
Learning with “Relevance”: Using a third factor to stabilise
Hebbian learning

Running title: Using a third factor to stabilise Hebbian learning

Bernd Porr1 and Florentin Wörgötter2

1 Department of Electronics & Electrical Engineering, University of Glasgow
Glasgow, GT12 8LT, Scotland

2 Bernstein Centre for Computational Neuroscience, University of Göttingen
Bunsenstr. 10, 37073 Göttingen, Germany

Abstract

It is a well known fact that Hebbian learning is inherently unstable because of
its self-amplifying terms: the more a synapse grows the stronger the post-synaptic
activity and therefore the faster the synaptic growth. This unwanted weight growth
is driven by the auto-correlation term of Hebbian learning where the same synapse
drives its own growth. On the other hand the cross-correlation term performs actual
learning where different inputs are correlated with each other. Consequently, we
would like to minimise the auto-correlation and maximise the cross-correlation. Here
we show that we can achieve this with a third factor which switches on learning
when the auto-correlation is minimal or zero and the cross-correlation is maximal.
The biological counterpart of such a third factor is a neuromodulator which switches
on learning at a certain moment in time. We show in a behavioural experiment that
our three factor learning clearly outperforms classical Hebbian learning.

1 Introduction

Hebbian learning (Hebb, 1949) inherently suffers from a stability problem, which can be
simply stated as: If a synapse grows the output will grow, leading to further growth of
the synapse and so on. Hence in an auto-correlative manner, such a synapse influences
its own growth. As long as there are only direct input-output correlations to be learned
(e.g. facilitation of neuronal activity) this may not be a problem. However, there exist
many cases where it is of vital importance to learn the (cross-)correlation between inputs.
The most prominent example is classical conditioning (Pavlov, 1927; Balkenius and Morén,
1998) where the correlation between unconditioned and conditioned stimulus is learned.
Also in a more technical context, when using Hebbian learning to extract the principal
components of an input space, it is required to evaluate the cross-correlations while auto-
correlations scale only the result (Oja, 1982; Linsker, 1988). In these and a variety of other
situations the self-amplification of a Hebb-synapse may lead to a serious difficulty in the
control of learning.
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Here, we will concentrate on differential Hebbian learning (Kosco, 1986; Klopf, 1986;
Porr and Wörgötter, 2003a) which is a variant of Hebbian learning and implements se-
quence learning, where two (or more) signals are correlated in time. In real life this can
happen, for example, when heat radiation precedes a pain signal or when the vision of
food precedes the pleasure of eating it. Such situations occur often during the lifetime of a
creature and in these cases it is advantageous to learn reacting to the earlier stimulus, not
having to wait for the later signal. Temporal sequence learning enables the animal to react
to the earlier stimulus by learning an anticipatory action (Wörgötter and Porr, 2005).

Figure 1: Learning algorithm and signal structure. (A) Differential Hebbian learning (red) uses
the derivative of the output to control weight change. Its three-factor extension (black, solid) uses
in addition a “relevance” signal r to control the timing of the learning. Dashed black lines indicate
that in practical applications signals need to be fanned out into a filterbank (see below). (B)
Signals in response to two δ-function inputs. The grey shapes (AC,CC) at the bottom denote a
linear approximation of the absolute contribution of auto- and cross-correlation terms. The main
part of the unwanted AC contribution comes directly after x1. General annotations: x0,1=input
signals; r=relevance signal;

∑
stands for the summating neuron on which inputs converge with

weights ρ0,1. Symbols h0,1,r represent band-pass filters and u0,1,r the signals that enter the neuron;
⊗ denotes a correlation and the amplifier symbol stands for a changeable synaptic weight.

The auto-correlation problem can be better understood if we look at a simple neuron
(see Fig. 1, red) with just two inputs u0 and u1. Black parts of Fig. 1 can be neglected for
the time being. This neuron calculates a linear weighted sum:

v = ρ0u0 + ρ1u1 (1)

The plasticity of the synapse ρ1 for differential Hebbian learning (Kosco, 1986; Porr
and Wörgötter, 2003a) is defined as:

dρ1

dt
= µu1v

′ (2)

where µ is the learning rate. The derivative of the post-synaptic activity implements on a
phenomenological level spike timing dependent plasticity (Markram et al., 1997; Xie and
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Seung, 2000; Guo-Quing and Poo, 1998; Porr and Wörgötter, 2004; Saudargiene et al.,
2004) so that the order of the pre- and post-synaptic spikes determines if LTP or LTD
occurs.

Now, we can substitute v′ in Eq. 2 with the weighted sum of Eq. 1 and get:

dρ1

dt
= µρ0u1u

′

0
︸ ︷︷ ︸

cc

+ µρ1u1u
′

1
︸ ︷︷ ︸

ac

(3)

Clearly, weight development is composed of a cross-correlation term cc and an auto-
correlation term ac, which is the term which causes an unwanted weight drift: a change in
the weight ρ1 will cause a positive correlation in the auto-correlation term which in turn
causes further weight change and so on.

The strategy in this paper to minimise the effect of the auto-correlation is to use the
fact that in temporal sequence learning input signals happen at different moments in time.
We will show that in general cross- and auto-correlation terms have little or no temporal
overlap and that this will allow us to remove the unwanted auto-correlation term by using
a “third factor” which switches learning on only at the moment when the auto-correlation
is minimal and when the cross-correlation is maximal.

