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Abstract

Currently all important, low-level, unsupervised network learn-
ing algorithms follow the paradigm of Hebb, where input- and out-
put activity are correlated to change the connection strength of a
synapse. However, as a consequence, classical Hebbian learning al-
ways carries a potentially destabilising autocorrelation term which
is due to the fact that every input is in a weighted form reflected
in the neuron’s output. This self-correlation can lead to positive
feedback, where increasing weights will increase the output and
vice versa, which may result in divergence. This can be avoided
by different strategies like weight normalisation or weight satura-
tion which, however, can cause different problems. Consequently, in
most cases, high learning rates cannot be used for Hebbian learning
leading to relatively slow convergence. Here we introduce a novel
correlation based learning rule which is related to our ISO-learning
rule (Porr and Wörgötter, 2003a), but replaces the derivative of
the output in the learning rule with the derivative of the reflex in-
put. Hence the new rule utilises input correlations only, effectively
implementing strict heterosynaptic learning. This looks like a mi-
nor modification, but leads to dramatically improved properties.
Elimination of the output from the learning rule removes the un-
wanted, destabilising autocorrelation term allowing us to use high
learning rates. As a consequence we can mathematically show that
the theoretical optimum of one-shot learning can be reached un-
der ideal conditions with the new rule. This result is then tested
against four different experimental setups and we will show that in
all of them very few (and sometimes only one) learning experiences
are needed to achieve the learning goal. As a consequence the new
learning rule is up to 100 times faster and in general more stable
than ISO-learning.
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1 Introduction

Probably all existing correlation based learning algorithms rely currently on
Donald Hebb’s famous paradigm (Hebb, 1949), that connections between net-
work units should be strengthened if the two connected units are simultane-
ously active (Oja, 1982; Kohonen, 1988; Linsker, 1988). The Hebb-rule can be
formalised as

∆ρj = µujf(v) (1)

where ρj is the connection strength and the output is calculated from the
weighted sum v =

∑

j ρjuj. The factor µ is called the learning rate. The
linear operator f is just the identity operator f = v for classical Hebbian
learning (Hebb, 1949) and it is the derivative f = v ′ for differential Hebbian
learning (Kosco, 1986).

In spite of their success, Hebbian type learning algorithms can be unstable
because of the existing autocorrelation term in the learning rule. This can
be seen if we replace v in Eq. 1 by the weighted sum. Apart from the cross
correlation terms we get ∆ρj ∝ µρjujf(uj). Hebbian learning is only stable
if this autocorrelation term is zero, or can be compensated for by means of
additional measures taken (Oja, 1982; Bienenstock et al., 1982; Miller, 1996b;
Porr and Wörgötter, 2003a). In the general case, however, this term leads to
an exponentially growing instability and to network divergence.

Hebb rules have been employed in a wide variety of unsupervised learn-
ing tasks and during the last years we had focused on the specific problem of
temporal sequence learning (Porr and Wörgötter, 2001; Porr and Wörgötter,
2003a). In this case two (or more) signals exist which are correlated to each
other, but with certain delays between them. In real life this can happen, for
example, when heat radiation precedes a pain signal when touching a hot sur-
face or when the smell of a prey arrives before the predator is close enough to
see it hiding in the shrubs. Such situations occur often during the lifetime of
a creature and in these cases it is advantageous to learn reacting to the earlier
stimulus, not having to wait for the later signal. Temporal sequence learning
enables the animal to react to the earlier stimulus. Thus, the animal learns an
anticipatory action to avoid the late unwanted stimulus. From a more theoreti-
cal perspective such situations are related to classical and/or instrumental con-
ditioning and in early studies correlation-based, stimulus-substitution models
have been used to address the problem of how to learn such sequences (Sutton
and Barto, 1981). Soon these methods were, however, superseded by reinforce-
ment learning algorithms (Sutton, 1988; Watkins, 1989; Watkins and Dayan,
1992) partly because those algorithms had favourable mathematical properties
(Dayan and Sejnowski, 1994) and partly because convergent learning could be
achieved in behaving systems (Kaelbling et al., 1996). Relations to biophysics,
however, seem to exist more to the dopaminergic reward-based learning system
(Schultz et al., 1997) than to (differential) Hebbian learning through long term
potentiation (LTP) at glutamatergic synapses (Malenka and Nicoll, 1999); for
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a review see (Wörgötter and Porr, 2005). Therefore, in a series of recent papers
we have tried to show that it is possible to solve reinforcement learning tasks
by correlation based (Hebbian) rules realising that such tasks can often be
embedded into the framework of sequence learning which allows for a Hebbian
formalism (Porr and Wörgötter, 2003a,b). However, we had to discover that
the Hebbian learning rule, which we had designed to address problems of tem-
poral sequence learning produces exactly the same autocorrelation instability
which often prevented convergence.

To solve this problem, in this study we present a novel, heterosynaptic
learning rule which allows implementation of fast and stable learning. This
learning rule has been derived from ISO learning (Porr and Wörgötter, 2003a),
which belongs to the class of differential Hebbian learning rules (Kosco, 1986).
ISO learning, however, suffers from the problem discussed above. It, too,
contains the destabilising autocorrelation term and only for the limiting case of
µ → 0 we have been able to prove that this term vanishes (Porr and Wörgötter,
2003a), but only when using a set of orthogonal input filters.

However, a very simple alteration of ISO learning eliminates its autocorre-
lation term completely: If we correlate only inputs with each other this term
does not exist any more. More specifically we define an error signal at one of
the inputs and correlate this error signal with the other inputs. Consequently,
our rule can be used in applications where such an error signal can be identified
which is the case, in particular, in closed loop feedback control.

