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Abstract

Hebbian learning is the most prominent paradigm in correlation based learning: If pre- and postsynaptic activity coin-

cides the weight of the synapse is strengthened. Hebbian learning however, is not stable because of an autocorrelation

term which causes the weights to grow exponentially. The standard solution would be to compensate the autocorre-

lation term. However, in this work we present a heterosynaptic learning rule which does not have an autocorrelation

term and therefore does not show the instability of Hebbian learning. Consequently our heterosynaptic learning is

much more stable than the classical Hebbian learning. The performance of our learning rule is demonstrated in a

model which is inspired by the limbic system where an agent has to retrieve food.
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1. Introduction

Hebbian type plasticity at a synapse correlates
presynaptic with postsynaptic activity. Such learn-
ing is inherently unstable because of its autocor-

relation term in the learning rule: weight growth
will cause a higher postsynaptic potential and there-
fore even more weight growth. Additional measures
have to be taken to prevent unlimited weight growth
(Oja, 1982; Bienenstock et al., 1982; Verschure and
Coolen, 1991). In this study we present a novel het-
erosynaptic learning rule which has been derived
from our differential Hebbian learning rule isotropic
sequence order (ISO) learning (Porr and Wörgötter,
2003). Our new learning rule remains stable without
any additional measures. In this article we will show
that our new heterosynaptic learning rule is much
faster and more stable than the corresponding Heb-
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bian learning rule. In addition, we will demonstrate
the applicability of the rule first with a simulated
and then in a real robot. The robot has to find food
disks from the distance. Initially the robot has only
a pre-wired reflex which enables it to react to food
disks at close range only. During learning this re-
flex reaction is correlated with distant stimuli which
enable the robot to target food disks from the dis-
tance. Finally, we will show similarities to the limbic
system and argue that motor learning in this brain
area might be driven by heterosynaptic learning.

2. Open loop: Heterosynaptic learning

2.1. The neural circuit

The dotted box in Fig. 1 shows the basic compo-
nents of the neural circuit. The learner consists of
two inputs x0 and x1 which are filtered with u0 =
x0 ∗ h0 and u1 = x1 ∗ h1 where ∗ denotes the con-
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Fig. 1. Input correlation (ICO) learning in the closed loop:

x0, x1 are sensor inputs, hk are resonators and ρk are weights.

The symbol d/dt denotes the derivative. ⊗ is a correlator
and

∑

is a summation node. SP is the setpoint. D is a dis-
turbance. P0, P01, P1 are environmental transfer functions.
T is a delay.

volution operator and the filters h0 and h1 basically
smooth out the input signals. The circuit can easily
be extended to a bank of filters with different res-
onators hj , j > 0 and individual weights ρj , j > 0
to generate complex shaped responses (Grossberg,
1995). The individual filters thereby generate traces
with different duration so that their superposition is
able to generate coordinated behaviour in response
to a stimulus.

To make our new heterosynaptic learning rule
comparable to our older ISO-learning we will employ
mostly resonators but at a later stage in the work we
will also use other filter-functions. These resonators
generate a damped oscillation when triggered by a
delta pulse. In discrete time the resonator responses
are given by: h(n) = 1

b
ean sin(bn). The index for the

time steps is n. The parameters are defined as a =
Re(p) = −πf/Q and b = Im(p) =

√

(2πf)2 − a2

respectively where Q is the quality of the filter.

2.2. The learning rule

The learning rule for the weight change d
dt

ρj is:

ρ′j = µuju
′

0
j > 0 (1)

where only input signals are correlated with each

other. For that reason we will call our rule input cor-
relation (ICO) learning. A sequence of events x1 →

x0 leads to a weight increase at ρ1, whereas the re-
verse sequence x0 → x1 leads to a decrease. The
weights stabilise if the input x0 is constant on aver-
age (or if x1 is zero).

