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Abstract

In this work we propose a scheme integrating perceptual
grouping into stereopsis to reduce the ambiguity of those
early processes. We propose a simple perceptual grouping
algorithm that – in addition to the geometric information
– makes use of a novel multi–modal affinity measure be-
tween local primitives. We then use this group information
to 1) disambiguate the stereopsis by enforcing that stereo
matches preserve groups; and 2) correct the reconstruc-
tion error due to the image pixel sampling using a linear
interpolation over the groups. We show quantitative and
qualitative demonstrations of those processes on a variety
of sequences.

1. Introduction
We propose in this paper an approach using feedback be-

tween two mid–level processes, namely perceptual group-
ing and stereopsis to reduce the ambiguity omnipresent at
this level of processing. We base our framework on a novel
image representation based on multi–modal local image de-
scriptors called primitives, introduced by [21] and applied
to stereo by [20]. In this work, we will focus on primi-
tives describing line structures, and we propose a perceptual
grouping mechanism which makes use of this rich multi–
modal information.

Perceptual grouping can be divided in two tasks: 1)
defining an affinity measure between primitives and use it to
build a graph of the connectedness between the primitives,
and 2) extracting groups, which are the connected compo-
nents of this graph. We will only define the affinity mea-
sure between primitives, and not extract the groups them-
selves explicitly, as we only need the local grouping infor-
mation for a primitive to apply the correction mechanisms
we propose in this paper. Similar affinity measures have
been proposed by [27, 26], which formalised a good con-
tinuation constraint, or [9] which included the intensity on
each side of the curve into a Bayesian formulation of group-
ing. Yet in this paper we propose a multi–modal similarity
measure, composed of phase, colour and optical flow mea-

surement, and combine it with a classical good continua-
tion criterion forming a novel multi–modal definition of the
affinity between primitives. Note that an explicit description
of the groups could be extracted easily using a variety of
techniques including: normalised [34] or average cuts [32],
affinity normalisation [27], dynamic programming [33], etc.

The interest of using perceptual organisation in the spa-
tial and temporal domains has been outlined by [31]. Here,
we will study how this perceptual grouping information can
be used to disambiguate stereopsis and 3D reconstruction
using primitives. If we assume that a contour of the image
is likely to be a projection of a contour of the 3D scene,
then we can expect each 3D contour of the scene to project
as a 2D contour on each camera plane (except in the case
of occlusion). Conversely, this also implies that any con-
tour in one image has a corresponding contour in the sec-
ond image (or it is occluded). Thus we will propose an
external stereo confidence which estimates how well prim-
itives that are part of the same group agree with a putative
stereo–match. This allows to discard a large number of po-
tential stereo–correspondences hence reducing the ambigu-
ity of the stereo matching and of the scene reconstruction
processes.

We will test this scheme with four different calibrated
stereo sequences, illustrated in figure 1. For sequences (a)
(b) and (c) we have depth values obtained from a range
scanner. Ten different frames from those three sequences
were used for quantification in this paper. Sequence (d) was
recorded outdoors in a moving car. for which we will show
qualitative results.

The novel contributions of this paper are

• a 2D grouping that uses geometric and appearance
based information,

• using the 2D grouping for improving stereo match-
ing from a very local level (in contrast to, e.g., [30],
where more elaborate features, like ribbons, were con-
sidered),

• applying an interpolation method that leads to more
reliable estimates of 3D position and 3D-orientation.
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Figure 1. The four sequences on which we tested our approach.

The grouping is part of an early cognitive vision framework
including ego-motion estimation and temporal accumula-
tion (for an outline see [37]).

The paper is structured as follows: Section 2 will present
the image primitives on which we are basing our processing.
In section 3, we define the affinity between two primitives.
In section 4 we present a stereo–matching process based on
primitives similar to [20]. Then in section 5 we propose a
simple scheme to 1) increase the reliability of matching and
2) smooth the reconstruction of a stereo sequence using in-
formation gained from the perceptual grouping defined ear-
lier.