We will in this study first derive the convergence properties of input cor-
relation (“ICO”) learning, showing that one-shot learning is the theoretical
limit for the learning rate. As an additional advantage it will become clear
that input filtering does not rely on orthogonal filters at the different inputs.
Any input characteristic will suffice as long as the whole system contains an
(additional) low-pass filter component. This however, can also come from the
transfer function of the environment in which the learning system is embed-
ded. The advantage of now being able to choose almost arbitrary input filters
will now for the first time also allow approximating far more complex (e.g.,
non-linear) output characteristics than was possible with ISO-learning.

In the second part of this study we will compare ICO-learning with its
equivalent differential Hebbian learning rule, namely the ISO-learning rule.
This comparison, performed on a simulated and real benchmark test, will
demonstrate that input correlation learning is indeed much faster and more
stable than the older ISO-learning. Finally, we will present a set of experiments
from different application domains which show that one-shot learning can be
approached when using the ICO-rule. These applications have been specifically
chosen to raise confidence that ICO-learning can be applied in a variety of
different situations.
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Figure 1: For caption see next page.
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Caption to figure 1: Circuit and weight change: A) General form of the
neural circuit in an open-loop condition. Inputs xk are filtered by resonators
with impulse response hk and summed at v with weights ρk. The symbol d/dt
denotes the derivative. The amplifier symbol denotes a changeable synaptic
weight, ⊗ is a correlator and

∑

is a summation node. The filters h1 . . . hN

form a filter bank to cover a wider range of temporal differences between the
inputs. B) Weight change curve. Shown is the weight change for two identical
resonators H0, H1 with Q = 0.51, f = 0.01. The two inputs x0 and x1 receive
delta pulses x1(n) = δ(n) and x0(n) = δ(n − T ). The temporal difference
between the inputs is T . The resulting weight change after infinite time is ∆ρ.
C) Behaviour of the weight ρ1 for ICO learning as compared to ISO learning.
Pairs of delta pulses are applied as in B. The time between the delta pulses
was set to T = 25. The pulse-sequence was repeated every 2000 time steps
until step 100,000. After step 100,000 only input x1 receives delta pulses. The
learning rate was µ = 0.001.

2 Input Correlation learning

2.1 The neural circuit

Fig. 1A shows the basic components of the neural circuit. In contrast to Porr
and Wörgötter 2003a we will for the mathematical formalism employ here the
z-transform instead of the Laplace transform. This is due to the fact that
the z-space provides a simple way to express the correlation and thus allows a
straightforward proof of convergence and stability (see also appendix A).

The learner consists of two inputs x0 and x1 which are filtered with func-
tions h.

u0 = x0 ∗ h0

uj = x1 ∗ hj
(2)

where the signal x1 is filtered by a filter-bank of N filters which are indexed
by j.

The filter functions h1 . . . hN represent a filter bank with different charac-
teristics so that it is possible to generate complex shaped responses (Grossberg,
1995). The filtered inputs uk converge onto a single learning unit with weights
ρk and its output is given by:

v =
N

∑

k=0

ρkuk (3)

The output will determine the behaviour of the system, but not its learning.
To make ICO learning comparable with ISO-learning, for h we will use

mostly resonators as in our previous work. We will, however, later also employ
other filter-functions if applicable. In discrete time the resonator responses are
given by:

h(n) =
1

b
ean sin(bn) ↔ H(z) =

1

(z − ep)(z − ep∗)
(4)
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where p∗ is the complex conjugate of p. Note, z-transformed functions are
denoted by capital letters or as ρ(z) in case of Greek letters. The index for the
time steps is n. The real and imaginary parts of p are defined as a = Re(p) =

−πf/Q and b = Im(p) =
√

(2πf)2 − a2 respectively which is the definition
for continuous time. The transformation into discrete time is performed by
the exponential ep in Eq. 4 which is called the impulse invariance method.
The parameter 0 ≤ f < 0.5 is the frequency of the resonator normalised to a
sampling rate of one. The so called quality Q > 0.5 of the resonator defines
the decay rate. We will mostly employ a very low quality (Q = 0.6) which
results in a rapid decay.

2.2 The learning rule

The learning rule for the weight change ρj is:

dρj

dt
= µuj

du0

dt
j > 0 (5)

where only input signals are correlated with each other. Comparing Eq. 1 with
the new learning rule we see that the output v has been replaced by the input
u0. The derivative indicates that the learning rule implements differential
learning (Kosco, 1986). Thus, we have differential heterosynaptic learning.

Weight changes can be calculated by correlating the resonator responses
of H0 and H1 in the z-domain. In the open loop case, this is straightforward
and only differs formally from the Laplace domain used in Porr and Wörgötter
(2003a) yielding the same weight change curves. Fig. 1B shows the weight
change curve for N = 1, H0 = H1 (for parameters see legend). Weights
increase for T > 0 and decrease for T < 0, which means that a sequence of
events x1 → x0 leads to a weight increase at ρ1, whereas the reverse sequence
x0 → x1 leads to a decrease. Thus, learning is predictive in relation to the
input x0. Weights stabilise if the input x0 is set to a constant value (or if x1 is
set to zero).

Fig. 1C shows the behaviour of ICO-learning as compared to ISO-learning
in the open loop case for the relatively high learning rate of µ = 0.001. Clearly
one sees that ISO-learning contains an exponential instability, which leads to
an upward bend in the straight line and prevents weight stabilisation even
when setting x0 = 0 at time step 100,000. This is different for ICO-learning
which does not contain this instability.
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Figure 2: ICO learning embedded into its environment. Σ is a linear summa-
tion unit. Except for the constant set-point SP , the inside of the organism
resembles ICO learning as shown in Fig. 1 A, but here shown without the filter
bank and transformed into the z-domain. D is a disturbance which is delayed
by T time-steps. The term z−1 denotes a derivative in the z-domain. Transfer
functions P0 and P1 represent the environment and establish the feedback from
the motor output v to the sensor inputs x0 and x1. S0 represents the input
before subtracting the setpoint.

