
strongly jerks, jolts, and may even flip? And—if
those can be found—how to track them and use
them for trajectory planning on limited hardware
in real time? One goal is to improve navigation by
introducing a novel lightweight omnidirectional
camera setup for embedded computer systems.
Lastly, we aim to extract features, track them
over multiple frames, compute a 3D point cloud,
and perform high level navigation tasks on this
internal model of the AAV’s environment.

In the following section, we shortly introduce
our hardware approach, a quadrocopter holding an
omnidirectional camera. Afterwards, the utilized
algorithms are shown. Then, we describe our
experiments and results, followed by a detailed
discussion and conclusion.

2 METHOD

This section divides into three parts: In 2.1 the
hardware setup is presented, and in 2.2 our algo-
rithms to arrive at safe trajectory planning are
shown. Lastly, we will discuss briefly the theoreti-
cal limit of the algorithms.

2.1 HARDWARE SETUP

The hardware setup is depicted in Fig. 1: A
quadrocopter, controlled by a Raspberry Pi mini
computer. These robots are able to turn and even
flip on very short notice. This poses the problem
that a front facing camera is not able to reliably
track features, as it has to deal with huge offsets
and many features leaving the camera’s field of
view. We therefore attached a monocular camera
pointing upwards on a hyperbolically shaped mir-
ror, which can also be replaced with a spherical
shaped mirror. Later, we will discuss the advan-
tages and disadvantages of these shapes. The cam-
era photographs with a resolution of 320x320 px
at a frequency of 30 Hz.

Additionally, we use an accelerometer and gyro-
scope as input. Also, any contemporary Bluetooth
gaming controller can be attached. This allows
easy control of high level features, e.g. issue the
start or landing command. The 6D pose from the
visual odometry algorithm is merged with data
from an accelerometer and a gyroscope using a

a) Compute features
and optical flow

b) Dewarp &
compute 6 DoF pose

VO

6 DoF

IMU

6 DoF

EKF

c) Fuse VO and
IMU via EKF

d) Compute depth
via triangulation

Figure 2: Pipeline of our proposed algorithm. a) Based on features we compute the optical flow. b) After
dewarping the image, we estimate the pose change. c) An Extended Kalman Filter (EKF) combines the Visual
Odometry (VO) results with values from the Inertial Measurement Unit (IMU). d) After having tracked features
for multiple frames, we can estimate the point’s depth using triangulation and build a depth map.

Kalman filter. All software components run as
modular and parallel nodes using the Robot Op-
erating System (ROS (Quigley et al., 2009)).

2.2 ALGORITHMS

In this section, we describe how we estimate the
AAV’s pose from an omnidirectional monocular
RGB images. All software components run as
parallel nodes using the Robot Operating System
(ROS (Quigley et al., 2009)).

An overview of the proposed system is given
in Fig. 2. First, we compute features and the
optical flow based on the raw camera image. De-
warping the image enables us to estimate the
pose change from the last camera frame (Fig. 2b).
An Extended Kalman Filter (EKF) (Kalman,
1960) fuses the visual odometry 6 DoF results
with the 6 DoF of the Inertial Measurement Unit
(Fig. 2c). Afterwards, a PID controller, as demon-
strated by (Åström and Hägglund, 2006), adjusts
the motor controllers to manipulate the quadro-
copter into the goal pose (which is defined by e.g.
SLAM (Williams et al., 2009), corridor flight al-
gorithms (Lange et al., 2012), etc.). As we keep
a list of all tracked features and their relative
position to the robot, we can triangulate each
feature and compute a depth estimate for each
feature (Fig. 2d). This can be used by high level
algorithms for map building or navigation tasks.