2. 2D–primitives
Numerous feature detectors exist in the literature

(see [22] for a review). Each feature based approach can
be divided into an interest point detector (e.g. [3, 4]) and
a descriptor describing a local patch of the image at this
location, that can be based on histograms (e.g. [6, 22]), spa-
tial frequency [28], local derivatives [15, 13, 1] steerable
filters [36], or invariant moments ([23]). In [22] these dif-
ferent descriptors have been compared, showing a best per-
formance for SIFT-like descriptors.

The primitives we will be using in this work are local,
multi–modal edge descriptors that were introduced in [21].
In contrast to the above mentioned features these primitives
focus on giving a semantically and geometrically meaning-
ful description of the local image patch. The importance of
such a semantic grounding of features for a general purpose
vision front–end, and the relevance of edge–like structures
for this purposes were discussed in [7].

The edge map and the local phase are computed using
the monogenic signal (see [11]), although some other kind
of filtering could alternatively be used (e.g., steerable fil-
ters [36]). The primitives are extracted sparsely at locations
in the image that are the most likely to contain edges. This
likelihood is computed using the intrinsic dimensionality
measure proposed in [19]. The sparseness is assured us-
ing a classical winner take all operation, insuring that the

generative patches of the primitives do not overlap. Each
of the primitive encodes the image information contained
by a local image patch of a same size ρ as the kernel used
by the filtering operation. Multi–modal information is gath-
ered from this image patch, including the position m of the
centre of the patch, the orientation θ of the edge, the phase
ω of the signal at this point, the colour c sampled over the
image patch on both sides of the edge and the local opti-
cal flow f , computed using the classical Nagel algorithm
(see [25]). Consequently a local image patch is described
by the following multi–modal vector:

π = (m, θ, ω, c, f , ρ)T (1)

that we will name primitive in the following. The set of
primitives describing the stereo images is called image rep-
resentation and written I l and Ir for the images from the
left and right camera. The image representation extracted
from one image is illustrated in figure 2.

Note that these primitives are of lower dimensionality
than, e.g., SIFT (10 vs. 128) and therefore suffer of a lesser
distinctiveness. Nonetheless, we will show in section 4 that
they are distinctive enough for a reliable stereo matching if
the epipolar geometry of the cameras is known. Advanta-
geously, the rich information carried by the 2D–primitives
can be reconstructed in 3D, providing a more complete
scene representation. Having geometrical meaning for the
primitive allows to describe the relation between proximate
primitives in terms of perceptual grouping.

3. Perceptual Grouping of 2D–Primitives
Decades ago, the Gestalt psychologists proposed a se-

ries of axioms describing the way the human visual sys-
tem binds together features in an image (see [16, 35, 17]).
This process is generally called perceptual grouping the
Gestalt psychologists proposed that it was driven proper-
ties like proximity, good continuation, similarity, symme-
try, amongst others. More recently, psychophysical exper-
iments measured the impact of different cues for percep-
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Figure 2. Illustration of the primitive extraction process from a
video sequence. The figure shows one image from the sequence
(a) from figure 1, on the right, then the 2D–primitives extracted
from this image (see section 2), and finally the 3D–primitives re-
constructed from the stereo–matches as described in section 4. The
bottom row shows a description of the graphic representation of
the 2D–primitives, as well as a magnification of the image rep-
resentation and the reconstructed entities. Note that the structure
reconstructed is quite far from the cameras, leading to a certain
imprecision in the reconstruction of the 3D–primitives. We will
propose a simple scheme addressing this problem in section 5.3

tual grouping (see, e.g., [12]). Furthermore, Brunswik and
Kamiya [2] proposed that those processes should be related
to statistics of natural images, which has been recently con-
firmed by several studies [18, 8, 14].

