
Context Dependent Action Affordances and their Execution
using an Ontology of Actions and 3D Geometric Reasoning

Simon Reich1, Mohamad Javad Aein1, and Florentin Wörgötter1
1Third Institute of Physics - Biophysics, Georg-August-Universität Göttingen,

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
{sreich, maein, worgott}@phys.uni-goettingen.de

Keywords:
Action Affordances, Action Ontology, Planning, 3D Geometric Reasoning

Abstract:
When looking at an object humans can quickly and efficiently assess which actions are possible
given the scene context. This task remains hard for machines. Here we focus on manipulation
actions and in the first part of this study define an object-action linked ontology for such context
dependent affordance analysis. We break down every action into three hierarchical pre-condition
layers starting on top with abstract object relations (which need to be fulfilled) and in three steps
arriving at the movement primitives required to execute the action. This ontology will then, in
the second part of this work, be linked to actual scenes. First the system looks at the scene
and for any selected object suggests some actions. One will be chosen and, we use now a simple
geometrical reasoning scheme by which this action’s movement primitives will be filled with the
specific parameter values, which are then executed by the robot. The viability of this approach
will be demonstrated by analysing several scenes and a large number of manipulations.

1 INTRODUCTION

From every day life we know that different
scenes suggest different actions, e.g. a plate, an
apple, and a knife – as shown in Fig. 1 – suggests
a “cutting the apple” action. However, assess-
ing whether or not a robot could actually do this,
whether it should/could do rather something else
or whether not much can be done at all given such
scenes remains a difficult problem. It amounts to
estimating the affordance of certain actions given
the context provided by the scene. One approach
to solving this problem is to analyse a scene and
derive from it a symbolic representation, which
can then be used to find possible actions and/or
to do planning.

To achieve this, in (Rosman and Ramamoor-
thy, 2011) a complex network of geometrical rela-
tions in the spatial and temporal domains is used.
Via Support-Vector-Machines (SVMs) topologi-
cal features and symbolic meanings are learned.
In (Sjoo and Jensfelt, 2011) patterns of functional
relationships are defined, e.g. the object “work
surface” with the action “manipulate”. Similar,

Figure 1: This scene contains a simple snack scenario.
We ask: what actions can be performed by the robot?

in (Liang et al., 2009) posture templates are ap-
plied to the input data of each frame. The re-
sulting series of templates eventually forms a li-
brary of actions. The authors use variable-length
Markov models for learning. In (Paul et al., 2016)
a common representation for abstract spatial rela-
tions and natural language is investigated. How-
ever, (Konidaris et al., 2014) state that there can-
not be one perfect representation, but rather that

“actions must play a central role in determining
the representational requirements of an intelli-
gent agent: a suitable symbolic description of a
domain depends on the actions available to the
agent.”

Staying closer to the actual motion patterns
one can also break down actions into segments,
using – for example – principal component anal-
ysis (PCA) as in (Yamane et al., 2011). A mo-
tion sequence is here projected into a state space,
which is then mapped to the first n principal com-
ponents. In that reduced state space a threshold
is applied and the action is divided into two parts.
The same is iteratively applied to each subspace
until some exit criteria is met. The resulting seg-
ments could then be interpreted as meaningful
action parts.

There are also non-vision based methods avail-
able, for example in (Jamali et al., 2015) and (Ja-
mali et al., 2014), but these methods will not be
discussed any further, as we are focusing on vision
here.

All these approaches are problematic, because
it remains difficult to smoothly link sensor sig-
nals (e.g. from scene analysis) to symbolic action
concepts and then back to the signal domain for
creating the trajectories needed for the execution
of an action by a robot. There is a danger of
too strongly focusing on the symbolic side or of
remaining too close to the signal domain.

Here we focus on manipulation actions and
one goal of the current study is to improve on
this by introducing a deeper hierarchy of several
layers between signals and symbols for analysing
a scene in a given action context. We ask: What
is needed to push (or pick, or cut, etc.) a cer-
tain object? Which are the general preconditions
required for this regardless of the actual objects
in the scene? And – if those hold – are also the
specific conditions met to actually do it?