In terms of biology the application of a third factor as such is not novel. Especially
in conjunction with the dopaminergic system, three factor learning has been discussed
suggesting that dopaminergic responses could be related to the process of reward-based
reinforcement learning (Miller et al., 1981; Schultz, 1998; Schultz and Suri, 2001). Simply
this can be formalised as:

d

dt
ρ = µ · pre(t) · post(t) · DA(t) (4)

were pre and post represent the pre- and post-synaptic activity at the synapse and DA is
the dopamine signal.

Indeed there is experimental support in the striatum and other sub-cortical structures
that Dopamine could gate the plasticity of glutamatergic synapses (for reviews see Reynolds
and Wickens 2002; Wörgötter and Porr 2005). Corticostriatal synapses at medium spiny
neurons will show pronounced LTP if pulsed Dopamine is present (Wickens et al., 1996).
If absent, LTD arises, which is also the case for a continuous infusion of Dopamine because
of D1-receptor desensitisation (Memo et al., 1982).

While many interpretations show that the dopaminergic signal is regarded as an error
signal (Sutton, 1988; Mirenowicz and Schultz, 1994; Schultz et al., 1997), we suggest in
this paper that it might also be used to time the learning in order to stabilise synaptic
weights by minimising auto-correlation terms.

The paper is organised in the following way. In the next section we will introduce the
formal framework of our three factor learning. Then we will provide a convergence proof
for the open-loop condition and also demonstrate how our new learning scheme behaves
in a set of standard tests. Finally we will introduce behavioural feedback (closed-loop
condition) and demonstrate its stability with a simple food retrieval task.
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2 ISO3-learning

We call our learning rule ISO3-learning because it is related to our differential Hebbian
ISO-learning rule (Porr and Wörgötter, 2003a) where we have added a third factor.

We define the inputs to the system as x0 (late) and x1 (early). In all realistic situations
the interval T between x1 and x0 is not exactly known. To account for this we introduce
a filter-bank hj at the input x1, defining:

u0 = h0 ∗ x0 (5)

uj = hj ∗ x1, j > 0 (6)

with filters hj which are given as:

hj(t) =
e−ajt − e−bjt

ηj

(7)

where aj and bj are constants defining the rise- and decay times and ηj is a normalisa-
tion constant which can be used to weight the contributions of the individual filters in a
filterbank1.

The output is a weighted sum of the filtered signals:

v = ρ0uk +
N∑

k=1

ρkuk (8)

Now we can define ISO3-learning by (Fig. 1 A, red+black parts):

dρk

dt
= µukv

′γ (9)

where µ is the learning rate, as before. Note that the original ISO-learning rule was defined
as dρk/dt = µukv

′ but is now augmented by a third factor γ.
For further analysis it is useful to rewrite Eq. 9, as in the Introduction, in the following

way:

d

dt
ρk = µ









ukρ0u
′

0
︸ ︷︷ ︸

cck

+ uk

N∑

k=1

ρku
′

k

︸ ︷︷ ︸

ack









γ (10)

= µ(cck + ack)γ (11)

1Note, that these filters differ from the ones originally used in ISO-learning. This is necessary for
the convergence proof below because we need real poles for the proof instead of complex conjugate ones.
However, there is no substantial difference because we have always been using highly damped resonators
(e.g. Q = 0.51) in ISO learning which can be also modelled by the difference of two exponentials. The
reader who is familiar with ISO learning will notice that a resonator around Q = 0.5 has a damping of
e−2πf so that we define the constants aj and bj around aj = 2πf to remain compatible with our definitions
from ISO-learning.
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where cck and ack represent cross- and auto-correlation contributions respectively. Note,
the cross-correlation term cck = ukρ0u

′

0 is essentially identical to the ICO-rule (Porr and
Wörgötter, 2006) given by dρ1

dt
= µu1u

′

0. In some sections we will refer to the ICO-rule to
compare its behaviour to ISO- and ISO3-learning.

Furthermore, we define the signal γ by:

γ =

{

γ̃ if γ̃ > 0
0 otherwise

(12)

where

γ̃(t) =
d

dt
[r(t) ∗ hγ(t)], (13)

where we call r the relevance signal. The function hγ(t) is also implemented by Eq. 7 where
the derivative turns its low pass characteristic into a high-pass characteristic. This also
guarantees that the computations in the main pathway (via xj → v) and in the relevance
pathway (r → γ) undergo the same computations, namely first low-pass filtering and then
calculating the derivative.

The auto-correlation term in Eq. 11 is the one which needs to be minimised by timing
the learning correctly using r. To get an idea of how this could be achieved we analyse
the signal structure of this circuit (Fig. 1 B) when using δ-function inputs. Signals u0,1 are
obtained by filtering the input pulses x0,1 with band-pass filters h which create an overlap
between temporally shifted inputs, necessary for the correlation in Hebbian learning. Most
importantly, however, this diagram shows the different components u′

1 and u′

0 of which v′ is
composed during learning. Because we are employing sequence learning the auto- and the
cross-correlation terms happen at different moments in time which immediately suggests
that one should time learning by triggering r together with x0, because the auto-correlation
is then zero. Hence, we define:

tr = tx0
(14)

Using these definitions the relevance signal starts at the moment x0 is triggered and then
slowly decays. The derivative in Eq. 13 is used to eliminate the time lag obtained by the
convolution of r∗hr and we use only positive contributions to assure that Hebbian learning
does not spuriously turn into anti-Hebbian learning.