3 ICO learning embedded in the environment

3.1 The closed loop circuit – General setup and learning
goal

ICO learning is designed for a closed loop system where the output of the
learner v feeds back to its inputs xj after being modified by the environment.
The resulting structure (Fig. 2), similar to that described in Porr et al. (2003),
is that of an subsumption architecture where we start with an inner feedback
loop which is superseded by an outer loop (Brooks, 1991). For a more detailed
discussion of such nested structure we refer to Porr et al. (2003).

Feedback loop: Initially only a stable inner reflex or feedback loop exists
which is established by the transfer function of the organism H0, the transfer
function of the environment P0, the weight ρ0 6= 0 and the (here constant)
set-point SP . Such a reflex could, for example, be the retraction reaction
of an animal, when touching a hot surface. In such an avoidance scenario X0

would represent the input to a pain receptor, with a desired state of SP = 0.
Hence a correctly designed reflex will indeed re-establish this desired state, but
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only in a reactive way, hence, only after the disturbance D has upset the state
at X0 for a short while. The delay parameter z−T is here introduced to define
the timing relation between inner, late and outer, early (predictive) loop.

Thus, the transfer function H0 establishes a fixed reaction of the organism
by transferring sensor inputs into motor actions. The transfer function P0

establishes the environmental feedback from the motor output to the sensor
input of the organism.

The goal of the feedback loop is to keep the set-point SP at S0 as precise
as possible. In this context X0 can be understood as an error signal which has
to be minimised. Without loosing generality we will set the set-point SP for
all theoretical derivations from now on to zero (SP = 0) which means that
S0 = X0 and we interpret the sensor input as the error signal.

Learning Goal: We are going to explain now how learning is achieved. Ini-
tially the outer loop, formed by H1, P1, is inactive because ρ1 = 0. It receives
the disturbance D at sensor input X1 earlier than the inner loop. In our
example, one could think of a heat radiation signal which is felt already be-
fore touching the hot surface. However, a naive system will not react in the
right way, withdrawing the limb before touching, as can be seen in very young
children, who will hurt themselves in such a situation.

Hence, the learning goal for this system is to grow ρ1 such that an earlier
appropriate reaction will be elicited after learning. As a consequence, after
learning X0 will, in an ideal case, never leave the set-point again and, in a way,
one could think of this as the reflex being shifted earlier in time. In the general
case there will be a filter-bank where every filter has its own corresponding
weight ρj, j > 0.

In the following subsections we will establish the formalism for treating such
closed loop systems and provide a convergence proof. The main result of this
section is that we will show that ICO-learning approaches on-shot-learning in a
stable convergence domain provided the inner loop represents a stable feedback
controller or, in other words, provided the reflex creates an appropriate and
stable reaction. Readers not interested in the mathematical derivations, which
rely on the application of some methods from control theory, might consider
skipping this section.

3.2 Stability Proof

3.2.1 Responses to a disturbance

The stability of a feedback system can be evaluated by looking at its impulse
response to a disturbance. The actual reaction of the feedback system to a
disturbance D can be calculated easily in the z-domain. In the simplest case
the disturbance is a delta pulse which is just D = 1 in the z-domain. In
more complex scenarios (like in the experiments) the disturbance is a random
event for which we assume that it is bounded and stable. Thus, we apply a
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disturbance D and observe the changes, for example, at the sensor input X0:

X0 = Dz−T P0 + X0H0ρ0P0 (6)

We can now solve for X0 and get:

X0 = Dz−T P0

1 − ρ0P0H0

(7)

This equation provides the response of the feedback loop to a disturbance D.
We demand here that the feedback is designed in a way that X0 is stable and
always decays to zero after a disturbance has occurred. For a general stability
analysis of feedback loops we refer the reader to D’Azzo (1988).

In addition we introduce

F = X0H0 = z−T P0H0

1 − ρ0P0H0

(8)

which is the response of the feedback loop at U0 to a delta pulse (D = 1). We
will need this term later for the stability analysis.

A pure feedback loop cannot maintain the set-point all the time because the
reaction to a disturbance D by the feedback loop is always too late. Thus, from
the point of view of the feedback it is desirable to predict the disturbance D
to preempt the unwanted triggering of the feedback loop (Palm, 2000). Fig. 2
accommodates this in the most general way by a formal “delay” parameter
z−T , which assures that the input x1 receives the disturbance D earlier than
input x0.

This establishes a second predictive pathway, which is inactive at the start of
learning (ρ1 = 0). The learning goal is to find a value for ρ1 so that the learner
can use the earlier signal at x1 to generate an anticipatory reaction which
prevents x0 from deviating from the set-point SP. Generally the predictive
pathway is set up as a filter bank where the input x1 feeds into different filters
which generate the predictive response.

The response of the system to a disturbance D with the predictive pathway
can be obtained in the same way as demonstrated for the feedback loop:

X0 =
P0[DP1

∑N
k=1 ρkHk + Dz−T ]

1 − P0ρ0H0

(9)

The goal is now to find a distribution of weights ρk so that the condition X0 = 0
is satisfied all the time. In other words: find weights which assure that the
input X0 never deviates from the set-point.