We build on the Semantic Event Chains
(SECs) framework (Aksoy et al., 2011) but we
extend them in several ways. SECs are matri-
ces that show how touching relations between
pairs of objects change during an action. The
entries of the SEC matrix are (“T”) for Touch-
ing, (“N”) for Not touching and (“A”) for Ab-
sent relation. A manipulation action is segmented
at keyframes which are moments that a touching
relation changes. The original SEC framework
did not much care about objects. Here, based
on an older study (Wörgötter et al., 2012), we
will now incorporate (still abstract) object roles
to build an object-action-linked ontology of ma-

nipulations, where these object roles define the
general preconditions that need to be met to per-
form a certain action at all. On top of this, we
introduce a simple framework for geometric rea-
soning, which allows the machine to check specific
preconditions, too, to finally execute an action.

In this study the robot selects one object in a
scene and asks – like a child during play – what
could I do with it? The framework will then anal-
yse the situation and suggest possible manipula-
tion actions, thereby addressing the problem of
context dependent affordances.

2 Method

This section divides into two parts: 1) defini-
tion of the ontology and 2) algorithm to arrive at
robotic execution of manipulation actions using
the ontology given an observed scene. We start
with the first aspect.

2.1 Ontology of Manipulation
Actions

We use all manipulation actions defined in
(Wörgötter et al., 2012) and create a new on-
tology by incorporating three layers: 1) abstract
object relations (SEC), 2) object topologies and
also 3) action primitives. Before doing this we
need to define the roles of an object in a more
general way.

Defining Object Roles: Those are deter-
mined by the changes that occur following an ac-
tion in the relation of an object to other objects.
An action involves at least two objects: a hand
and a main object. Resulting object categories
(hand, main, primary, secondary, etc.) and their
abstract roles are defined as follows:

• Hand (The object that performs the action):
not touching anything at the beginning and
the end of action. It touches at least one ob-
ject.

• Main (The object which is directly in contact
with the hand): not touching the hand at the
beginning and the end of action. It touches
the hand at least once.

• Primary (The object from which the main ob-
ject separates): initially touches the main ob-
ject. Changes its relation to not-touching dur-
ing the action.

• Secondary (The object to which the main ob-
ject joins): initially does not touch the main

1
2

3
4

5
P

u
sh

in
g
.

p
.s

=
m

.s
=

s.
s

p
m

s

p
.s

=
m

.s
=

s.
s

p
m

s

p
.s

=
m

.s
=

s.
s

p
m

s

p
.s

=
m

.s
=

s.
s

p
m

s

p
.s

=
m

.s
=

s.
s

p
m

s

(a
)

A
ct

io
n

1
:

P
u
sh

in
g
.

1
2

3
4

5
P

ic
k

&
P

la
ce

.

p
.s

s.
s

pm

s

p
.s

s.
s

pm

s

m

p
.s

s.
s

p

m

s

m

p
.s

s.
s

p
smm

p
.s

s.
s

p
sm

(b
)

A
ct

io
n

2
:

P
ic

k
a
n
d

p
la

ce
.

1
2

3
4

5

6
7

U
n
lo

a
d
in

g
.

p
.s

s.
s

C
o
n
t

pmL

s

p
.s

s.
s

C
o
n
t

pmL

s

mL

p
.s

s.
s

C
o
n
t

p

mL

s

mL

p
.s

s.
s

C
o
n
t

p
L

m

s

m

p
.s

s.
s

C
o
n
t

p
L

m

s

m

p
.s

s.
s

C
o
n
t

p
L

smm

p
.s

s.
s

C
o
n
t

p
L

sm

(c
)

A
ct

io
n

3
:

U
n
lo

a
d
in

g
.