2.1 Formal open-loop convergence condition

In order to prove that ISO3-learning with an appropriately timed r-signal can eliminate
the contributions of auto-correlation terms, we will use δ-functions for all input signals.
More complex input signals can be decomposed into a train of delta functions as long as
the system is linear which we assume in the following derivations.

x0 = a0 δ(t − T ) (15)

x1 = a1 δ(t) (16)

γ = δ(t − T ) (17)
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where x0 and x1 are scaled by the amplitude factors a0 and a1 respectively which can have
any non-zero value. Having scaling factors for x0 and x1 and not for the relevance signal r
stresses the fundamental difference between these signals: while x0 is an error signal which
can have different polarities and fluctuating amplitudes, the relevance signal always has
the same amplitude and is always triggered at the moment x0 is excited.

The idea here is to show that the distribution of weights associated with a filterbank
will reach its first maximum exactly when x0 (or r) occurs leading to a zero derivative.
A situation like this has been constructed in Fig. 1 B with just a single filter, where the
derivative curve reaches its maximum precisely when a delta pulse at x0 occurs. We will
now show that learning with δ-pulse inputs with a filter bank will generate a maximum
at the moment the relevance signal is triggered and that this renders the auto-correlation
term to zero.

First we have to calculate the overall weight change for ISO3-learning. The overall
weight change for ρk is given as:

∆ρk = µ
∫

∞

0
ukv

′γdt (18)

by integrating the ISO3 learning rule Eq. 9 over the whole time span. This integral can
also be split up into a cross- and auto-correlation term so that we get:

∆ρk = µ
∫

∞

0
ukρ0u

′

0γ
︸ ︷︷ ︸

cck

dt + µ
∫

∞

0
uk

N∑

j=1

ρju
′

jγ

︸ ︷︷ ︸

ack

dt (19)

The integral can be solved by recalling that we have defined our signal γ as a delta function
which switches learning on at time T :

∆ρk = µ ρ0u0(0)
′uk(T )

︸ ︷︷ ︸

cck

+µ







gv(T )
︷ ︸︸ ︷
∑

j

ρjuj(T )







′

uk(T )

︸ ︷︷ ︸

ack

(20)

= µρ0u0(0)
′uk(T ) + µgv(T )′uk(T ) (21)

which means that we have weight change only at time T .
The second step now is to show that at this time T the auto-correlation term ack

remains at zero. As introduced above, this is the case if the signal gv(t) has a maximum
at T so that its derivative becomes zero. The signal gv(t) is generated by the weighted
filterbank responses ρ1h1, . . . , ρNhN . Consequently, we have to show that the weights ρj

are learned in a way that they generate a maximum at time T . At the very beginning of
learning only the cross-correlation cck contributes to weight change because output v is still
zero. Thus, for the first weight change we can concentrate on the cross-correlation term.
We hope that this cross-correlation term generates a weight distribution which creates a
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maximum at T so that further weight growth is only driven by the cross-correlation. Thus,
we must prove that the cross-correlation term cck creates a maximum of gv at T .

We note that the weight change ∆ρk is proportional to ρ0, u′

0(0) and u′

k(T ), where ρ0

is a constant. The second term u′

0(0) is the same for all weights so that it cannot generate
a distribution of different weights. The only term which can change individual weights is
the filter response uk(T ). This means that the weight distribution must be of the form
ρk ∝ uk(T ) which results in:

gv(t) ∝
N∑

k=1

uk(T )uk(t) (22)

We have to show that a weighted sum of filters which uses weights as their own values at
time T creates a maximum at time T . This will only be possible ultimately with an infinite
number of filters so that all possible T are covered:

gv(t) ∝
∫

∞

0
uσ(T )uσ(t) dσ (23)

where σ scales the timing of the filters which are defined as:

uσ(t) =
e−taσ − e−tbσ

ησ

(24)

with a given rise- (a) and decay-time (b).
We will now solve the integral Eq. 23 with the normalisation

ησ =
√

σ(b − a) (25)

which guarantees that the maximum of the filterbank indeed appears at t = T . Substituting
Eq. 24 into Eq. 23 gives:

gv(t) ∝
∫

∞

ε>0

(e−taσ − e−tbσ)(e−Taσ − e−Tbσ)

σ(b − a)
dσ (26)

where ε is infinitely small but non-zero to avoid a singularity in the integral. To find the
maximum of gv(t) we have to find the values of t where the derivative

gv(t)
′ ∝

d

dt

∫
∞

ε>0

(e−taσ − e−tbσ)(e−Taσ − e−Tbσ)

σ(b − a)
dσ (27)

becomes zero. This is an exponential integral which can be solved by exchanging differen-
tiation and integration. With that trick the σ in the denominator vanishes which makes
the successive integration possible. We refer the reader to the appendix where we derive
the solution step-by-step. Here, we show directly the result:

gv(t)
′ ∝

1

a − b

(

−ae−ε(at+bT )

at + bT
−

−ae−εa(t+T )

a(t + T )
+

−be−ε(aT+bt)

aT + bt
−

−be−εb(t+T )

b(t + T )

)

(28)
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For small numbers of ε → 0 the exponentials in the numerator converge towards one, which
yields:

gv(t)
′ ∝

T (t − T )(a − b)

(at + bT )(aT + bt)(t + T )
(29)

This term becomes zero for t = T which is the desired result: the derivative of the filterbank
is zero at t = T so that the auto-correlation is zero at the moment the relevance signal r
is triggered.

Figure 2: A) Plot of Eq. 28 for different values of T = 1, 5, 10. a = 0.0001, b = 0.0005, c = 1

and ησ =
√

σ(b − a) and B) plot of Eq. 26 with the same parameters. C) Filters have been
normalised with η = 1 instead.