2.2.1 Feature Set

As already mentioned, we first compute features
on the raw camera image. Features are points in
an image, which are easy to find, recognize, and
track in consecutive frames—usually areas rich in

texture. Afterwards, we compute the optical flow
on these features. There are numerous publica-
tions comparing different feature algorithms—the
most prominent algorithms include FAST (Rosten
and Drummond, 2006), GFTT (Shi and Tomasi,
1994), ORB (Rublee et al., 2011), SIFT (Lowe,
1999), and SURF (Bay et al., 2006). Here, we
use FAST as it offers a good FAST offers the best
trade-off between computational complexity and
quality of found features. This result is not sur-
prising, as FAST is known to be faster but also
finds less features (El-gayar et al., 2013; Heinly
et al., 2012).

2.2.2 Transformations between image
and world coordinates

In the following, we derive transformations TS,H
from image space to the external frame of reference
and their inverse T−1S,H . TS indicates a spherical
and TH a hyperbola shaped mirror. We denote
object positions in image space by 2D coordinates
~o ′ in cartesian (o ′x, o

′
y) or polar coordinates (ρ, φ).

We denote their counterparts in the external frame
of reference as ~o ∈ R3. The robot’s pose in the
external frame of reference is determined by its
position ~c and orientation ~q: This is the pose of the
camera’s view as shown in Fig. 3c and 3d. As the
derivation of the transformation includes several
coordinate system changes, we here present the
transformations.

Spherical Mirror Model A spherical mirror
is mounted with its center in distance l above the
camera (Fig. 3c). Using the real sphere radius
r and radius r ′ in image space (Fig. 3b), the
reflection’s position on the mirror can be computed

(a) The hyperbola mirror.

x

y

~o ′
r ′ ρ ′

−φ

(b) Camera view of the
mirror.

x
z

y

~o

~c

l

f

h

ρr

α
β

δ

(c) Side view of spherical
mirror.

x
z

y

~o

~c

F1

F2

2ε

f

a

ρr

d

(d) Side view of hyperbola
mirror.

Figure 3: Sketch of a camera observing an object
~o, which appears at position ~o ′ in the image plane
(bottom left). The top left figure depicts a simple
pinhole model; on the top right the camera is pointed
at a spherical mirror and at the bottom right at a
hyperbolic mirror.

independently of camera parameters using the
scaling factor s = r/r ′ . With the unit vector ~e
pointing from the reflection on the mirror towards
the object’s position ~o

~eS(~o ′) =

 cosβ cosφ
cosβ sinφ
− sinβ

 ,

given the distance d, h =
√
r2 − ρ2, the angles

in Fig. 3b derived from the image coordinates,
and the rotation matrix R(~q) between the exter-
nal frame of reference and the camera system
in Fig. 3b, we can compute the position ~o by:

TS : ~o ′ 7−→ ~o : ~o = ~c+R(~q)

 so ′x
so ′y

l − h(~o ′)
+ d~eS(~o ′)

 .

For the inverse transformation T−1S , we use polar
coordinates:

T−1S : ~o 7−→ ~o ′ : ~o ′ = r ′ cosα(~o)·
(

cosφ(~o)
sinφ(~o)

)
,

with φ = −atan2
(
(R−1(~q)(~o− ~c))y, (R−1(~q)(~o− ~c))y

)
and ρ ′ = r ′ cosα(~o). As there is no explicit form

for cosα, we use the iterative approximation

cosα ≈
(
l

r
− sinα

)
· tan

(
arctan

(
− sinα−∆ sinβ

r cosα

)
− 2α+

π

2

)
,

for small focal lengths (l − f ≈ l) and large depths
(d/r � 1).

Still, the solution is nontrivial and computa-
tional expensive. Considering that we are using
autonomous robots, which perform all computa-
tions online on limited hardware, this poses a
problem.