3.2.2 Analysis of Stability

Learning rule in the z-domain: Stability is achieved if the weights ρj

converge to a finite value. We will prove stability in the z-domain which has
two advantages: the derivative can be expressed in a very simple form and
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the closed loop can be eliminated. The result also provides absolute values of
the weights after a disturbance has occurred. Eq. 5 can be rewritten in the
z-domain:

(z − 1)ρj(z) = µ[(z − 1)U0(z)]Uj(z
−1) (10)

where (z − 1) is the derivative. Since the z-transform is not such a commonly
used formalism, we refer the reader to appendix A for a detailed description
of some of the used methods to arrive at Eq. 10. Note that the weight ρj(z)
is the z-transformed version of ρj(t). The change of the weight ρj(z) on the
left side is expressed in the same way as the derivative on the right side. This
formulation also takes into account that any change of the weight ρj(z) might
have an immediate impact on the values of U0 and Uj. Thus, we do not assume
here that learning operates at low learning rates µ. At this point we allow for
any learning rate.

Calculating the weight: To calculate the weight ρj(z) we need the filtered
reflex input U0 = X0H0 which can be directly obtained from Eq. 9.

The resulting weight ρj(z) can now be evaluated using:

ρj(z) = µF

[

DP1

N
∑

k=1

ρkHk + Dz−T

]

D−P−
1 H−

j (11)

where we will abbreviate from now on the time reversed functions H(z−1) by
H−.

Solving for ρj(z) gives:

ρj(z) =
µFDD−P1P

−
1

∑N
k 6=j,k=1 ρk(z)HkH

−
j + z−T µFDD−P−

1 H−
j

1 − µFDD−P1P
−
1 HjH

−
j

(12)

which is the value of the weight ρj(z) after a disturbance D.
To get a better understanding of the equation above we restrict ourselves

now to just one filter in the predictive pathway and set N = 1. In that case
the sum in the numerator vanishes to give:

ρ1(z) =
z−T µFDD−P−

1 H−
1

1 − µFDD−P1P
−
1 H1H

−
1

:=
M

K
(13)

Thus, we have a result that can be analysed for the stability of weight ρ1(z).

Stability criterion: A system is bounded-input bounded-output stable if
its impulse response and its corresponding transfer function Y satisfies the
following condition:

|Y (eiω)| <
n=+∞
∑

n=−∞

|y(n)| < ∞ (14)

for any ω (Diniz, 2002, p.63). In the following discussion we assume that all
functions can be expressed as fractions of polynomials. This is possible as long
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as the system behaves approximately linearly. Thus, the functions have zeroes
and poles in the z-domain. To keep the transfer function |H(eiω)| of Eq. 14
bounded one has to demand that the unit circle does not contain any poles.
Otherwise we would get unlimited exponential growth over time.

Hence, stability analysis requires two components: We need to show that
the numerator M in Eq. 13 remains bounded and that the denominator K
contains no additional poles.

Numerator M is bounded: We discuss first the numerator M of Eq. 13.
It can be interpreted as a correlation between two signals: The first signal
FD is the response of the feedback loop F to the disturbance D. The second
signal DP1H1 = U1 is the response of the predictive pathway P1H1 to the
disturbance D. Now, the question is under which conditions the correlation
between these two signals is stable. The one signal is the impulse response of
the stable feedback loop F . Stable feedback loops behave like low-pass filters.
Thus, they generate a damped exponential which decays to a constant value.
The other signal is the response of the predictive pathway. This signal will
also be dominated by a low pass characteristic because the filter H1 is, by
definition, a resonator with a strong low pass characteristics. Furthermore we
note that environmental transfer functions (here P1) generically establish a
low pass filter as discussed in Porr et al. (2003). Both signals, the response of
the feedback loop F and the response of the predictive pathway converge to
zero for infinite time. Hence, it can be assumed that, with great generality the
correlation of these two low pass signals also converges. Thus, the numerator
poses no threat to stability.

Denominator K has no additional poles: In the next step the denomi-
nator K has to be assessed. As we have to test if the denominator creates ad-
ditional poles. The denominator consists of amplitude terms DD−P1P

−
1 H1H

−
1

because in general |Y (ω)|2 = Y (z)Y (z−1)|z=eiω . These terms are real valued
as is the learning rate rendering the denominator K of Eq. 13 as:

K = 1 − µF |DP1H1|
2 6= 0|z=eiω (15)

which, for stability, is supposed to be unequal zero to prevent additional poles.
Thus, a simple stability criterion can be stated by:

max(µ|F ||DP1H1|
2)|z=eiω < 1 (16)

for all ω. If this criterion is maintained we do not get additional poles. If F,D
and P1 are known, H1 and µ can be designed in such a way that our stability
criterion is met.

Hence, we need to discuss only the one remaining complex function F ,
which is the impulse response of the feedback loop at U0. This loop is by
construction stable. Also, we remember that DP1H1 is the impulse response
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of the predictive pathway. Weight change results directly from the product of
these two functions weighted by the learning rate (see Eq. 5). The question
is: Up to which learning rate does this product obey Eq. 16. We note that, if
the disturbance D, the gain of the feedback loop F or the gain of the predic-
tive pathway P1H1 increases in amplitude, learning becomes faster and this is
permitted as long as the effective learning rate:

µ|F ||DP1H1|
2|z=eiω = µ̃ < 1 (17)

is below one. In other words the system must not produce an overshoot during
its first learning experience.

On the other hand, this also means that one is allowed to increase µ up to
that critical value, which leads to the fact that we can reach one shot learning
with ICO learning.. This is one of the central results of this study.

Behaviour of the final value of ρ1: Eq. 13 provides us also with the final
value of the weight ρ1(z). To gain a better understanding of the result we
multiply Eq. 13 by H1P1:

ρ1(z)H1P1 = z−T G

1 − G
(18)

where the constant G = µFDD−P1P
−
1 H1H

−
1 is the same for the numerator

and the denominator. The expression on the right hand side of Eq. 18 is a
formal description of a feedback controlled amplifier. This amplifier can be
inverting or non-inverting depending on the sign of the function G. The sign
is only determined by the impulse response of the feedback loop F because all
the other terms in G are positive.