Fig 2A shows a plot of Eq. 28 for different values of T . The choice of a and b is not
critical as long as they are not identical. Here we have set the constants a and b to small
values so that the integration takes into account slow rise- and decay times. It is clear that
the extremum is at the desired position t = T .

The integral Eq 26 has no closed form solution, but can be integrated numerically,
where the results are shown in Fig 2B. We have chosen T = 1, 5 and T = 10 as the time
between x1 and x0, γ.

But also with different, “wrong” normalisations we get interesting properties as shown
for the normalisation η = 1 where we get a maximum which is at about half of T (see
Fig 2C). This might be useful in applications where the auto-correlation term only has to
be minimised but where a fast reaction is required. On the other hand with a stronger
normalisation (e.g. ησ = σ(b − a)) the maximum appears at t > T . Thus, with different
normalisations we can fine tune the responsiveness of the system.

3 Analysing the ISO3-rule in an open-loop condition

In the following section we present two open-loop tests for our learning rule. In these tests
(Figs. 3 and 4) pulse pairs have been repeatedly presented at inputs x, which converge
with initial weights ρ0 = 1 and ρ1 = 0 at the learning unit.
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Figure 3: Comparison of the simulation results using ISO and ISO3 learning rules with a single
filter (A) or a filter bank (B,C). Experiments were performed presenting pulse-pairs as inputs.
Time difference between x1 and x0 was T = 10 (x1 always precedes x0). At the time step 5000,
x0 was switched off. A Filters given by a = 0.9 2π

10 and b = 2π
10 were used to filter inputs x0, x1 and

also the relevance signal r. Learning rate was µ = 0.005 for the ISO learning rule and µ = 0.07
for the ISO3 rule. (B,C) Results when using a filter bank with ten filters for signal x1 given by
a = 0.9 2π

10j
, b = 2π

10j
, j = 1...10. Filters with a = 0.9 2π

20 , b = 2π
20 were used to filter signals x0 and r.

Learning rate µ = 0.001 was used for ISO learning and µ = 0.002 for ISO3. D shows the signals
of the filter-bank uj , and the output signal v(t) when x1 and x0 are active and when only x1 is
active.

3.1 Comparing ISO3-learning with ISO-learning

Fig. 3 shows results for the standard test (see e.g. Porr and Wörgötter 2003a) for ISO- and
ISO3 learning. Here the signal x0 was also used to trigger the relevance signal r. Learning
rates have been adjusted to produce equally strong learning for ISO and ISO3. Note, this
requires larger values for µ for ISO3 than for ISO, because weight integration (Eq. 18) is
limited to the surface under the small γ signal in ISO3 while it covers a broader surface
in ISO. At time step 5000 the input x0 was switched off. The corresponding signals of the
filter-banks, the output during learning (x1 and x0 active) and after learning (x0 switched
off) are shown in panel D, respectively. According to the theory, as described in detail
in Porr and Wörgötter (2003a), this should lead to weight stabilisation at ρ1. Panel A,
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however, demonstrates that weights will continue to grow for ISO after switching x0 off.
This is due to the auto-correlation influence only. The same thing happens when using
a filter bank in ISO learning (Fig. 3 B), where some weights are also shrinking. Using
a relevance signal prevents this unwanted effect entirely and likewise for the filter bank
(Fig. 3 C). All weights become stable after x0 has been switched off. This is due to the
afore mentioned fact that v reaches its first maximum at tx0

and thereby learning uses the
cross-correlation term only.

Figure 4: Simulation results using the ISO3 learning rule with other filters and also with varying
duration a, b. Pulse pairing protocol as in Fig. 3. All filters in the signal pathways x took the
form of an α-function. For the relevance pathway we used our conventional filters (Eq. 7). For
x1 we used a filter bank, setting α1,j = 0.5/j, j = 1...10, and for x0 we set α0 = 0.25. Panels
A-D show results for varying the shape of the filter in the relevance pathway for µ = 0.001 and
tr = tx0

throughout. (A) a = 0.9 2π
10 , b = 2π

10 , (B) a = 0.92π
20 , b = 2π

20 , (C) a = 0.9 2π
100 , b = 2π

100 , (D)
a = 0.9 2π

200 , b = 2π
200 .

The insets show the filtered relevance signals γ together with the output v(t) which have
200 time steps on the x axis and a range of 0 . . . 1.2 for v(t) and 0 . . . 12 for gamma.

3.2 Changing the duration of the relevance signal

In this section we test how a longer lasting relevance signal influences stability and we
demonstrate that one can use different types of filters in the filter bank. To obtain the
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results shown in Fig. 4 we have used α-functions

h(t) = te−αt (30)

instead of the filters defined by Eq. 7. It is apparent from Fig. 4 that the weights stabilise
as soon as the input x0 has been switched off. Fig. 4 also shows that stability is insensitive
to the length of the r-signal as long as r sets in at the same time as x0. Varying the
duration for more than one order of magnitude does not affect stability.

These findings suggest that there is a class of different filter functions for which ISO3
converges. The common feature of the filters used so far is their low pass component which
generates a distinctive maximum at a certain moment in time. Together these filters are
able to create a weighed sum which has its maximum at the moment the relevance signal
is triggered. This means that we can choose different types of low pass filters to minimise
the contribution of the autocorrelation term. This is a useful property, because the choice
of the filter functions will determine how the output v is shaped. Different applications
may require different types of outputs and it is now, in principle, possible to obtain them
by the correct choice of filters in the filter bank (which is also true for ICO learning; Porr
and Wörgötter 2006).