Fig. 2. Behaviour of the only (N = 1) weight ρ1 for

ICO-learning as compared to ISO-learning while stimulating

first x1 and then x0 with delta pulses which are T = 25 apart.

The pulse-sequence was repeated every 2000 time steps until

step 100, 000. After step 100, 000 only input x1 receives delta

pulses. The learning rate was µ = 0.001 and the parameters

of the resonators were f0 = f1 = 0.01, Q0 = Q1 = 0.6.

Fig. 2 shows the behaviour of ICO-learning com-
pared to ISO-learning for a relatively high learning
rate for two filters (N = 1). Clearly one sees that dif-
ferential Hebbian learning (ISO-learning) contains
an exponential instability, which leads to an upward
bend. For a more detailed discussion of this insta-
bility we refer the reader to Porr and Wörgötter
(2003). This is different for heterosynaptic learning
(ICO-learning) which does not contain this instabil-
ity because it does not use the output to change its
weight ρ1.

3. Closed loop: Input control

3.1. ICO-learning embedded in the environment

ICO-learning only makes sense in a closed loop
system where the output of the learner v feeds back
to its inputs xj after being modified by the envi-
ronment (Fig. 1). The resulting structure, similar to
that described in Porr et al. (2003), is that of an sub-
sumption architecture where we start with an inner
feedback loop which is superseded by an outer loop
(Brooks, 1989). For a more detailed discussion of
such nested structure we refer to Porr et al. (2003).

Initially only a stable reflex or feedback loop exists
which is established by the two transfer functions
H0, P0 and the weight ρ0 6= 0. The feedback loop
has the task to maintain the setpoint SP as precisely
as possible. A disturbance D causes deviations from
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the setpoint but stability requires that the feedback
loop must be able to bring the system back to its
setpoint. In a behavioural context a disturbance is,
for example, finding food by random walks.

From the point of view of the feedback it is desir-
able to predict the disturbance D to preclude the un-
wanted triggering of the feedback loop (Palm, 2000).
Fig. 1 accommodates this in the most general way
by a formal “delay” parameter T , which assures that
the input x1 receives the disturbance D earlier than
input x0. This establishes a second predictive loop,
which is inactive at the start of learning (ρ1 = 0).
The learning goal is to find values for ρj , j > 0 so
that the learner can use the earlier signal at x1 to
generate an anticipatory reaction which prevents x0

from deviating from the setpoint SP . In the case of
the food an anticipatory reaction can be generated
if the food can be seen from the distance and then
a reaction towards the food is generated.

3.2. Benchmark: The simulated robot

This section presents a benchmark application
which compares Hebbian (ISO) learning with our
new heterosynaptic (ICO) learning rule. Fig. 3A
shows the circuit diagram of a simulated robot which
has the task to learn to retrieve white “food disks”
in a black arena. The reflex (via x0) is established
by two proximal sensors (LD) which draw the robot
into the centre of the white disks. Learning has the
task to use the distal sensors (SD) which feed into
x1 to generate an anticipatory reaction towards the
“food disk”. This simple benchmark application has
already been used in Porr and Wörgötter (2003)
and Verschure et al. (2003), however, with Hebbian
learning only.

We quantify successful and unsuccessful learning
for increasing learning rates µ. Learning was consid-
ered successful when we received a sequence of four
contacts with the disk at a sub-threshold value of
|x0| < 0.2. We recorded the actual number of con-
tacts until this criterion was reached. The log-log
plots of the number of contacts in Fig. 3D,E show
that both rules follow a power law. The similarity of
the curves for small learning rates reflects the math-
ematical equivalence of both rules for µ → 0. For
low learning rates weight changes are so slow that
they do not cause a substantial change in the out-
put v during learning so that u′

0
can be replaced by

the derivative by the output v′ which means that
we turn ICO-learning (Eq. 1) back into ISO-learning

(ρ′j = µujv
′, j > 0).