Hyperbolic Mirror Model Using a hyper-
bola, the inverse function can be computed easier
and thus faster. The surface of a hyperbolic mirror
is defined by

y2

a2
− x2

b2
= 1 , a, b ∈ R (1)

with the semi-major axis a. The focal points F1,2

are set apart by 2
√
a2 + b2 =: 2ε (Fig. 3d). The

robot’s position is defined by the point in the
middle of these two focal points. The camera’s
focal point coincides with F2. With ~e being the
unit vector pointing from the reflection on the
mirror towards the object’s position ~o:

~eH(~o ′) =

(
s~o ′x, s ~o

′
y,
a
b

√
ρ2 + b2 − ε

)ᵀ
∣∣∣(s~o ′x, s ~o ′y, ab√ρ2 + b2 − ε

)ᵀ∣∣∣ ,

the transformation TH is

TH :~o ′ 7−→ ~o :

~o =~c+R(~q)

 so ′x
so ′y

a
b

√
ρ(~o ′)2 + b2

+ d~eH(~o ′)

 .

and therefore the object position at a distance d

is defined as ~o = ~r +R
(
~̂o+ d~e

)
. For the inverse

transformation in polar coordinates as for the
spherical shaped mirror, it can be shown radius
ρ ′ is given by

ρ ′ =
(~o− ~c)ρ

(~o− ~c)2ρ · ε2/b2 − 1
((~o− ~c)z ε+ a) . (2)

To simplify this expressions, the rotation matrix
R was left out. Different camera orientations ~q are
accounted for by rotating the vector (~o− ~c) before
calculations. The corresponding image position
now found as ~o ′ = (ρ cosφ, ρ sinφ)

ᵀ
.

2.2.3 Motion and Depth Estimation

Now, we can detect and track features, and,
furthermore, compute the robot’s displacement
(translation and rotation) between consecutive
frames. We keep a list of all features for all frames,
which means we have the relative position of each
feature from multiple positions. This enables us to
perform triangulation. While in theory we would
get a good estimate, real world experiments show
that quite a lot of noise gets introduced.

Estimating the depth for N features adds sig-
nificant complexity to the problem. Currently, we
try to estimate the quadrocopter’s 6D motion M—
consisting of translation ∆~r and orientation ∆~q.
Our problem has now increased to N + 6 dimen-
sions. Changes in the feature set from frame~ii,t−1
to frame ~ii,t provide N equations, meaning fea-
tures need to be tracked for at least 3 consecutive
frames.

Matching features with the inverse estima-
tion

1. Depth di,t−1 and motion Mt are initialized
using previous data di,t−2 and motion Mt−1.
The camera pose Pt−1, consisting of position
~ct−1 and rotation ~qt−1, is known.

2. For every feature i, calculate the global posi-
tion ~oi,t−1 using the depth di,t−1, the image
coordinates ~o ′i,t−1 and the camera pose Pt−1.
The transformation TX , X ∈ {S,H} is cho-
sen according to the camera setup, as detailed
above.

3. Apply the inverse motion to all global positions
~oi,t−1. This results in the predicted global
positions ~opi,t.

4. Use the inverse transformation T−1X , to com-

pute the predicted image position ~o ′pi,t =

T−1X

(
~o pi,t
)
.

5. Lastly, we consider the environment as well
as all global features to be static. There-
fore, ~oi and ~o ′i should be equal for correspond-
ing features i: we minimize the sum of the
squared distances for the last L time steps:

SD (di,t,M) =
∑N

i=0

∑0
τ=−L

∥∥∥õ ′i,t − õ ′,pi,t

∥∥∥2.

Estimating the depth with the forward es-
timation

1. Perform step 1. and 2. from the inverse esti-
mation.

2. Our goal is to find the new depth di,t based
on the previous estimate di,t−1. In om-
nidirectional mirror models, the depth is

dt =
∥∥∥R (∆~qt) (~o− ~c−∆~ct)− ~̂o p

∥∥∥ . The new

reflection point ~̂op is calculated with the in-
verse transformation T 1

X . For the spherical
mirror, an approximation considering only ro-

tations is easily possible. Let ~k = (0, 0, b)ᵀ

be the center of the spherical mirror. Then

~̂op ≈ R (∆~q)
(
~̂o− ~k

)
+~k is leading to the new

depth

d0 =
∥∥∥R (∆~qt)

(
~o− ~c−∆~rt − ~̂o+ ~k

)
− ~k
∥∥∥ . (3)

Due to ∆m � d, the approximation can be
considered to be vanishing.