As a second relevant observation we note that this means that the term on
the left hand side of Eq. 18 will have the same sign as the feedback reaction F
and, because of the delay term z−T it will act at the moment when the feedback
would be triggered.

More than one filter (N > 1): After having understood the case with just
one filter N = 1 we can now generalise to the case N > 1. Thus, we are getting
back to Eq. 12. Comparing Eq. 12 with Eq. 13 shows that the stability criteria
from the special case also apply to the general case: The denominators are the
same in both cases so that the criterion Eq. 16 still holds. The only difference is
the sum over correlations between different resonators (Hk correlated with Hj).
The crucial question here is whether or not the correlation of these resonator
responses is stable. The answer is affirmative because the correlation of one
resonator Hk with another one Hj is just the weight change for the case T = 0
of the learning rule (see Fig. 1B). This weight change is stable for the same
reason as given above: the correlation of two low pass filtered delta pulses is
bounded. Thus, ICO learning is also stable for a filter bank which is embedded
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in a closed loop. The absolute values of the weights in a filter bank are not
easy to understand because of the correlations between the filter functions Hj

and Hk. These correlations do not play a role after successful learning because
then x0 is constant and therefore any weight change is suppressed anyway.

4 Applications

This section has two purposes: it will compare the performance of ICO learning
with differential Hebbian (ISO-) learning and will show that ICO learning can
be applied successfully to different application domains. In sections 4.1 and 4.2
we use a biologically inspired task which will be first performed as a simulation
and then as a real robot experiment where a robot was supposed to retrieve
“food disks”. This task is similar to the one described in Verschure et al. (2003)
and to the second experiment in Porr and Wörgötter (2003b). In the simulation
we will compare ISO learning with ICO learning and show that the latter is
able to perform one shot learning under ideal noise free conditions. The actual
robot experiment will show that ICO learning also operates successfully in a
physically embodied system where ISO learning fails. Other complex control
examples will be presented in the last two experiments using different setups.

Figure 3: For caption see next page.
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Caption to Figure 3: The robot simulation. A) The robot has a reflex
mechanism (1) which elicits a sharp turn as soon as it touches the disk laterally
and thereby pulls the robot into the centre of the disk. The disk also emits
“sound”. The robot has the task to use this sound field to find the disk from a
distance (2). B) The robot has two touch detectors (LD) which establish with
the filter H0 and the fixed weight ρ0 the reflex reaction by x0 = LDl − LDr.
The difference of the signals from two sound detectors (SD) feed into a filter
bank. The weights ρ1 . . . ρN are variable and are changed either by ISO or
ICO learning. Apart from the reflex reaction at the disk the robot has a
simple retraction mechanism when it collides with a wall (“retraction”, not
used for learning). The output v is the steering angle of the robot. C) Basic
behaviour until the first learning experience. The trace at “*” continues in D)
where the robot has learned to target the disks from a distance. The example
here uses ICO learning with µ = 5 · 10−5. Other parameters: filters are set
to f0 = 0.01 for the reflex, fj = 0.1/j, j = 1 . . . 5 for the filter bank where
Q = 0.51 for all filters. Reflex weight was ρ0 = 0.005.

4.1 The simulated robot

This section presents a benchmark application which compares Hebbian (ISO)
learning with our new input correlation (ICO) learning. Fig. 3A presents the
task where a simulated robot has to learn to retrieve “food disks” in an arena.
The food disks are also emitting simulated sound signals. Two sets of sensor
signals are used. One sensor-type (x0) reacts to (simulated) touch and the other
sensor-type (x1) to the sound. The actual choice of these modalities, however,
is not important for the experiment, but this creates a natural situation where
sound precedes touch. Hence, learning must use the sound sensors which feed
into x1 to generate an anticipatory reaction towards the “food disk” (Verschure
et al., 2003). The circuit diagram is shown in Fig. 3B. The reflex reaction
is established by the difference of two touch detectors (LD), which cause a
steering reaction towards the white disk. Hence x0 is a transient signal that
occurs only during touching of a disk. As a consequence, x0 is equal to zero if
both LDs are not stimulated, which is the trivial case of not touching a disk
at all, or when they are stimulated at the same time which happens during
a straight encounter with a disk. The latter situation occurs after successful
learning which, as explained below, leads to the head-on touching of the disks.
The reflex has a constant weight ρ0 which always guarantees a stable reaction.
The predictive signal x1 is generated by using two signals coming from the
sound detectors (SD). The signal is simply assumed to give the Euclidean
distance (rr,l→s) of the left “l” or right “r” microphone from a sound source “s”.
The difference of the signals from the left and the right microphone rr→s−rl→s

is a measure of the azimuth of the sound source to the robot. Successful
learning leads to a turning reaction which balances both sound signals and
results ideally in a straight trajectory towards the target disk ending in a
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head-on contact. After having encountered a disk, the disk is removed and
randomly placed somewhere else.

An example of successful learning is presented in Fig. 3C and D. The robot
first bumps into walls. Eventually, it drives through the disk which provides
the robot with the first learning experience. In this example just one experience
has been sufficient for successful learning: The trace in Fig. 3D continues the
trace from C. Such one-shot learning can be achieved with ICO learning but not
with ISO learning. This will be tested now more systematically by comparing
the performance for ISO and ICO learning in a few hundred simulations.