The dependence of failures on the learning rate
is quite different for ISO- as compared to ICO-
learning. For differential Hebbian (ISO) learning
(Fig. 3G), errors increase roughly exponentially up
to a learning rate of µ = 3 · 10−4 while saturating
at even higher learning rates. This behaviour re-
flects errors caused by the autocorrelation terms.
For ICO-learning (Fig. 3F) failures remain essen-
tially zero up to µ = 1 · 10−4; the learned behaviour
diverges only above that value. In contrast to the
ISO-rule, this effect is here due to “over-learning”
where the learning gain of the predictive pathway
is higher than the gain of the feedback loop. Thus,
the predictive pathway becomes unstable during
the first learning experience.

In addition we have plotted the weight devel-
opment for ICO- and ISO-learning, respectively
(Fig. 3B,C). Looking at ISO learning (Fig. 3C) it is
apparent that there is always a significant weight
drift due to self amplification of the weights. ICO-
learning, on the other hand is stable.

In summary the simulations demonstrate that
ICO-learning is much more stable than the Hebbian
ISO-learning. Consequently, ICO-learning can op-
erate at more than ten times higher learning rates
than ISO-learning.

3.3. The real robot

In this section we will demonstrate that ICO-
learning is also able to master the “food-disk” tar-
geting in an physically embodied agent (Ziemke,
2001). ISO-learning fails here completely (data not
shown) because of its destabilising autocorrelation
terms (see Fig. 2) which drive the weights either very
quickly to infinity or, alternatively, one has to run
the robot for hours to see anticipatory behaviour
which is impractical.

In addition, we will show that it is possible to
use other filters than resonators in the predictive
pathway.

As before, the task of the robot is to target a
white disk from a distance. As in the simulation the
robot has a reflex reaction which pulls the robot
into the white disk just at the moment the robot
drives over the disk (Fig. 4A1). This reflex reaction
is achieved by analysing the bottom scanline of a
camera with a fisheye lens mounted on the robot.
The predictive pathway is created in a similar way: A
scanline which views the arena at a greater distance
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Fig. 3. The robot simulation. A) The robot has two light detectors (LD) which establish with the filter H0 and the fixed weight
ρ0 the reflex reaction. The sound detectors (SD) establish with a filter bank the predictive loop. The weights ρ1 . . . ρN are

variable and are changed either by ISO- or ICO-learning. The robot has also a simple retraction mechanism when it collides
with a wall (“retraction”) which is not used for learning. The output v is the steering angle of the robot. Filters are set to

f0 = 0.01 for the reflex, fj = 0.1/j, j = 1 . . . 5 for the filter bank where Q = 0.51. Reflex gain was ρ0 = 0.005. B) and C) show
weight development for ICO- and ISO-learning at a learning rate of µ = 10−5. D) and E) plot the number of contacts for both

learning rules needed for successful learning against the learning rate. F) and G) document the number of failures against the

learning rate.

from the robot (hence “in its future”) is fed into
a bank of of five filters. This enables the robot to
learn to drive towards the white disk (Fig. 4A2).
In contrast to the simulation these filters are set up
as FIR filters. Learning is successful and, except of
fluctuations, the weights stay stable.

4. Limbic system

The way the limbic system operates seems to be
closely related to ICO-learning. The limbic system
is known for its role in the mediation of motivation
and reward (Cardinal et al., 2002; Berthoud, 2005).