We previously defined the primitives as local edge de-
scriptors, and that a group of primitives describe a contour
of the image. The Gestalt rule of proximity implies that
primitives that are closer to one another are most likely to
lie on the same contour. According to the Gestalt rule of
good continuation, we will consider that contours in the im-
age are smooth, and therefore that two proximate primitives
in a group will be nearly either collinear or co–circular. In
this formulation, a strong inflexion in a contour will lead
this contour to be described as two groups joining at the in-
flection point. Furthermore the position and orientation of
primitives that are part of a group are the local tangents to
the contour described by this group. Finally, the rule of sim-
ilarity states that primitives that are similar (in terms of the
colour, phase and optical flow modalities) are most likely to
be grouped together. Also, we would expect such proper-
ties as colour on both side of a contour to change smoothly
along this contour.

The two first cues are joined into a Geometric constraint
that we describe in section 3.1 and the multi–modal simi-
larity cue is detailed in section 3.2. These two measures are
combined into an overall affinity measure that we describe
in section 3.3.

Figure 3. Illustration of the values used for the collinearity com-
putation. If we consider two primitives πi and πj , then the vector
between the centres of these two primitives is written vij , and the
orientations of the two primitives are designated by the vectors ti

and tj , respectively. The angle formed by vij and ti is written αi,
and between vij and tj is written αj . ρ is the radius of the image
patch used to generate the primitive.

3.1. Geometric constraint

If we consider two primitives πi and πj in I , then the
likelihood that they both describe the same contour can be
formulated as a combination of three basic constraints on
their relative position and orientation — see figure 3.
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Here αi and αj are the angles between the line joining the
two primitives centres and the orientation of, respectively,
πi and πj .

Co–circularity (cci []):
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The combination of those three criteria forms the geo-
metric affinity measure:

Gi,j = 3

√

ce [gi,j ] · cco [gi,j ] · cci [gi,j ] (5)

where Gi,j is the geometric affinity between two primitives
πi and πj . This affinity represent the likelihood for a curve
having for tangents those two primitives πi and πi to be an
actual contour of the scene.

3.2. Multi–modal Constraint

Effectively, the more similar are the modalities between
two primitives, the more likely are those two primitives to
lie on the same contour. Note that [8] already proposed to
use the intensity as a cue for perceptual grouping, yet here



we use a combination of the phase, colour and optical flow
modalities of the primitives to decide if they describe the
same contour:

Mi,j = 1−wωdω (πi, πj)−wcdc (πi, πj)−wfdf (πi, πj)
(6)

where dω is the phase distance, cc the colour distance and
cf the optical flow distance between the two primitives
πi and πj . These metrics are similar to the ones used
in [29, 20]. wω, wc and wf are the relative weight of the
modalities, such that wω + wc + wf = 1.

3.3. Primitive Affinity

The overall affinity between all primitives in an image
is formalised as a matrix A, where Ai,j holds the affinity
between the primitives πi and πj . We define this affin-
ity from equations (5) and (6), such that 1) two primitives
complying poorly with the good continuation rule have an
affinity close to zero; and 2) two primitives complying with
the good continuation rule yet strongly dissimilar will have
only an average affinity. The affinity is formalised as fol-
lows:

c [gi,j ] = Ai,j =
√

G (αGi,j + (1 − α)Mi,j) (7)

where α is the weighting of geometric and multi–modal (i.e.
phase, colour and optical flow) information in the affinity.
A setting of α = 1 implies that only geometric information
(proximity, collinearity and co-circularity) is used, while
α = 0 indicates that geometric and multi–modal informa-
tion are evenly mixed. The groups generated for the left and
right frames for each sequence are drawn in figure 1, bot-
tom row. Dark lines describe strings of grouped primitives.
One can see in those images that the major contours of the
images are adequately described.