3.3 Summary of the result from open-loop analysis

For ISO3 we find three possible ways to stop weight growth where the third condition is
the most important one. The weights stabilise:

1. trivially when x1 = 0. This is obvious because then its own input is lacking.

2. when T = 0 or T → ∞. These conditions reflect the fact the ISO3 is a differ-
ential Hebbian learning rule, related to spike timing-dependent plasticity (STDP,
Saudargiene et al. (2004)), where LTP turns into LTD at T = 0, or where no learn-
ing takes place at large temporal intervals.

3. when x0 = 0. This is the non-trivial case which has been made possible with the help
of the third factor γ. As will be shown below this condition allows stable behavioural
learning: as soon as the learned behaviour is able to eliminate the x0 signal, the
weights ρj, j > 0 will stop changing. This property was known and used in the
original ISO learning (Porr and Wörgötter, 2003a), but weight stability could only
be proven for small learning rates µ → 0, which led to the divergence of ISO learning
for high learning rates. The introduction of the relevance signal r in ISO3 finally
leads to the desired stability for x0 = 0 also for higher learning rates.

4 Applying ISO3 in a behavioural closed loop

In the following section we will compare ISO3 with ISO in a closed-loop scenario. First
we will formalise the closed loop and provide the outline of a convergence proof. Formal
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Figure 5: ISO3 embedded in a closed-loop framework. The grey box represents the learning
agent, everything outside represents the environment. Most symbols as in Fig. 1. Upper case
letters denote that we are treating such systems in the Laplace domain. Symbols P represent
environmental transfer functions, τ is a delay, D a disturbance.

convergence proofs have been given for ISO in the limit of µ → 0 (Porr et al., 2003) and
for ICO (Porr and Wörgötter, 2006) and here we will use the same arguments while taking
into account the third factor.

4.1 Formalising the closed-loop situation

Fig. 5 shows how we set up our closed-loop system. This diagram is similar to the ones
shown in Porr et al. (2003); Porr and Wörgötter (2006). Upper case letters denote the
fact that we are treating the system in the Laplace domain. Transfer functions P are
the environmental transfer functions, which are usually unknown, but well-behaved, most
often leading to a delay or to some kind of low-pass filtering. These aspects are to a great
extent discussed in Porr et al. (2003).

The system is built with two loops for pathways x0 and x1 and with one additional
path for r. As in ISO- or ICO-learning, the inner loop via x0 represents the primary reflex.
The goal of the reflex is to compensate disturbance D at summation node α by a pre-wired
response, which is achieved by setting ρ0 so that we have classical negative feedback. This
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means that we demand that the closed-loop feedback system

V = De−sT ρ0H0P0

1 − ρ0H0P0

(31)

is stable (Phillips, 2000). In this way basic behavioural patterns are established and the
system is operational and prepared to learn. The outer loop is established via x1 which is
a predictive input which has the potential to generate an anticipatory action. To model
the predictive nature of the input x1 against the input x0 we use a delay τ which delays
the disturbance D so that it reaches first x1 and then x0.

The goal of all these systems is to adapt the behaviour, expressed by the output v, such
that the primary reflex is no longer triggered via x0. As soon as this is achieved we get
x0 = 0 and ρ1 will stop to change. In this way behavioural stability arises exactly at the
same time together with synaptic stability.

Finally, the r signal needs to be discussed. As mentioned before there is a major
difference between the r signal and the x0 signal: while the x0 signal will be eliminated
and becomes zero the r signal is not influenced by the output v of the ISO3-learner. Thus,
the r signal will still be triggered even after successful learning when the x0 signal has
become zero.

4.2 Closed-loop convergence of ISO3 learning

In this section we will argue that convergence in the closed loop is not substantially different
from the open-loop case. Convergence is assured as long as the filterbank generates a
maximum at the moment the r signal is triggered and x0 is happening. Consequently
we have to find the closed-loop description of the output signal v which is in the Laplace
domain:

V =
ρ0De−sT H0P0

1 − ρ0H0P0
︸ ︷︷ ︸

C(s)

+
N∑

k=1

ρkŨk

︸ ︷︷ ︸

A(s)

(32)

with

Ũk =
Uk

1 − ρ0H0P0

(33)

The functions A and C can then be transformed back into the time domain and then
applied in Eq. 9.

d

dt
ρk = (ukc(t)

′

︸ ︷︷ ︸

cck

+ uka(t)′
︸ ︷︷ ︸

ack

)γ (34)

= (cck + ack)γ (35)

As before, it is clear that c(t) forms the cross-correlation term and a(t) the auto-correlation
term.
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The term a(t) will still reach its maximum at the moment the relevance signal r is
triggered because it remains constituted by the sum of low pass filtered signals (Eq 33).
New is the term 1/(1−ρ0H0P0) compared to the original signal Uk which introduces in the
worst case a phase shift but otherwise no substantial change as long as the term does not
generate more poles. This, however, is not the case because we have demanded that the
pure feedback loop (Eq. 31) is stable. Consequently we can still expect the maximum at
the moment the r signal is switched on because we still have a weighted sum of low pass
filtered signals.