F
ig

u
re

2
:

S
ch

em
a
ti

c
o
f

a
ct

io
n
s

in
th

e
o
n
to

lo
g
y

a
re

sh
ow

n
fo

r
th

e
th

re
e

ca
te

g
o
ri

es
.

F
ro

m
ea

ch
ca

te
g
o
ry

o
n
ly

o
n
e

a
ct

io
n

is
sh

ow
n
.

T
h
e

o
b

je
ct

s
a
re

m
a
rk

ed
u
si

n
g

th
e

fo
ll
ow

in
g

co
n
v
en

ti
o
n
:

h
=

h
a
n
d
,

m
=

m
a
in

m
.s

=
m

a
in

su
p
p

o
rt

,
p

=
p
ri

m
a
ry

,
p
.s

=
p
ri

m
a
ry

su
p
p

o
rt

,
s

=
se

co
n
d
a
ry

,
s.

s
=

se
co

n
d
a
ry

su
p
p

o
rt

,
L

=
L

o
a
d
,

a
n
d

C
o
n
t

=
C

o
n
ta

in
er

.

Table 1: Summary of ontology of actions. Actions are divided into three categories and further into sub-
categories. There can be more than one action in each sub-category.

Category Sub-Category Example Actions

Actions with main
support

Actions with hand, main and main support push, punch, flick
Actions with hand, main, main support and pri-
mary

push apart, cut,
chop

Actions with hand, main, main support and sec-
ondary

push together

Actions with hand, main, main support, primary
and secondary

push from a to b

Actions without main
support. (These action
have primary, secondary
and their supports)

primary 6= secondary and primary support 6= sec-
ondary support

pick and place,
break off

primary 6= secondary and primary support = sec-
ondary support

pick and place,
break off

primary 6= secondary and primary = secondary
support

put on top

primary 6= secondary and primary support = sec-
ondary

pick apart

primary = secondary
pick and place,
break off

Actions with load
and container

The relation of load and main changes from N to
T (loading)

Pipetting

The relation of load and main changes from T to
N (unloading)

Pour, Drop

object. Changes its relation to touching dur-
ing the action.

• Load (The object which is indirectly manipu-
lated): does not touch the hand. During the
action either touches/untouches the main and
untouches/touches container.

• Container (The object whose relation with
load changes and it is not the main object):
touches or untouches the load object.

• Main support (The object on which the main
object is located): touching the main object
all the time.

• Primary support (The object on which the
primary object is located): touching the pri-
mary object all the time.

• Secondary support (The object on which the
secondary object is located): touching the sec-
ondary object all the time.

• Tool (The object which is used by the hand to
enhance the quality of some actions): touch-
ing the hand all the time.

Action categories are based upon the objects,
which the hand interacts with. These fall into
three categories:

1. Actions with main support: In this category
the main object is always in touch with the
main support; An example is shown in Fig. 2a.

2. Actions without main support: In this cate-
gory the main object is lifted from the main
support; Nn example is shown in Fig. 2b.

3. Actions with load and container: In this cat-
egory a container with load, e.g. a glass filled
with water, is used; An example is shown in
Fig. 2c.

and several actions usually exist for each
group. A more detailed list of actions is shown
in Tab. 1. The full definition of the ontology is
shown elsewhere1. Now we can define the layers
of the ontology.

Layer 1) SEC based object relations at
start: The individual graphical panels in Fig. 2
represent the columns of a Semantic Event Chain
(which reflect the transition of object relations
and are the necessary conditions for successful ex-
ecution). Fig. 2b shows a pick and place action;
its corresponding SEC is shown in the upper part
of Fig. 3. The first column shows the SEC-defined

1http://www.dpi.physik.uni-
goettingen.de/cns/index.php?page=ontology-of-
manipulation-actions

Ontology Repository

State 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, p.s N N N N N

main, s.s N N N N N

Primitive 1
move move move

ungrasp
(main) (prim.) (sec.)