4. Stereopsis using 2D–primitives
Classical stereopsis allows reconstructing a 3D point

from two corresponding stereo points. A review of stereo–
algorithms was presented in [24], dense two frames stereo
algorithms were also compared in [5]. In these papers the
different algorithms were compared on mainly artificial im-
ages, with a disparity d that ranges in 0 ≤ d ≤ 16. In this
work we make use of a sparse, feature based representa-
tion, applied on high resolution video sequences of natural
scenes, where the ground truth was obtained using a range
scanner. The allowed disparity range for these scenes is
0 ≤ d ≤ 200, leading to a comparable level of ambiguity
(i.e. between 10 and 20 candidates depending on the primi-
tive being matched).

The stereopsis used for this paper is a simple local
winner–take–all scheme: all primitives in the right image
that lie on the epipolar line are potential correspondences

and their individual likelihood is set as their multi–modal
similarity with the original primitive in the left image. Then
the most similar primitive is taken as the most likely corre-
spondence. The multi–modal distance between two prim-
itives is defined as a linear combination of the modal dis-
tances between the two primitives:

dm(πi, πj) =
∑

m

wmdm(πi, πj) (8)

where wm is the relative weighting of the modality m, with
∑

m wm = 1 (we use distance functions for the modalities
that are similar to the ones proposed in [29, 20]).

In figure 6(a) the ROC curves showing the performance
of the stereo–matching when using as likelihood estimation
the similarities in each of the modalities held by a primitive,
alongside with the performance of the multi–modal distance
proposed in equation (8). We can see that: 1) all modalities
offer a discrimination better than chance between correct
and erroneous correspondences; and 2) the multi–modal
distance offers a better discrimination than the individual
modalities. In this figure we can see that the colour modality
is a particularly strong discriminant for stereopsis. This is
explained by the fact that the hue and saturation are sampled
on each side of the edge, leading to a 4–dimensional modal-
ity, where phase and orientation are only 1–dimensional and
optical flow is 2–dimensional (albeit the aperture problem
reduces it to one effective dimension: the normal flow).
On the other hand the poor performance of the optic flow
modality could be explained by the relative simplicity of
the motion in this scene: a pure forward translation of the
camera, with no moving object. Therefore, we would ex-
pect the performance of individual modalities to vary de-
pending on the scenario, and the robustness of the multi–
modal constraint could be further enhanced by a contextual
weighting. Nevertheless, in a variety of scenarios the use of
a static weighting proved robust enough to obtain reliable
stereopsis.

Moreover, by making use of the rich semantic informa-
tion carried by the primitives, the stereopsis yield a set of
geometrically meaningful entities rather than an mere dis-
parity map We call the reconstructed entities 3D–primitives
Π:

Π = (M ,Θ, Ω, C)T (9)

where M is the location in space, Θ is the 3D orientation of
the edge, Ω is the phase across this edge, and C holds the
colour information for this edge — see attached material.
In figure 7(a) we show the 3D–primitives that were recon-
structed after a stereo–matching based on the multi–modal
confidence from equation (8).



Figure 4. The BSCE criterion: Let π1 be a primitive in the left
frame forming a group with a second primitiveπ2. π2 has a stereo
correspondence πs in the right image. Both πi and πj in the right
image lie on the epipolar line ξ1 of π1; hence these two primi-
tives are both putative correspondences of π1. Furthermore, the
primitive πi is clearly the most similar to π1 (due to a closer ori-
entation), hence this stereo–correspondence s1→i yield a higher
multi–modal confidence than would, e.g. s1→j . Yet, when con-
sidering the BSCE criterion we realise that only the putative cor-
respondence πj forms a group gj,s with πs, conserving the group
relation g1,2 between π1 and π2.

5. Perceptual Grouping Constraints to Im-
prove Stereopsis

In addition to their richness, primitives are very redun-
dant along contours, and this redundancy allows us to use
perceptual grouping to derive the following two constraints
for the matching process:

Isolated primitives are likely to be unreliable: As prim-
itives are extracted redundantly along the contours, con-
versely an isolated primitive is likely to be an artifact.
Hence isolated primitives can be neglected.

Stereo consistency over groups: If a set of primitives
forms a contour in the first image, the correct correspon-
dences of these primitives in the second image also form a
contour.