3. Compute the new predicted pose Pt = Pt−1 +
Mt.

4. Compute predicted global positions ~o pi,t=0 for
every feature i based on the camera model.

5. The positions ~oi,t and ~o pi,t should be equal
for corresponding features i. We use this to
minimize the sum of the squared distances

SD (di,t,M) =

N∑
i=0

0∑
τ=−L

∥∥∥∥∥ õi,t−τ − õ p
i,t−τ

di,t−τ

∥∥∥∥∥
2

.

The factor di,t weights all summands consis-
tently as the position-error scales linearly with
d.

2.3 ACHIEVABLE ANGULAR
RESOLUTION

Given a fixed camera resolution of 320 × 320 px
we can now compute the projection of the hyper-
bola mirror onto the camera. We assume that
the object is at a distance of 2 m and we require
five pixels width to separate it from adjacent ob-
jects. After straight forward application of above
formulas, we arrive at a limit of approximately
1.9◦.

3 EXPERIMENTS

3.1 Time Performance

As we have two different setups—namely the hy-
perbola and the spherical mirror—we will first
analyze major differences between both. Due

1)

0.5 m
x

y

2)

r

z

3)

x

y

4)

x

y

5)

x

y

6)

x

y

Figure 4: Qualitative examples of all target trajectory
recorded while the quadrocopter was moved manually.
The target trajectory is shown in gray, the quadro-
copters believe state, i.e. the sensor data, in red, and
external tracking results are depicted in blue. The
direction of sight (this is not necessarily the direction
of flight) is marked using green arrows. 1) line in x−y
plane; 2) lift off in z-direction plotted against the ra-
dius r; 3) square, quadrocopter pointing into direction
of flight; 4) square, quadrocopter always pointing into
the same direction; 5) circle, quadrocopter pointing
into direction of flight; 6) circle, quadrocopter always
pointing into the same direction.

to the shape of the spherical mirror, the area
of self reflection of the robot is much larger,
meaning that less features are found. We have
320×320 px = 102400 px in total, the robot blocks
58153 px on the spherical mirror and 44892 px on
the hyperbola mirror. Furthermore, we can report
a 9% higher frame rate (resolution 320× 320 px)
for the hyperbola mirror setup due to the numeri-
cal efficiency of the explicit transformation. Full
results for frame rates are shown in Table 1. Since
we did not find any differences in the quality of
features or flight trajectories, we focus here on the
hyperbola mirror.

In Table 1 we compare our novel approach to
the SVO (Forster et al., 2014) algorithm. Please
note that SVO only extracts features on selected
key frames and thus does not perform full compu-
tations at the reported frame rate. Also a more
powerful processor was used.

3.2 Visual Odometry

We performed flights on six different target trajec-
tories and for each path ten trials were recorded:

1. a straight line in the x− y plane with length
2 m;

2. a straight line upwards into the z-direction
with length 1.5 m, i.e. lift off;

3. a square with side length 2 m, the quadrocopter
always pointing into the direction of flight;

4. a square with side length 2 m, the quadrocopter
always pointing into the same direction;

5. a circle with diameter 2 m, the quadrocopter
always pointing into the direction of flight;

6. a circle with diameter 2 m, the quadrocopter
always pointing into the same direction.

An example of each trajectory is shown in Fig. 4.
Each path is recorded in two different setups (this
results in 120 flights total). First, the quadro-
copter is moved manually on the predefined path.
This allows us to quantify the visual odometry
without problems that occur from flight control
(e.g. rapid movements or problems with the flight
control algorithms). Afterwards, we record all
paths during full flight.

To achieve a meaningful evaluation, we first
need to generate ground truth information: We
utilize an Asus Xtion Pro camera, which offers
3D depth perception via infrared sensor. Four
differently colored spherical markers are put on the
quadrocopter, one on each end of the cross. This
allows stable tracking of the robot’s translation
and rotation in indoor environments. A summary
of its performance is given in (Haggag et al., 2013).
We will call the Xtions data “external tracking”.
To give an idea of the recorded data, we have
included a detailed plot of trajectory 6) during
manual mode in Fig. 5.