We quantify successful and unsuccessful learning for increasing learning
rates µ. Learning was considered successful when we received a sequence of
four contacts with the disk at a sub-threshold value of |x0| < 0.2. We recorded
the actual number of contacts until this criterion was reached. Hence four
contacts represent our statistical threshold for deciding between chance and
actually successful learning. The choice of a threshold of 0.2 has two reasons:
First, when x0 is below the threshold the robot visibly heads for the centre
of the “food disk”. Second, the signal x0 has only discrete values because of
a discrete arena of 600 × 400 where the robot has a size of 20 × 10. Even
if the robot heads perfectly towards the food disk there will be very often a
temporal difference between the left and the right sensor because of the discrete
representation of both the robot and the round shaped food disk (diameter 20)
leading to a small remaining value of x0 (aliasing effect).

The log-log plots of the number of contacts in Fig. 4A,B show that both
rules follow a power law. The similarity of the curves for small learning rates
reflect the mathematical equivalence of both rules for µ → 0.

The dependence of failures on the learning rate is quite different for ISO- as
compared to ICO learning. For differential Hebbian (ISO) learning (Fig. 4B),
errors increase roughly exponentially up to a learning rate of µ = 10−4. This
behaviour reflects errors caused by the autocorrelation terms. Above µ = 10−4

failures reach a plateau with some statistical variability. For ICO-learning
(Fig. 4A) failures remain essentially zero up to µ = 0.0002; the learned be-
haviour diverges only above that value. In contrast to the ISO-rule, this effect
is here due to “over-learning” where the learning gain of the predictive pathway
is higher than the gain of the feedback loop. Thus, the predictive pathway be-
comes unstable already during the first learning experience. This means that
the effective learning rate (Eq. 17) has exceeded one. The actual learning rate
µ is lower because it is multiplied with the gains of the feedback reaction F
and the predictive pathway DH1P1 which depend on the actual experimental
setup.

For two different learning rates (µ = 5 · 10−6, 5 · 10−5) the weights ρj, j > 0
and the reflex input x0 are plotted in Fig. 5. The data have been taken from
four simulations of Fig. 4. Thus, success has been measured in the same way as
before, requiring |x0| to be below 0.2 for four consecutive learning experiences.
At the low learning rate (A,B,C,D) weights converge to very similar values
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Figure 4: Results from the simulated robot experiment. A) Results from ICO
learning and B from the ISO learning. Log-log plots show how many contacts
with the target were required for successful learning at a given learning rate µ.
Histograms show how many times learning was not successful. The bin size was
set to 10 experiments which gives an equal spacing on the log x-axis. Failures
are shown on a linear axis.

for ISO- as well as ICO-learning. This is not surprising as for low learning
rates the autocorrelation term in ISO learning is small. However, even for
such low learning rates the weights drift for the ISO learning case. This can
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Figure 5: Comparing ICO and ISO learning in individual simulated robot
experiments. A,B,E,F) Plots of the reflex input x0 of the contacts with
the food source and (C,D,G,H) of the weights for two learning rates: A-D)
µ = 5 · 10−6; E −H)5 · 10−5 for the two different learning rules ISO- and ICO-
learning. The inset in (G) shows steps from 6, 000 . . . 10, 000 plotted with a
y-range of −55.72 · 10−3 . . . − 55.54 · 10−3. The inset in (H) shows steps from
0 . . . 20, 000 plotted with a y-range of −0.001 . . . 0.0025.

be seen in particular between steps 3000 − 7, 000 in (D): Although there are
no contacts and, thus, x0 is zero weights drift upwards because of non-zero
inputs to the filter bank through x1. ICO learning (C) does not show any
weight drift because of three reasons: First, a constant input at x0 keeps the
weights constant. Second, the predictive input x1 is zero at the moment x0
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is triggered. This is the case after successful learning as seen, for example,
in Fig. 5C between steps 32, 000 . . . 36, 000. Third, the derivative (u′

0) of the
filtered input x0 is symmetric so that the weight change is effectively zero.
All these factors contribute to stability. Even in the case that x0 always re-
ceives small transients learning is stable. Transients can occur due to aliasing
in the simulation or in the real robot due to mechanical imperfections. Such
transients trigger unwanted weight change. However, they do not destabilise
learning if x0 is understood as an error signal which always counteracts un-
wanted weight change. For example, a transient at the reflex input x0 causes
the robot to learn a too strong steering reaction to the left. The next time the
robot enters the food disk the too strong left turn causes an error signal at x0

which reduces the steering reaction again. Thus, one finds that in these cases
weights will occasionally grow or shrink due to transients in x0. However, the
weights will be brought back to their optimal values if x0 carries a proper error
signal.

In the experiments with high learning rates (Fig. 5E,F,G,H) learning is very
fast resulting in stable weights for ICO after just two learning experiences,
which appear in panel (E) as large peaks. After the second peak weights
undergo only minimal change. In fact, the ”almost head-on” contacts (small
peaks in x0) between steps 6, 000 . . . 10, 000 of Fig. 5G cause the weights to
become more positive again. This is demonstrated the inset of Fig. 5G which
indicates that learning has initially caused a slight overshoot of the weights.

A different behaviour is observed for ISO learning (Fig. 5H): After the
second contact with the “food disk” the system starts to diverge. The au-
tocorrelation term dominates learning, leading to exponential growth of the
weights. After step 22, 000 the reflex input x0 is zero which means that only
the autocorrelation terms change the weights. Behaviourally we observe that
the robot first learns the right behaviour, namely driving towards the food
disk. This behaviour corresponds to negative weights as seen in Fig. 5C,D,G.
After step 10, 000, however, the weights drift to positive values which is be-
haviourally an avoidance behaviour. This behaviour becomes stronger and
stronger so that the robot will never touch the food disk again. This unwanted
ongoing learning is due to the movements of the robot which cause a contin-
uously changing sound signal x1 resulting in a non-vanishing auto-correlation
term. Thus, while ICO learning (Eq. 5) is stable for both low and high learn-
ing rates its differential Hebbian counterpart ISO learning is only stable at low
learning rates.