5.1. Basic Stereo Consistency Event (BSCE)

As explained in section 3, 2D–primitives represent lo-
cal estimators of image contours. A constellation of those
2D–primitives describe the contour as a whole. Those con-
tours are consistent over stereo, with the notable exception
of partially occluded contours — see figure 1, bottom row.
Hence, if two primitives describe a contour in one image
then their correspondences in the second image should also
describe the same contour, and those two 2D contours are
the projection of the same 3D contour onto the two differ-
ent optical planes. In section 3, we defined the likelihood
for two primitives to describe the same contour as the affin-
ity between these two primitives, hence we can rewrite the
previous statement as:

Given two primitives πl
i and πl

j in I
l and their respec-

tive correspondences πr
n and πr

p in a second image Ir; if
πl

i and πl
j belongs to the same group in I l then πr

n and πr
p

should also be part of a group in Ir. — see figure 4.

We call the conservation of the link between a pair of
primitives in the stereo–correspondences of those primitives
the Basic Stereo Consistency Event (BSCE).

This condition can then be used to test the validity of
a stereo–hypothesis. Consider a primitive πl

i, and a stereo
hypothesis:

si→n : πl
i → πr

n (10)

and consider a neighbour πl
j ∈ N(πl

i) of πl
i such that

the two primitives share an affinity c [gi,j ]. For this second
primitive a stereo–correspondence πn

p with a confidence of
c [sj→p] exists. We can then estimate how well the stereo–
hypothesis si→n preserves the BSCE:

E(gi,j , si→n) =

{ √

c [sj→p] · c [gi,j ] if c [gn,p] > ε

−
√

c [sj→p] · c [gi,j ] else
(11)

In other words, considering a stereo–pair of primitives:
the BSCE of a primitive in the first image with one of its
neighbour is high if they share a strong affinity and if this
second primitive creates a stereo–hypothesis such that the
correspondences in the second image of both primitives also
share a strong affinity. It is low if the stereo–correspondence
of this primitive and the stereo–correspondences of other
primitives part of the same group, do not form a group in the
other image. This naturally extends the concept of group as
defined in section 3 into the stereo domain.

5.2. Neighbourhood Consistency Confidence

Building on the formula (11), we can define how the
whole neighbourhood of a primitive is consistent with a
given stereo hypothesis.

The previous formula tells us how a 2D–primitive stereo
correspondence is consistent with our knowledge of the set
of stereo hypotheses for a second 2D–primitive, in its neigh-
bourhood. Now, if we consider a primitive πl

i and an asso-
ciated stereo–correspondence si→n, we can integrate this
BSCE confidence over the neighbourhood of the primitive
N l

i — as defined in section 3.3.

cext[si→n] =
1

#N l
i

∑

πl
k
∈N l

i

E(πl
1, π

l
k, si→n) (12)

Where #N
l
i is the size of the neighbourhood — i.e. the

number of neighbours of πl
1 considered. We call this new

confidence the external confidence in si→n, as opposed to
the internal confidence given by the multi–modal similarity
between the 2D–primitives— equation (8). In figure 5, one
can see that the correct correspondences have mostly posi-
tive external confidences, while incorrect ones have mainly
negative values. Therefore, applying a threshold on the ex-
ternal confidence will remove stereo hypotheses that are in-
consistent with their neighbourhood, and thus reduce the
ambiguity of the stereo–matching. Note that selecting a



threshold higher than zero implies the removal of all the
isolated primitives (as an isolated primitive has an external
confidence of zero by definition).