Primitive 2 grasp
move

(free)

S

M

S

M O

S

M

O

permitted permitted non-permitted

Figure 3: This figure shows one example action, pick and place, in the proposed ontology repository, which is
also shown in Fig. 2b. It consists of three parts: the SECs (top), including the SEC precondition (top with
green bar), topological preconditions (middle), and primitives (bottom). “M” is the main object; “O” depicts
other objects in the scene, and “S” stands for support.

S

M

S

M O

S

M

O

Figure 4: All complex graph structures can be re-
duced to one of these three graphs. “M” is the main
object; “O” depicts other objects in the scene on
which there are no further information. The support
is “S”.

pre-conditions. If and only if these touching re-
lations are not violated, the action could com-
mence. But this is not yet sufficient.

Layer 2) Object Topologies: All actions
are always performed at the main object and
this will only be possible if the SEC-pre-condition
hold and if the main object appears in the scene
with certain topological connections to other ob-
jects. The middle part of Fig. 3 shows which
topologies are permitted for pick and place.

Remarkably there are only three possible
topological relations to which all scenes that in-
clude the main object can be reduced. To achieve
this the complete connectivity graph of who-

touches-whom will be reduced into those sub-
graphs that contain the main object. Each sub-
graph consists of at least the main object and the
support, and, if directly touching neighbors ex-
ist, only one directly touching neighbor (Fig. 4).
There are three cases:

1. The main object has only one touching rela-
tion. The touched object is a support, e.g. a
table (see Fig. 4, left). A real world example
is shown in Fig. 7b; the blue plate is on top of
the board and the board becomes the support.

2. The main object has two touching relations.
One is a support, the second one is another
object, which is also touching the support
(see Fig. 4, middle). In Fig. 7b, the apple
touches its support (green plate) and the yel-
low pedestal which is on the same support.

3. The main object has two touching relations. It
touches its support and another object, which
does not touch the support (see Fig. 4, right).
In Fig. 7b, the pedestal is on top the green
plate and the jar is on top of the pedestal (but
does not touch the green plate).

These subgraphs determine the remaining pre-
conditions. For example, a tower structure as

Scene Segmentation Graph computation

Select main ob-

ject, e.g. Apple

List of all candidate

actions from ontology
Check SEC preconditions

for all candidate actions

Create subgraph

for main obj.

Check topological pre-

conditions for all

candidate actions Select one allowed action

Table

Green plate

PedestalApple

Jar

Board

Blue plate

Table

Green plate

PedestalMain

Jar

Board

Blue plate

pick&
place

apple
green
plate

blue
plate

cut apple

pick&
place

apple jar
green
plate

.

pick&place X
cut X

pick&place X
main must
touch pri-
mary

.

Support

PrimaryMain

pick&place X

cut X
main must
not touch
any objects

pick&place X
.

Combine primitives and

geometrical reasoning,

execute selected

action on robot.

1 2 3

4 5 6

7 8 9

Figure 5: The steps of our proposed framework for scene affordances and execution are summarized here. Starting
with a real world scene (1), we perform object segmentation (2), object recognition, and graph calculation (3).
The user selects a main object, for example the apple (4). Afterwards, a list of candidate actions based on
the ontology is produced (5). The possibility of performing these actions is investigated in two steps by using
the preconditions inside the ontology. First, we check preconditions based on the SEC domain; in the example
“pick&place the apple from green plate to blue plate is allowed”, also cutting. However, “pick&place the apple
from the jar to the green plate” is not, since the apple does not touch the jar (6). We create the subgraphs
around the main object, as shown in Fig. 4 (7). Afterwards, we check for topological restrictions (8). Here, the
action “cut the apple” fails, as the main object must not touch any other objects. This results in a list of allowed
actions. One action is selected (either by algorithm, or human), the primitives are read from the ontology and
sent to the execution engine. In case of move(object) primitives, we perform the proposed geometric reasoning
to get the parameters.

shown in Fig. 4 (right graph) is not allowed for
pick and place and pushing actions.