We use the Root-Mean-Square Deviation to
compute the accumulated differences in the x-y-
plane (except for experiment 2, where the z and
the radial component were used) as defined:

RMSD =

√∑n
t=1(~̂st − ~st)2

n
. (4)

All results are shown in Table 2 with a graphical
representation given in Fig. 6.

Table 1: Frame rates of visual odometry algorithm at different resolutions for the spherical and hyperbola mirror
setup. At small resolutions only few features are found, meaning that there is only a small difference in the
transformations. As more features are found at higher resolutions, the explicit transformation of the hyperbola
mirror is about 9% faster (at 320× 320 px). We compare against the SVO algorithms results as shown in (Forster
et al., 2014). However, a more powerful hardware platform containing a quadcore processor with 1.6 GHz was
used.

Mirror
160× 160 px 320× 320 px 640× 640 px

[Hz] [Hz] [Hz]

Spherical 29.8± 0.1 24.4± 0.1 15.8± 0.1
Hyperbola 29.7± 0.1 26.6± 0.1 17.3± 0.1

SVO 55± 1 (752× 480 px)

Table 2: For each of the six trajectories (as shown in
Fig. 4) ten trials were performed. The averaged Root-
Mean-Square Deviation in the x-y-plane for these trials
is shown here. In “manual mode” the quadrocopter
was moved manually on the trajectories to eliminate
problems from flight control algorithms. In “Flight
Mode” trials were performed in full flight mode.

Scene
Manual Mode Flight Mode

[m] [m]

1) 0.03± 0.01 0.07± 0.03
2) 0.06± 0.03 0.06± 0.03
3) 0.07± 0.04 0.08± 0.04
4) 0.05± 0.02 0.09± 0.04
5) 0.06± 0.03 0.11± 0.05
6) 0.04± 0.02 0.10± 0.04

Average 0.05± 0.03 0.09± 0.04

4 DISCUSSION AND
CONCLUSION

In this paper, we have investigated a novel
lightweight omnidirectional camera setup for fly-
ing robots and tested it on a quadrocopter. The
visual odometry is combined with IMU data and
the resulting pose information is confirmed us-
ing an external tracking camera. The achieved
frame rate of 26.6±0.1 Hz, as shown in Table 1, is
sufficient for real-time application in autonomous
agents with low-power hardware. Furthermore,
the deviation between external tracking and in-
ternal believe state was found to be 5 ± 3 cm in
manual mode on average; in real flight self local-
ization performs at 9± 4 cm. The deviation was
determined in the horizontal plane for experiments
1 and 3-6 and using the z and radial coordinates
for experiment 2. The utilized external tracking
system performs already with an error of at least
±1 cm (Haggag et al., 2013) and thus introducing
significant uncertainty. Enhance tracking quality

currently remains future work.
While the AAV’s accuracy will be subject to

further improvement, it is below the trajectory
error of the flight controller and can therefore be
used as a feedback error signal to increase trajec-
tory control precision. Thus, we have achieved
our goal to enable autonomous flight in indoor or
outdoor GPS-denied areas with visual odometry.

Lastly, we will look at a real world example to
give an understanding of the error margins. For
this, we will assume a self localization error of
0.1 m and a frame rate of 25 Hz. Furthermore, we
will assume that the AAV needs 5 frames to detect
an obstacle and initiate counter measures. Using
the given frame rate of 25 Hz, the quadrocopter
needs 0.2 s to detect an obstacle. Within these
0.2 s the safety error margin of 0.1 m (the above
localization error) must not be met. Thus, we can
survey in indoor environments with a velocity of
approximately 1.8 km/h. This allows for a broad
range of application, e.g. fast search and rescue
in impassable terrain.