The benchmark tests above have provided an ideal condition for learning
where just one “food disk” was in the arena. This gave a perfect correlation
between proximal and distal sensor. Having three “food disks” in the arena at
the same time renders learning more difficult (Fig. 6). Now, we have no longer
a simple relationship between the reflex input x0 and the predictor x1. The
sound fields from the different “food disks” superimpose onto each other so
that the distal information is distorted. However, ICO learning also manages
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Figure 6: ICO-learning simulation with three simultaneously present food disks.
The parameters are the same as for the last simulations. A) Trace of the robot
simulation for the whole simulation. The trace before learning kept in gray
to differentiate it from the learning behaviour. Initially, learning is switched
off for the first 1000 steps to demonstrate purely reflexive behaviour when en-
countering the disk at “R”. The following first three learning experiences are
marked as “1–3”. B) Weight development during learning. The learning rate
was set again to µ = 5 · 10−5.

this scenario without any problems. Fig. 6A depicts the trace of a run starting
just before the first learning experience. Panel B shows the corresponding
weight development which is stable as well. Again, ISO learning is not able to
perform this task at this high learning rate (data not shown).

In summary the simulations demonstrate that ICO learning is much more
stable than the Hebbian ISO learning rule. ICO learning is able to operate
with high learning rates approaching one shot learning under ideal noise-free
conditions.
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Figure 7: Experiment with a real robot. A-C show traces during the run which
lasted 8:46 min. A is taken from the start of the run at 0:06 showing the
first reflex reaction, B and C show learned targeting behaviours after 3:45 (14
contacts) and 4:48 (18 contacts) respectively. The development of the weights
and the trace x0 is shown in D. The values of the weights for Panels B and C
are indicated by arrows. Parameters: Learning rate was set to µ = 0.00002,
the reflex weight to ρ0 = 40, and the video input image v(Ξ, Υ) was Ξ =
[1 . . . 96] × Υ[1, 64] pixels. The scan-line for the reflex was at Υ = 50, scan-
line for the predictor was at Υ = 2. The reflex x0 and the predictive signal x1

were generated by creating a weighted sum of thresholded gray levels: x0,1(Υ) =
∑

96
Ξ=1(Ξ − (96/2))2Θ(v(Ξ, Υ) − 128) where Θ is the Heaviside function. The

predictive input is split up into a filter bank of 5 filters. The predictive filters
have 100, 50, 33, 25, 20 taps where all coefficients are set to one. The reflex
pathway is set up with a resonator set to f0 = 0.01 and Q = 0.51. The camera
was a standard pinhole camera with a rather narrow viewing angle of ±35◦.
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4.2 The real robot

In this section we will show that the same “food-disk” targeting task can also
be solved by a real robot. This is not self-evident because of the complications
that arise from the embodiment of the robot and its situatedness in a real
environment. See Ziemke 2001 for a discussion of the embodiment principle.
In addition, we will show that it is possible to use other filters than resonators
in the predictive pathway.

As before, the task of the robot is to target a white disk from a distance.
Similar to the simulation the robot has a reflex reaction which pulls the robot
into the white disk just at the moment the robot drives over the disk. This re-
flex reaction is achieved by analysing the bottom scan-line of a camera mounted
on the robot. The predictive pathway is created in a similar way: A scanline
from the top of the image, which views the arena at a greater distance from the
robot (hence “in its future”) is fed into a filter-bank of five filters. In contrast
to the simulation these filters are set up as FIR filters with different numbers
of taps where all coefficients are set to one. Thus, the only thing such a filter
does is to smear the input signal out over time while the response duration is
limited by the number of filter taps. We had two reasons for choosing such fil-
ters. First, in contrast to ISO learning, we do not need orthogonality between
the reflex pathway and the predictive pathway. Thus, it is possible to employ
different filter functions in the different pathways. This made it possible to
solve a problem that exists with this robot setup: Because we used a camera
with a rather narrow angle we had to put the “food disk” rather centrally in
front of the robot. The FIR filters generate step responses which result in a
clearly observable behavioural change after learning as soon as the food disk
enters the visual field of the robot. Resonator responses are “too smooth” and
reflex and learned reaction look too similar.

The reflex behaviour before learning is shown in Fig. 7A where the robot
drives exactly straight ahead until it encounters the white disk. Only when
it sees the disk directly in front of it a sharp and abrupt turning reaction is
generated. Learning rate was set to the highest possible value such that at
higher learning rates the system started to diverge. Learning needs longer
than in the simulation: About ten contacts with the white disk are needed
until a learned behaviour can be seen. Examples for successful learning are
shown in panels B,C. Now the robot’s turning reaction sets in from a distance
of about 50 cm from the target disk. Thus, the robot has learned anticipatory
behaviour.

The real robot is subject to complications which do not exist in the simula-
tion. The inertia of the robot, imperfections of the motors and noise from the
camera render learning more difficult than in the simulation. As a consequence
of this we obtain a non-zero reflex input x0 all the time as shown in the top
trace of Fig. 7D. This is also reflected in the weight development: The weights
change during the whole experiment. However, they do not diverge. Rather,
they oscillate around their best value. The experiment can be run for a few
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hours without divergence.
Another reason for weight change is the limited space in the arena. This

effect can be drastic if the robot, for example, is caught in a corner of the arena.
Imagine the robot first encounters a “food disc” and then directly bumps into
a wall. The bump causes then a retraction reaction which changes the input
x0 and therefore the reflex reaction. Consequently learning is affected by such
movements. Another aspect is the human operator who throws the food disks
in front of the robot. If the food disk is thrown in too late in front of the
robot the timing between x1 and x0 is different which also leads to wrong
correlations.