Layer 3) Movement Primitives: SEC pre-
conditions and topological pre-conditions define
the first two layers of the ontology. The third
and last layer is a set of movement primitives,
which are needed to execute the action.

For the pick and place action, the primitives
are shown at the bottom of Fig. 3. The com-
plete list of primitives for all actions is shown on
the web page. How to fill these abstract primi-
tives with execution relevant parameters will be
described later and the process of execution of

actions is then the same as in (Aein et al., 2013).

One primitive shall be explained in more de-
tail: The move(object, T) primitive sends a com-
mand to the robot to move to a pose which is
determined by applying transform T to the pose
of object. The transform T has two parts, a vec-
tor p which shows the translation, and a matrix
R which shows the rotation. For example, when
we want to grasp the main object, we perform
a move(main, T) primitive to move the robot
arm end effector to a proper pose for grasping.
Since we want the end effector to reach the main
object, the vector p in this case is equal to zero.

(a) Two blocks serve as an example for ge-
ometric reasoning. The possible movement
direction of the green cube without touching
the blue one is of interest.

5 10 15

C
ou

n
t

Binned distance

(b) The distances from all voxels of the green block to all
voxels from the blue block are binned. In the next step all
voxels of the green block, which are below the maximum, are
used. They are marked in red in the above histogram.

(c) The points found voxels found in Fig. 6b
are marked in red. The normals of these
voxels are computed and clustered using k-
means..

+ =

(d) A half sphere around each of the k resulting vectors is
spawned (here: half circle for visualization) and the union of
all spheres computed. The union, above marked in red, marks
the “forbidden” directions.

Figure 6: Step-by-step explanation of the geometric reasoning algorithm.

However, the rotation part R needs to be set such
that the robot approaches the main object from a
proper angle. This is necessary to avoid possible
collisions with other objects near the main.

2.2 Algorithm for
Execution-Preparation

Fig. 5 shows an overview of the algorithm used
for robotic execution of the above defined actions.
Most components rely on existing methods and
will not be described in detail.

We start with (1) an RGB-D recorded scene
which is (2) segmented using the LCCP algo-
rithm (Stein et al., 2014) into different objects
from which (3) a graph is created with edges be-
tween objects that touch each other. (4) Then
we randomly choose one object as main. (5) The
complete list of all considered manipulation ac-
tions, of which there are 29 (see Tab. 2), is de-
rived from (Wörgötter et al., 2012) (only 3 are
indicated in Fig. 5) and (6) for all of them we use
the first layer of the ontology to check whether
the main object in this scene fulfills their SEC
pre-conditions. This leads to (7) computation of
all possible subgraphs for main and for those we
check (8) with the second layer of the ontology
the topological pre-conditions by which the list
gets reduced. Now we can (9) use the third layer

and extract from the ontology the required action
primitives. This concludes the preparation stage
and this information is sent to the execution en-
gine.

2.3 Execution-Parameterization:
Geometric Reasoning

In order to execute any of the in-principle-
possible actions we need to parameterize them.
In general we use our action library from (Aein
et al., 2013) where the required parameters are all
defined. They directly map to the action primi-
tives from stage (9) of the above described algo-
rithm. Thus, we need to now consider the actual
scene layout to find possible parameter ranges for
these movement primitives. For this we employ
geometric reasoning. The goal of this is that given
an action and its main object we want to find the
directions which are free to manipulate this ob-
ject. These directions are directly used to define
parameter ranges of the action primitives (e.g.
move(object, T)) for action execution.

A step-by step explanation of the geometric
reasoning algorithm is shown in Fig. 6. For vi-
sualization purposes we will analyze the relative
position of two cubes to each other: one green and
one blue. In a very simple approach, one could
reduce the objects to one point in space, for exam-

(a) Scene 1. (b) Scene 2. (c) Scene 3.
Figure 7: These three scenes are used to test the algorithms.

ple the mean or average position. This however
will ignore object sizes as well as shapes. Instead,
we want a more general solution, which does not
depend on object size, shape, or distance.