Figure 6: The robot simulation. (A) The robot has two pairs of sensors: light sensors which
detect the food disk only in their direct proximity and sound detectors which are able to “hear”
the food source from the distance. (B) The two light detectors (LD) establish the reflex reaction
(x0). The sound detectors (SD) establish the predictive loop (x1). The weights ρ1 . . . ρN are
variable and are changed either by ISO, ICO or ISO-3 learning. The signal r is generated by
a third light sensor and is triggered as soon as the robot enters the food disk. The robot also
has a simple retraction mechanism which operates when it collides with a wall (“retraction”)
which is not used for learning. The output v is the steering angle of the robot. Filters are set
to a = 0.92π

10 , b = 2π
10 for the reflex, a = 0.9 2π

10k
, b = 2π

10k
, k = 1 . . . 5. Reflex gain was ρ0 = 0.005.

(C-E) plot the number of contacts for three different learning rules needed for successful learning
against the learning rate. In addition the number of failures against the learning rate are plotted.
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5 Simulated Robot experiment

The behavioural experiment of this section has two purposes: it will give the signals x0, x1

and r a behavioural meaning and it will demonstrate the superiority of ISO3 compared to
ISO learning. Fig. 6A,B presents the task where a simulated robot has to learn to retrieve
“food disks” (Porr and Wörgötter, 2003b) which are also emitting simulated sound signals.
Two sets of sensor signals are used. One sensor-type (x0) reacts to (simulated) touch and
the other sensor-type (x1) to the sound. The reflex x0 is established by two light detectors
(LD) which draw the robot into the centre of the white disks (Fig. 6 A1). Learning must
use the sound detectors (SD, Fig. 6 A2) which feed into x1 to generate an anticipatory
reaction towards the “food disk” (Verschure et al., 2003). The reflex reaction is established
by the difference of two light dependent resistors which cause a steering reaction towards
the white disk (Fig. 6B). Hence x0 is equal to zero if both LDs are not stimulated or
when they are stimulated at the same time which happens during a straight encounter
with a disk. The latter situation occurs after successful learning. The reflex has a constant
weight ρ0 which always guarantees a stable reaction. The predictive signal x1 is generated
by using two signals coming from the sound detectors (SD). The signal is simply assumed
to give the Euclidean distance from the sound source. The difference in the signals from
the left and the right sound detector is a measure of the azimuth of the sound source to the
robot. Successful learning leads to a turning reaction which balances both sound signals
and results ideally in a straight trajectory towards the target disk ending in a head-on
contact. After encountering a disk, the disk is removed and placed randomly elsewhere.
Details of this experiment also show individual movement traces as shown in Porr and
Wörgötter (2006), however, here we want to focus on the statistical comparison between
ISO and ISO3 and try to show that ISO3 essentially performs as well as ICO, whereas ISO
itself is unstable for high learning rates.

For this, we quantify successful and unsuccessful learning for increasing learning rates
µ. To make the failures comparable between ISO- and ISO3-learning we have chosen the
learning rates in a way that for both learning rules the contacts for successful learning are
the same. Learning was considered successful when we received a sequence of five contacts
with the disk at a sub-threshold value of |x0| < 1.1. We recorded the actual number
of contacts until this criterion was reached. The plots in Fig. 6 D-E show that fewer
contacts are required for successful learning with increasing learning rates. The simulations
demonstrate clearly that ISO3 learning is much more stable than the Hebbian ISO learning.
It behaves very similar to ICO, for which there is no auto-correlation contribution. ISO3
learning can therefore operate at learning rates which so far have only been achieved with
ICO learning but not with ISO learning.

Fig. 7A-D show how the strongest-changing weight (here ρ9) behaves for ISO3 compared
to ISO during a “food disk” experiment where we have adjusted the learning rates in such
a way that weight change is similar for both ISO- and ISO3-learning. For ISO-learning
there is one learning experience which leads to a correct, small weight drop close to time
step 3000, but the second contact has already led to divergence. ISO3 is essentially stable,
but all weights will oscillate slightly around their optimal value. As discussed above, this
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Figure 7: A-D: Behaviour of the strongest-growing weight ρ9 in a “food disk” collection exper-
iment using different learning rules. Other parameters as defined in Fig. 6. The left side shows
the results from ISO3 (µ = 10−3) and the right side from ISO-learning (µ = 10−4). (A,B)
Weight change. (C,D) Value of the weight ρ9. The first learning experience (“contact”) happens
around time step 3000, which is magnified in panels (B,D). For ISO learning the next contact
has already led to divergence. ISO3 on the other hand remains stable and ρ9 fluctuates slightly
at the end of learning. The inset in (C) shows that for ICO-learning weights will fully stabilise.
E-L: Examples of signal shapes during four learning events (“contacts”). (E) Cross-correlation
contribution, (F) auto-correlation contribution, (G), the γ signal, (H) weight change of weight
ρ9. (I-L) Magnifications of events 1 and 2 from traces (E,F). The dashed lines give the moment
when the r signal is elicited. Note that each signal has been scaled separately.

is due to the fact that as with non-δ-function inputs the auto-correlation term cannot be
fully eliminated in all cases. The remaining small fluctuation, however, will not lead to
a deterioration of learning or behaviour. As long as the cross-correlation term is stronger
than the auto-correlation term, weights should stabilise in the closed-loop scenario because
the feedback will always correct weight drifts. To show how learning evolves without any
autocorrelation term we have added inset C which shows the weight development of ICO
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learning (Porr and Wörgötter, 2006) for the same food retrieval experiment.
Fig. 7E-L show in detail what the signals look like in these experiments after some

learning using the same setup but with a much higher learning rate of µ = 0.001. Traces
(E) and (F) show the cross- (cc) and auto-correlation (ac) contributions, respectively. Due
to the chosen filters cc is much shorter, but also much stronger than ac (note the different
scaling). Also, it is evident that ac contributions can exist before as well as after cc.
Furthermore, trace (F) shows that ac can occur without cc (events 3 and 4). Events 1,2
and 4 are associated with a relevance signal r. Trace (G) shows the corresponding r and
trace (H) shows the resulting weight change. Traces (I-L) are magnifications of (E,F).