Our work enables autonomous robots to local-
ize themselves, while allowing at the same time
to build a depth map. This map offers for ex-
ample obstacle avoidance or mapping capabilities.
All computations are performed online on embed-
ded hardware, meaning that the robot is able to
work in unknown environments. It can support
autonomously, for example, in search and rescue
mission, disaster relief work, or exploration tasks.

y
[m

]

x [m]

Target Trajectory

Onboard Sensors

External Tracking

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

(a) The recording in the real world state space.

0.9

1

1.1

0 π/2 π 3π/2

R
ad

iu
s

[m
]

Phase [rad]

(b) Transforming the trajectory to polar coordinates
shows the deviations between external tracking and
onboard sensors in more detail.

Figure 5: The shown trajectory was recorded during
one of the ten flights of trajectory 6) in manual mode
as depicted in Fig. 4: A circle with diameter 2 m
(depicted in grey), the quadrocopter always pointing
into the same direction. The red line shows results
from the EKF, which combines VO and IMU data.
Blue dots visualize the trajectory as recorded by the
external tracking system.

REFERENCES

Anai, T., Sasaki, T., Osaragi, K., Yamada, M., Otomo,
F., and Otani, H. (2012). Automatic exterior ori-
entation procedure for low-cost uav photogram-
metry using video image tracking technique and
gps information. Int. Arch. Photogramm. Remote

0

0.04

0.08

0.12

0.16

1. 2. 3. 4. 5. 6. AVG

R
M

S
D

[m
]

Manual Mode
Flight Mode

Figure 6: We compute the Root-Mean-Square Devia-
tion in the x-y-plane between external tracking and
onboard sensors. In “AVG” all six trajectories are
averaged. Full results are shown in Table 2. For each
scenario 10 trials were performed and values averaged.

Sens. Spat. Inf. Sci.

Åström, K. J. and Hägglund, T. (2006). Advanced
PID control. ISA-The Instrumentation, Systems
and Automation Society.

Augugliaro, F., Lupashin, S., Hamer, M., Male, C.,
Hehn, M., Mueller, M. W., Willmann, J. S., Gra-
mazio, F., Kohler, M., and D’Andrea, R. (2014).
The flight assembled architecture installation:
Cooperative construction with flying machines.
IEEE Control Systems, 34(4):46–64.

Bay, H., Tuytelaars, T., and Van Gool, L. (2006).
Surf: Speeded up robust features. In European
conference on computer vision, pages 404–417.
Springer.

Demonceaux, C., Vasseur, P., and Pegard, C. (2006).
Omnidirectional vision on uav for attitude com-
putation. In IEEE International Conference on
Robotics and Automation (ICRA), pages 2842–
2847.

Eberli, D., Scaramuzza, D., Weiss, S., and Siegwart,
R. (2011). Vision based position control for mavs
using one single circular landmark. Journal of
Intelligent & Robotic Systems, 61(1–4):495–512.

El-gayar, M., Soliman, H., and Meky, N. (2013). A
comparative study of image low level feature ex-
traction algorithms. Egyptian Informatics Jour-
nal, 14(2):175–181.

Engel, J., Sturm, J., and Cremers, D. (2014). Scale-
aware navigation of a low-cost quadrocopter with
a monocular camera. Robotics and Autonomous
Systems (RAS), 62(11):1646–1656.

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014).
Svo: Fast semi-direct monocular visual odometry.
In IEEE International Conference on Robotics
and Automation (ICRA), pages 15–22.

Gaspar, J., Grossmann, E., and Santos-Victor, J.

(2001). Interactive reconstruction from an om-
nidirectional image. In 9th International Sym-
posium on Intelligent Robotic Systems (SIRS01).
Citeseer.

Haggag, H., Hossny, M., Filippidis, D., Creighton, D.,
Nahavandi, S., and Puri, V. (2013). Measuring
depth accuracy in rgbd cameras. In 7th Inter-
national Conference on Signal Processing and
Communication Systems (ICSPCS), pages 1–7.

Heinly, J., Dunn, E., and Frahm, J.-M. (2012). Com-
parative evaluation of binary features. In Fitzgib-
bon, A., Lazebnik, S., Perona, P., Sato, Y., and
Schmid, C., editors, 12th European Conference
on Computer Vision (ECCV), pages 759–773,
Berlin. Springer.