Figure 6(b) shows ROC curves of the performance for
varying thresholds on the multi–modal similarity. Each of
the curve drawn shows the performance for different thresh-
olds (respectively threshold values of −0.6,−0.3, 0, +0.3,
and without threshold) applied to the external confidence
prior to the ROC analysis. We can see from those results
that applying a bias on the decision based on the external
confidence is improving significantly the accuracy of the
decision process. Depending on the type of selection pro-
cess desired — very selective and reliable, or more lax, but
yielding a denser set of correspondences — another thresh-
old can be chosen. The best overall improvement seems to
be reached for a threshold of −0.3 over the external confi-
dence. Nonetheless, when we consider a case where very
high reliability is required, a threshold of 0 (meaning dis-
carding all primitives which are part of no group) might be
preferred. Note that when a threshold is applied to the exter-
nal confidence prior to the ROC analysis, the resulting curve
do not reach the (1, 1) point of the graph. This is normal as
the threshold already remove some stereo–hypotheses even
before the multi–modal confidence is considered.

The 3D–primitives reconstructed after such a scheme are
shown in figure 7(b).

5.3. Interpolation in Space

One issue when reconstructing 3D structures from stere-
opsis is that the accuracy of the reconstructed entities is de-
creasing with the distance to the cameras, due to the pixel
sampling of the images — see [10]. Figure 7(b) shows the
reconstruction of the tree (along with the road markings) in
sequence (d) — see figure 1. There we can see that, al-
though all primitives describe the contour of the tree from
the same point of view, their exact position and orientation
in space vary, and they certainly do not form a contour in
space.

Yet, we do know that the 2D–primitives they are re-
constructed from a group in both stereo images (c.f . sec-
tion 5 and figure 1 bottom row), and as such that they form
a smooth continuous contour. Hence we can assume that
they are the projection on the image planes of a smooth and
continuous contour of the scene (except in some extreme
cases and under rare viewpoints), and as such that the recon-
structed 3D–primitives should also describe such a curve.

A common way of reducing such noise in the sampling
of a smooth function is to use linear smoothing, hence we
propose to apply it to the 3D–primitives. For each iteration
n of this smoothing, the position M and orientation Θ of
the primitive Π

(n)
i are changed to the average between their

previous values Π
(n−1)
i and values interpolated from the

primitives reconstructed out of the two closest neighbours

of the 2D–primitive in the images I(Π
(n−1)
j ,Π

(n−1)
k ).

M
(n)
i =

1

2

(

M
(n−1)
i + I(M

(n−1)
j , M

(n−1)
k )

)

(13)

Θ
(n)
i =

1

2

(

Θ
(n−1)
i + I(Θ

(n−1)
j ,Θ

(n−1)
k )

)

(14)

Figure 7 illustrate the reconstructed 3D–primitives from
the sequence (d) (c.f . figure 1). Note that it is necessary to
choose a point of view sufficiently different from the one
of the camera to highlight the reconstruction errors, while
being sufficiently similar for the shapes of the scene to be
recognisable. We chose a point of view located high on the
right side of the scene, looking downwards at the road.

When comparing figures 7(a) and 7(b) we can see that
a large number of outliers are discarded from the recon-
structed 3D–primitives, leading to a cleaner description of
the scene. Figure 7(c) shows the same part of the scene
(d) after 3 iterations of the linear smoothing. The 3D–
primitives forming the contour of the tree and the road
markings are now smoothly aligned.

6. Conclusion
In this paper we defined an affinity relation between im-

age primitives making use of the rich multi–modal informa-
tion available. Therefore the resulting affinity measure en-
compass more than just the good continuation cue but also
continuity in phase, colour and optical flow. We have il-
lustrated that, on varied sequence, the resulting groups fol-
low adequately the contours of the image. In a second part
we proposed a simple measure of the conservation of those
groups, and hence of the neighbourhood structure of a prim-
itive, across stereo. Using this conservation we could for-
malise a contextual estimation of the likelihood of a stereo
correspondence. We show that using this new external con-
fidence measure in conjunction with a similarity measure
we can improve significantly the performance of the stereo–
matching process. Furthermore, we show that interpolation
can be used over a group to correct the smoothness of the
reconstructed representation.

Acknowledgement: We thank the company Riegl for
the images with known ground truth used for sequence (a),
(b) and (c). This work described in this paper was part of
the European project ECOVISION.
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