First, we compute the distance from each
voxel from one cube to each voxel in the other
cube and bin the distance as shown in Fig. 6b.
For two symmetrical objects we expect a pois-
son shaped distribution. We will use all voxels,
which are below the first maximum and belong
to the green cube; these points are marked red
in the histogram. The corresponding voxels are
marked in Fig. 6c in red, too. Next, we com-
pute the normals of these voxels. They will, as
per definition, point away from the green cube.
These normals are clusterd using a k-means clus-
tering algorithms. While undersegmentation will
be harmful – as not all directions are found – but
oversegmentation is not, a k that is greater than
the expected number of directions is used. We
found k ≈ 8 leads to good results for most real-
world examples. Lastly, we spawn a half sphere
around each resulting cluster (half circle in 2d as
shown in the example in Fig. 6d). The union of
all spheres points to the blocked directions, which
is marked in red in the example – the direction
where the blue cube is located at. This compu-
tation is performed for each object, which is in a
certain radius around the main object. The ra-
dius is hardware dependent and defined by how
much space the robot hand needs to safely grasp
or push an object.

The results of this type of reasoning on real
scenes will be shown in Section 3.

3 EXPERIMENTS

3.1 Setup and Experiments

We tested the algorithm in a ROS based system.
A Microsoft Kinect collects image and depth in-

formation, in addition a high resolution Nikon
DSLR camera is used for image refinement. We
use (Schoeler et al., 2014) for object recognition
and pose estimation. For model tracking (Papon
et al., 2013) is used. Our robot is a Kuka LWR
arm which executes actions as described in (Aein
et al., 2013). Fig. 7 shows three scenes that are
used for testing:

1. A cup is next to a box and an apple is on top
of a pedestal.

2. The scene that we used in previous sections:
a plate on top of a cutting board, and an ap-
ple on a plate. Touching the apple there is a
pedestal with a jar on top

3. A cluttered kitchen scene with many objects.

3.2 Results

Using these scenes, we analyse first the effect of
the top two layers of the ontology asking: Given
a main object, which actions are in principle per-
mitted. Next, we will consider the third ontology
layer and perform geometric reasoning on some
examples to show how actual action parameteri-
zation can be performed and finally we will per-
form some actions with the robot.

3.2.1 Action Affordances

The results of action affordances for the three
scenes are calculated by using the preconditions of
the ontology and analysis of subgraph structures.
The results are summarized in Tab. 2. Each col-
umn shows the possibility of performing different
actions in the ontology for a specific selection of
main, primary and secondary objects.

Here, we can see some limitations of the SEC
domain. Some actions require additional high
level object knowledge (e.g. stirring or levering)
and are marked with “n”; for example stirring
is always denied as it requires a liquid and a
container shaped object (non-permanent objects

Figure 8: Qualitative results for the geometrical rea-
soning method. The algorithm is applied to the ob-
ject pair apple and red pedestal. For graphical pur-
poses only the largest cluster is shown with a red ar-
row. The computational steps for the arrow are de-
tailed in Fig. 6d. Here, the arrow points from the
apple downwards to the pedestal, which is the “for-
bidden” direction.

pose a big problem for SECs or planning in gen-
eral). These properties cannot be measured in the
SECs domain. One could argue that also cutting,
kneading, or scooping needs additional high level
object knowledge, but on the touching relations
level these preconditions can be ensured.

3.2.2 3D Geometrical Reasoning

Qualitative results of geometric reasoning are
shown in Fig. 8, Fig. 9, and Fig. 10. These re-
sults show that by processing the low level point
clouds one can detect the blocked and free direc-
tions of a given object. Some limitations can be
found in Fig. 9a, which shows the spatial relation
between an apple and a green plate. We expect
that we can compute the normals of the point
cloud, but at corners, e.g. at the border of object
point clouds, this assumption is not always met
and the resulting access angles are off. In Fig. 9a,
the apple is captured with only few points into
the direction downwards to the green plates and
the resulting vector goes off to the side and barely
through the plate.