We will focus on the nucleus accumbens core (NAcc)
as the central integrator of sensor and motor infor-
mation. This structure is considered important in
the co-ordination of simple goal directed or instru-
mental behaviours (Killcross and Coutureau, 2003),
like finding food. Plasticity in the NAcc is modu-
lated by dopamine which originates from the ventral
tegmental area (VTA) which in turn is innervated by
the lateral hypothalamus. The downstream outputs
of the lateral hypothalamus control directly motor
actions of eating. Beninger and Gerdjikov (2004)
and Kelley (2004) have both proposed similar het-
erosynaptic learning rules which might drive learn-
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ing in the limbic system. They have proposed that
glutamatergic input mainly from the cortex has to
coincide with dopaminergic transients coming from
the VTA which in turn is driven by primary eating
reflexes originating from the lateral hypothalamus
(LH). More specifically, the activation of the NMDA
channels by glutamate has to coincide with a tran-
sient dopaminergic activity. Such learning could be
formalised in the following way:

∆ρ = µ · NMDA · DA′ (2)

whereas ρ is the synaptic weight of a glutamatergic
input, µ is the learning rate, NMDA is the activ-
ity of the NMDA channel and DA is the activity

Fig. 4. Experiment with a real robot. A1: start of the run,

A2: after 15 mins and 52 secs. The arrows at A1 and A2 show

the trace of the robot while driving into food blobs (white

circles). The weight development (ρj , j = 1 . . . 5) is shown

in B. Parameters: frame rate was 25 frames/ses. The video
image f(x = [0 . . . 95], y = [0 . . . 64]) was evaluated at y = 53
for the reflex x0 and at y = 24 for the predictive signal x1.

Reflex and predictive signal were calculated as a thresholded
(> 240) weighted sum: x0,1 =

∑

95

x=0
(x − 96/2)2Θ(f(x, y)).

The reflex pathway was set to: f0 = 0.01, Q = 0.51 with a

reflex gain of ρ0 = 30. The predictive finite impulse response

(FIR) filters had 100, 50, 33, 25, 20 taps where all coefficients

are set to one. The learning rate was µ = 0.000005.

Fig. 5. Simplified diagram of the limbic system.

NAcc=Nucleus Accumbens core, PFC=prefrontal cor-

tex, VP=ventral pallidum, VTA=ventral tegmental area,

LH=lateral hypothalamus.

of the dopaminergic neurons originating from the
VTA. Our formalisation of Beninger’s heterosynap-
tic learning (Eq. 2) is identical to our ICO-learning
(Eq. 1) which demonstrates the similarities between
ICO-learning and plasticity in the limbic system.

5. Discussion

To our knowledge ICO-is the only learning rule
that operates strictly heterosynaptically. The neu-
ronal literature on heterosynaptic plasticity nor-
mally emphasises that it is essentially a modulatory
process which modifies (conventional) homosynap-
tic learning (Bliss and Lomo, 1973; Markram et al.,
1997), but cannot lead to plasticity on its own (Bai-
ley et al., 2000; Jay, 2003). As a consequence, het-
erosynaptic learning rules have so far mostly been
used to emulate modulatory processes, for exam-
ple, by the implementation of three-factor learning
rules, trying to capture dopaminergic influence in
the Striatum and the Cortex (Schultz and Suri,
2001).

ICO-learning bears some similarities to spike tim-
ing dependent plasticity (STDP). In Saudargiene
et al. (2004) we have shown that STDP can be mod-
elled by correlating the activity of an NMDA chan-
nel with the derivative of the postsynaptic potential.
Here we correlate the activity of an NMDA chan-
nel with the derivative of the dopaminergic activity.
Consequently, we could call our ICO-learning here
“heterosynaptic spike timing dependent plasticity”.

In the closed loop case the difference between
ICO-learning and the classical Hebbian learning
rules becomes even clearer: While classical Hebbian
learning and STDP can be used in both open loop
(Oja, 1982) and closed loop scenarios (Verschure
and Coolen, 1991; Porr et al., 2003), ICO-learning
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needs feedback from the environment. Otherwise
ICO-learning is not able to reach its learning goal,
namely to minimise the error at its input x0. In this
respect ICO-learning is different from other learn-
ing rules which calculate an error by comparing the
output signal v with a desired response, like the
delta rule (Widrow and Hoff, 1960) or temporal
difference (TD) learning (Sutton, 1988).
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