It is interesting to discuss the individual events in more detail:

1. In the first event there is a large temporal difference between the two light sensor
inputs, because the robot had been approaching the food disk at an angle. This
results in an early, spread-out auto-correlation term with moderate amplitude. The
cross-correlation cc reaches its minimum at the moment of impact with the food disk,
which is at the same moment that r is triggered. As a consequence a large negative
cc contribution is summed with a much smaller positive ac contribution leading to an
overall strong negative weight change. Effectively, due to the high learning rate, the
system has now slightly “over-learned” the task, which becomes clear in the second
event.

2. In the second event the robot also approaches the food disk at an angle but at a
smaller one than in the first event above. However, the robot over-steers and touches
the disk from the other side. This results in the effect that all signals are inverted
and the weight is corrected upwards to a small degree. Due to the short interval
when r occurs it is again obvious that the unwanted auto-correlation contribution
does not enter into the weight change.

3. In the third event, the robot was directed by the predictive inputs but did not touch
any food disk. Consequently, no learning should occur and the overall correlation
should not deviate from zero. The auto-correlation term ac is positive and would
cause an unwanted change in the weights. However, learning does not occur at event
3 because, on failing to touch, the relevance signal was not triggered at all.

4. The last event (4) shows the response when the robot approaches the food disk
approximately head-on, which corresponds to x0 ≈ 0. Thus, the cross-correlation
remains almost zero (the small existing contribution does not appear at this mag-
nification). This shows that the robot has learned to approach the food disk from
a distance and a straight trajectory towards the food disk is achieved. No weight
change should happen because the learning goal x0 = 0 has been reached. Learning
is indeed prevented due to the fact that r occurs when, both, the cross- and the
auto-correlation contributions are zero.

We have provided mathematical evidence above to illustrate that the ISO3 rule con-
verges in a close-loop behaving system. The simulated food-disk collection experiment
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shown here supports this. In particular these experiments show that the third-factor con-
trol mechanism also works with real non-δ-function inputs, for which rigorous mathematical
convergence proofs are no longer possible.

In an earlier study we have shown that the auto-correlation-free ICO rule can be em-
ployed in a variety of difficult simulated and real control tasks (Porr and Wörgötter, 2006).
These experiments shall not be repeated here, but the similarity of the behaviour of ISO3 in
the food-disk collection supports the view that ISO3 will not demonstrate anything really
new in these tasks. In addition, our simulated robot experiment also demonstrates how
ISO3 input signals can be embedded in a behavioural context: the sensor signals x0 and
x1 directly generate motor reactions and will change substantially during learning. The
r-signal, however, is always triggered when the robot enters the food disk and stabilises
learning by its right timing but not by its amplitude which always remains the same.

Figure 8: Four different learning rules: (A) ISO-learning, (B) TD-learning, (C) ICO-learning
and (D) ISO3-learning.

6 Discussion

Correlation based temporal sequence learning dates back to the early approaches of Sutton
and Barto (1981); Kosco (1986) and Klopf (1988). The design of these rules did not allow
embedding them into a behavioural context and they were only treated in open-loop and
mostly in conjunction with classical conditioning (for reviews see Sutton and Barto 1990;
Wörgötter and Porr 2005). The success of TD-learning (Sutton, 1988) and its ’acting’
extension Q-learning (Watkins and Dayan, 1992), in which both use a reward signal to
control the learning, soon led to the ousting of the older correlation based approaches and
they were only resurrected after they had been successfully embedded in behaving agents
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(Verschure and Voegtlin, 1998; Porr and Wörgötter, 2003a). The newly introduced ISO-
learning rule (re-plotted in Fig. 8 A) is successful at low but not at high learning rates
because of its auto-correlation term. Porr and Wörgötter (2006) present a very simple and
highly efficient solution to this problem which is shown in diagram Fig 8 C. The auto-
correlation term is completely eliminated if the derivative of the output v ′ is replaced with
the derivative of the reflex input u′

0. This rule, called input correlation learning (ICO),
is highly stable and converges extremely fast allowing even single-shot learning as shown
in several difficult real control scenarios (Porr and Wörgötter, 2006). However, it has two
clear disadvantages. (1) One input, namely u0, has now become “special”. Hence learning
is judged against this input and no longer against any strong driving input, which can be a
problem if a subsumption architecture (Brooks, 1989) is needed where learning is driven by
different inputs and not just by one input. In such subsumption architectures the driving
input changes over time when one feedback loop is replaced by another which in turn leads
to another driving input after learning. This argument can be reversed if we recall that
ISO3 is implementing differential Hebbian learning which computes predictions: the third
factor defines the moment in time when learning takes place. This provides an opportunity
to self organise the development of weights which grow if their corresponding inputs can
predict post-synaptic activity and which shrink if their corresponding signals are too late at
the moment when the relevance signal is triggered. In such a self organised network strong
inputs develop by themselves and need not be defined. This offers also new opportunities
for self organised structures, for example, memory models (Durstewitz et al., 2000). (2)
The second central disadvantage of ICO-learning is its low biological plausibility. ICO-
learning represents a form of pure heterosynaptic plasticity, which is found only in some
rare cases (Clark and Kandel, 1984; Humeau et al., 2003; Beninger and Gerdjikov, 2004;
Kelley, 2004). This prompted us to search for alternative solutions to the auto-correlation
problem and we have introduced the ISO3-rule for this purpose (Fig 8 D).