Another problem can be seen in scene 3. In
Fig. 10c, the relations between the orange spoon
and the black spoon in the spoon holder (black
spoon and spoon holder are recognized as one ob-
ject) form one unexpected cluster downwards, all
others point towards the spoon. Careful examina-
tions show that there actually are some points be-
longing to the spoon base below the orange spoon
and that the arrow downward is justified. How-
ever, the resulting access angle is very small.

3.2.3 Action Execution

The results of action execution are presented in
the video attachment of the paper (please see

aforementioned web page). The execution of
three different actions is shown: “pushing”, “pick
and place”, and “put on top”. Selected frames of
these experiments are shown in Fig. 11. Shown
are the actions “pushing” (left), “pick and place”
(middle), and “put on top” (right).

4 CONCLUSION

The goal of this study was to address the prob-
lem of affordances given the scene context. We
specifically wanted to create a system that can
look at objects in a scene and suggest actions
which are very likely possible. For this we first
defined a novel and hopefully quite complete on-
tology of manipulation actions which considers
objects, too, but still from a rather abstract view-
point. The main point here is that this allows
generalizing the same action across quite differ-
ent scenes. Combined with geometrical reasoning
this system can analyse scenes and suggest and
perform many actions.

Thus, essentially the proposed system acts
like a multi-layered planner with several levels of
pre- and post-conditions. This may indeed ease
robotic planning problems by allowing the sys-
tem to check all conditions in a hierarchy and to
finally profit from the geometrical link to the ac-
tual scene layout.

Of course, situations may exist that cannot
be correctly disentangled this way. The result-
ing permitted movement directions are always
based on parts of the 3D space that had been
derived from straight direction vectors. Hence
if there is a complex shaped object that hooks-
around some other object this type of geomet-
ric reasoning will fail. Also, if objects are topo-
logically linked (physically connected) in complex
ways to other objects the approach will fail. Our
system does not attempt to solve all these prob-
lems. Rather, like a child after some experience,
here we have arrived at a system that produces
very reasonable suggestions about how to mod-
ify its world using different manipulations. This
is the main strength of this approach. We have
here a quite powerful bottom-up decision frame-
work, which does not rely on high-level knowledge
but could be extended by this (for example us-
ing learned models of some aspects of the world)
without problems.

Table 2: Results of the action affordances for different scenes and objects. The different scenes are also depicted
in Fig. 7. Objects corresponding to the computed affordances are listed below the table heading. Please note
that we cannot check the preconditions for some actions, e.g. stirring, knead which are related to the material
of objects. These actions are denoted with “n”; they require high level object knowledge. For example you need
a liquid and a container object for stirring. This knowledge is not provided in the SEC domain. A “X” denotes
the successful execution of the action; the actions “-” were correctly computed as not possible to execute.

Scene 1 Scene 2 Scene 2 Scene 3 Scene 3

Main Object cup apple yellow pedestal orange apple
Primary Object box yellow pedestal green plate board cup
Secondary Object red pedestal blue plate blue plate cup board

1 punch X X X X X
2 flick X X X X X
3 poke X X X X X
4 chop - - - X -
5 bore X X X X X
6 cut - - - X -
7 scratch X X X X X
8 scissor-cut - - - X -
9 squash X X - X X
10 draw X X X X X
11 push X X - X X
12 stir n n n n n
13 knead X X - X X
14 rub X X X X X
15 lever n n n n n
16 scoop X X - X X
17 take down - - - X -
18 push down - - - X -
19 rip off - - - X -
20 break off n n n n n

21
uncover by

n n n n n
pick&place

22
uncover by

n n n n n
pushing

23 put on top - X - X -
24 push on top - - - - -
25 put over n n n n n
26 push over n n n n n
27 grasp X X - X X
28 push apart X X - - X
29 push together - - - - -

ACKNOWLEDGEMENTS

The research leading to these results has re-
ceived funding from the European Communitys
H2020 Programme under grant agreement no.
680431, ReconCell.