Kalman, R. E. (1960). A new approach to linear
filtering and prediction problems. Journal of
basic Engineering, 82(1):35–45.

Lange, S., Sünderhauf, N., Neubert, P., Drews, S.,
and Protzel, P. (2012). Autonomous corridor
flight of a uav using a low-cost and light-weight
rgb-d camera. In Rückert, U., Joaquin, S., and
Felix, W., editors, Advances in Autonomous Mini
Robots: Proceedings of the 6-th AMiRE Sympo-
sium, pages 183–192, Berlin. Springer.

Lowe, D. G. (1999). Object recognition from local
scale-invariant features. In The proceedings of the
seventh IEEE international conference on Com-
puter vision, volume 2, pages 1150–1157. IEEE.

Mori, T. and Scherer, S. (2013). First results in detect-
ing and avoiding frontal obstacles from a monoc-
ular camera for micro unmanned aerial vehicles.
In IEEE International Conference on Robotics
and Automation (ICRA), pages 1750–1757.

Olivares-Méndez, M. A., Mondragón, I. F., Campoy,
P., and Mart́ınez, C. (2010). Fuzzy controller
for uav-landing task using 3d-position visual es-
timation. In Fuzzy Systems (FUZZ), 2010 IEEE
International Conference on, pages 1–8.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J.,
Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y.
(2009). Ros: an open-source robot operating
system. In ICRA Workshop on Open Source
Software.

Remes, B., Hensen, D., Van Tienen, F., De Wagter, C.,
Van der Horst, E., and De Croon, G. (2013). Pa-
parazzi: how to make a swarm of parrot ar drones
fly autonomously based on gps. In IMAV 2013:
Proceedings of the International Micro Air Vehi-
cle Conference and Flight Competition, Toulouse,
France, 17-20 September 2013.

Rodŕıguez-Canosa, G. R., Thomas, S., del Cerro, J.,
Barrientos, A., and MacDonald, B. (2012). A
real-time method to detect and track moving
objects (datmo) from unmanned aerial vehicles
(uavs) using a single camera. Remote Sensing,
4(4):1090–1111.

Rosten, E. and Drummond, T. (2006). Machine
learning for high-speed corner detection. In
Leonardis, A., Bischof, H., and Pinz, A., edi-
tors, 9th European Conference on Computer Vi-

sion (ECCV), pages 430–443, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Rublee, E., Rabaud, V., Konolige, K., and Bradski,
G. (2011). Orb: An efficient alternative to sift
or surf. In International conference on computer
vision, pages 2564–2571. IEEE.

Schöllig, A., Augugliaro, F., and D’Andrea, R. (2012).
A platform for dance performances with multiple
quadrocopters. Improving Tracking Performance
by Learning from Past Data, page 147.

Shi, J. and Tomasi, C. (1994). Good features to
track. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages
593–600. IEEE.

Teuliére, C., Eck, L., Marchand, E., and Guénard, N.
(2010). 3d model-based tracking for uav position
control. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages
1084–1089.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens,
D., Aron, A., Diebel, J., Fong, P., Gale, J.,
Halpenny, M., Hoffmann, G., Lau, K., Oakley,
C., Palatucci, M., Pratt, V., Stang, P., Stro-
hband, S., Dupont, C., Jendrossek, L.-E., Koe-
len, C., Markey, C., Rummel, C., van Niekerk, J.,
Jensen, E., Alessandrini, P., Bradski, G., Davies,
B., Ettinger, S., Kaehler, A., Nefian, A., and Ma-
honey, P. (2006). Stanley: The robot that won
the DARPA grand challenge. Journal of Field
Robotics, 23(9):661–692.

Williams, B., Cummins, M., Neira, J., Newman, P.,
Reid, I., and Tardós, J. (2009). A comparison
of loop closing techniques in monocular SLAM.
Robotics and Autonomous Systems, 57(12):1188–
1197. Inside Data Association.