In the current study we have built on some earlier convergence proofs of ISO- and ICO-
learning (Porr and Wörgötter, 2003a; Porr and Wörgötter, 2006) and we have focused on
the problem of how to eliminate the auto-correlation term. For δ-function inputs we have
now proved that eliciting the r-signal together with the later input will remove the auto-
correlation term completely. In practical situations, this term cannot be fully reduced to
zero, but nonetheless we found that the ISO3 rule has much better convergence properties
compared to ISO. Furthermore, as in ICO also for ISO3 it is no longer necessary to use
orthogonal filters as was the case for the plain ISO rule (Porr and Wörgötter, 2003a)
because weight stabilisation is achieved by the generation of a maximum at x0 and not by
orthogonal filter-functions. We have shown that the maximum can also be generated by
alpha functions instead of differences of exponentials. This result suggests that there is
a class of functions which generate an approximately zero derivative at the moment x0 is
triggered. Looking at Eq. 22 we see that we need functions which have one maximum which
can be shifted in time. If we superimpose such functions we intuitively get a maximum at
the moment when the r signal is triggered. The difficult part is the right normalisation of
the functions which in our case is defined by Eq. 25. Usually the difference of exponentials
is normalised without the square root (η = σ(b−a)) which normalises the amplitude of the
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functions Eq. 7 to one. However, here we have to normalise the learning (Eq. 23) which
gives us the filter response two times: the filter itself and its value at the moment when
r is triggered. This is a general recipe for the design of new filter functions: we need a
normalisation which normalises learning (Eq. 23) instead of the functions themselves and
we need filter functions which have one maximum which can be shifted in time. Such
functions could be damped exponentials, alpha functions or higher order functions of the
form tne−αt.

The relation of correlation based learning to reward-based reinforcement learning has
been discussed at great length in Wörgötter and Porr (2005). Here we would like to
point out one interesting novel aspect of ISO3: this rule uses only the timing of the r-
signal to control learning. This is different from TD-learning, where a prediction error
is generated which directly influences the weight values (Sutton, 1988). In other words:
while the third factor in ISO3 learning determines when learning should happen, in RL
the third factor determines what is learned. In machine learning the error signal is used to
control value propagation in a rigorous quantitative way distinguishing between differently
rewarding situations. The quantitative value, which an individual associates with different
“rewards”, is certainly also evaluated by animals and humans but it is hard to believe
that the rather broad and unspecific dopaminergic signals (Fellous and Suri, 2002), which
represent the majority of responses in these cell classes, would be directly used in the
specific way demanded by TD-like algorithms.

Such signals seem more compatible with the assumption of 3-factor ISO3 learning,
where they are only used to control the timing. It will be interesting to see if this new
interpretation can be substantiated by physiological experiments in the future, for example
by trying to influence the plasticity at a neuron with an ill-timed, micro-iontophoretically
applied dopamine burst.
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A Solving the exponential integral

We have to solve the integral Eq. 26 which can be rewritten in the form:

gv(t) ∝
∫

∞

ε>0

e−σ(at−bT )

σ(a − b)
dσ −

∫
∞

ε>0

e−σa(t+T )

σ(a − b)
dσ +

∫
∞

ε>0

e−σ(aT−bt)

σ(a − b)
dσ −

∫
∞

ε>0

e−σb(t+T )

σ(a − b)
dσ (36)
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from which we have to calculate its derivative gv(t)
′. Eq. 36 contains four terms which only

differ by the arguments in the exponentials which we call z(t). They can be solved in the
following way:

d

dt

∫
∞

ε

e−σz(t)

σ
dσ =

∫
∞

ε

d

dt

e−σz(t)

σ
dσ (37)

= −
dz(t)

dt

∫
∞

ε
e−σz(t)dσ (38)

=
dz(t)

dt

(

0 −
e−εz(t)

z(t)

)

(39)

= −
dz(t)

dt

e−εz(t)

z(t)
(40)

With this result we can solve the four terms of Eq. 36. For example, the first term of
Eq. 36 has the solution:

1

a − b

d

dt

∫
∞

ε>0

e−σ(at+bT )

σ
dσ = −

1

a − b

d(at + bT )

dt

e−ε(at+bT )

at + bT
(41)

= −
a

a − b

e−ε(at+bT )

at + bT
(42)

The other terms of Eq. 36 can be solved in the same way and we arrive at Eq. 28.
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heterosynaptic associative plasticity in the mammalian brain. Nature, 426(6968):841–
845.

Kelley, A. E. (2004). Ventral striatal control of appetitive motivation: role in ingestive
behaviour and reward-related learning. Neurosci. and Biobehav. Reviews, 27:765–776.

Klopf, A. H. (1986). A drive-reinforcement model of single neuron function. In Denker, J. S.,
editor, Neural Networks for Computing: Snowbird, Utah, volume 151 of AIP conference
proceedings, New York. American Institute of Physics.

Klopf, A. H. (1988). A neuronal model of classical conditioning. Psychobiol., 16(2):85–123.

Kosco, B. (1986). Differential hebbian learning. In Denker, J. S., editor, Neural Networks
for computing: Snowbird, Utah, volume 151 of AIP conference proceedings, pages 277–
282, New York. American Institute of Physics.

Linsker, R. (1988). Self-organisation in a perceptual network. Computer, 21(3):105–117.
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