REFERENCES

Aein, M. J., Aksoy, E. E., Tamosiunaite, M., Papon,
J., Ude, A., and Wörgötter, F. (2013). Toward
a library of manipulation actions based on se-
mantic object-action relations. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systemsn.

(a) Scene 2: Apple and green plate. (b) Scene 2: Apple and jar. (c) Scene 2: Apple and pedestal.
Figure 9: Qualitative results for the geometrical reasoning method. For graphical purposes only the largest
cluster is shown with a red arrow.

(a) Scene 3: Blue cup and apple. (b) Scene 3: Orange and board. (c) Scene 3: Orange and black spoon.
Figure 10: Qualitative results for the geometrical reasoning method for a cluttered scene. For graphical purposes
only the largest cluster is shown with a red arrow. In (c) the two largest clusters are depicted using red arrows.

Aksoy, E. E., Abramov, A., Dörr, J., Kejun, N.,
Dellen, B., and Wörgötter, F. (2011). Learning
the semantics of object-action relations by ob-
servation. The International Journal of Robotics
Research, 30:1229–1249.

Jamali, N., Kormushev, P., and Caldwell, D. G.
(2014). Robot-object contact perception using
symbolic temporal pattern learning. In IEEE
International Conference on Robotics and Au-
tomation (ICRA), pages 6542–6548.

Jamali, N., Kormushev, P., Vias, A. C., Carreras, M.,
and Caldwell, D. G. (2015). Underwater robot-
object contact perception using machine learn-
ing on force/torque sensor feedback. In IEEE
International Conference on Robotics and Au-
tomation (ICRA), pages 3915–3920.

Konidaris, G., Kaelbling, L. P., and Lozano-Perez, T.
(2014). Constructing symbolic representations
for high-level planning. In AAAI, pages 1932–
1938.

Liang, Y.-M., Shih, S.-W., Shih, S.-W., Liao, H.-Y.,
and Lin, C.-C. (2009). Learning atomic human
actions using variable-length markov models.
IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B: Cybernetics, 39(1):268–280.

Papon, J., Kulvicius, T., Aksoy, E. E., and
Wörgötter, F. (2013). Point cloud video ob-
ject segmentation using a persistent super-
voxel world-model. In IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), pages 3712–3718.

Paul, R., Arkin, J., Roy, N., and Howard, T. M.

(2016). Efficient grounding of abstract spatial
concepts for natural language interaction with
robot manipulators. In Robotics: Science and
Systems.

Rosman, B. and Ramamoorthy, S. (2011). Learn-
ing spatial relationships between objects. The
International Journal of Robotics Research,
30(11):1328–1342.

Schoeler, M., Stein, S., Papon, J., Abramov, A., and
Wörgötter, F. (2014). Fast self-supervised on-
line training for object recognition specifically
for robotic applications. In International Con-
ference on Computer Vision Theory and Appli-
cations (VISAPP).

Sjoo, K. and Jensfelt, P. (2011). Learning spatial rela-
tions from functional simulation. In IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), pages 1513–1519.

Stein, S. C., Schoeler, M., Papon, J., and Worgot-
ter, F. (2014). Object partitioning using local
convexity. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages
304–311.

Wörgötter, F., Aksoy, E. E., Krüger, N., Piater, J.,
Ude, A., and Tamosiunaite, M. (2012). A sim-
ple ontology of manipulation actions based on
hand-object relations. IEEE Transactions on
Autonomous Mental Development.

Yamane, K., Yamaguchi, Y., and Nakamura, Y.
(2011). Human motion database with a binary
tree and node transition graphs. Autonomous

Robots, 30(1):87–98.

Figure 11: Execution results of three different scenarios: “pushing” (left), “pick and place” (middle), and “put
on top” (right). The top row shows the results of the geometrical reasoning. The allowed direction is marked
with a green arrow, the forbidden one with a red arrow. The full scene is also shown in the video attachment of
the paper.