All additional error sources like noisy data impose an upper limit for the
learning rate. This limit, however, is not the theoretical one (Eq. 16) but a
practical limit to protect the robot from learning the wrong behaviour during
its first learning experience (Grossberg, 1987).

Figure 8: For caption see next page.
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Caption to Fig. 8: A) Setup of the mechanical system. The position of
the main arm is maintained by a PI controller controlling motor force M with
ρ0 = 6; its position is measured by a potentiometer P , SP = 100◦, effective
equilibrium point (EEP) reached = 93.2◦. Note, the effective equilibrium point
will only be identical to the set-point for an ideal controller at infinite gain. A
disturbance D is introduced by an orthogonally mounted smaller arm. System
parameters were: sampling interval 5 ms, µ = 2×10−5, f0 = 10 Hz, Q0 = 0.6,
Qj

1 = 0.6, f j
1 = 20 Hz

j
, j = 1, . . . , 10. B) Signal traces D, M , and P from one

experiment. The inset ρ1 shows the development of the connection weights.
Disturbances are compensated after about four trials and weights stabilise.

4.3 Control Applications

In the next two sections we will demonstrate that ICO-learning can be used
also in more conventional control situations. To this end, we note first that
a reflex is conceptionally very similar to a conventional closed loop controller,
where a setup is maintained by a feedback reaction from the controller as
soon as a disturbance is being measured. In the next section we will show
anticipatory control of a mechanical arm as well as feed-forward compensation
of a heat pulse in a temperature controlled container, such as those commonly
used for chemical reactions. Mainly we will try to demonstrate that also in
these situation ICO learning converges very fast, which may make it applicable
in more industrial scenarios, too.

4.3.1 The mechanical arm

To show that ICO learning is also able to operate with a classical PI controller
we have set up another mechanical system. In addition we show in this example
how weights can be kept stable if the input x0 is too noisy. Recall that weight
stabilisation occurs as soon as x0 = 0 (Eq. 5). To assure this, we employ here
a threshold around the SP creating an interval within which x0 was set to zero.

For our mechanical arm (Fig. 8A,B) a conventional PI controller defines
the reflexive feedback loop controlling arm position P = x0. The PI controller
replaces the resonator H0 in this case. To stop the weights from fluctuating we
employ a threshold at x0 of Θ = ±1◦ around the set-point. Disturbances (D =
x1) arise from the pushing force of a second small arm mounted orthogonally
to the main arm. A fast reacting touch sensor at contact point measures D.
Force D is transient (top trace in Fig. 8B) and the small arm is pulled back
by a spring. A moderately high learning rate was chosen to demonstrate how
the system develops in time. The second trace M = v shows the motor signal
of the main arm. Close inspection reveals that during learning this signal first
becomes bi-phasic (small inset curve), where the earlier component corresponds
to the learned part and the later component to the PI controller’s reaction.
At the end of learning only the first component remains (note the forward
shift of M with respect to D). Trace P = x0 shows the position signal of the
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main arm. In the control situation learning was off and a bi-phasic reaction
is visible with about 10◦ position deviation (peak to peak). During learning
this deviation is almost fully compensated after four trials. Inset curves ρ1 at
the bottom show that the connection weights have stabilised after the fourth
trial. The fifth trial is shown to demonstrate the remaining variability of the
system’s reaction.

Figure 9: Learning to keep the temperature ϑ in a container C constant
against external disturbances. Container volume was 500 ml, Main heat source
was provided by a 500 W coil heater (κv), main cooling source by pulse-
width modulated, valve-controlled water flow through a copper coil (φv) with
max. 750 ml/min at 17◦ C. The disturbance heat source (κD) received pulses
of 1000 W from D. Data acquisition and control was performed with a USB-
DUX board. Sampling rate was 1 Hz. The resonator in the feedback loop was
set to f0 = 0.2 Hz, Q0 = 0.51 and its corresponding weight to ρ0 = 50. H1 is
a filter bank of resonators with parameters given below.

4.3.2 Temperature control

Fig. 9 shows anticipatory temperature control against heat spikes, which could,
in a real plant, be potentially very damaging. A feedback loop with a resonator
H0 guarantees a constant temperature SP in a container. The actual temper-
ature is controlled by an electric heater (κv) and by a cooling system (φv).
The system can be considered as non-linear because cooling and heating are
achieved by different techniques. The demanding task of learning here is to
predict temperature changes which are caused by another heater κD which is
switched on occasionally. In a real application this heater would be rather a
second thermometer or other sensor that is able to predict the deviation from
the set-point SP.
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Figure 10: For caption see next page.
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Caption to Figure 10: Temperature control experiments. Parameters of the
filter bank H1 are Qj

1 = 0.51 f j
1 = 0.1 Hz

j
, with for A,B: j = 1, . . . , 12 and for

C,D: j = 1, . . . , 10. Experiments with different parameters: A) SP = 60◦ C,
EEP = 59.2◦ C, ρ0 = 250, disturbance pulse duration 10 s, µ = 4 × 10−8.
B) SP = 70◦ C, EEP = 68.4◦ C, ρ0 = 250, disturbance pulse duration 20 s,
µ = 4× 10−7. C) SP = 44.0◦ C, EEP = 43.5◦ C, ρ0 = 150, disturbance pulse
duration 12 s, µ = 7.5 × 10−7. D) Same as in C, except for higher feedback
gain of ρ0 = 250 (EEP = 43.9◦ C) and lower learning rate of µ = 2 × 10−11,
but using ISO-learning as denoted in the figure. Note that the levels of the
input signals at ρ0 and ρj, j > 0 are different. This leads to different absolute
values for ρ0 and ρj, j > 0.

Several temperature experiments have been performed at different set-
points. In part A a high gain and small µ was used and learning compensates
over- and undershoot in about 15 trials. Part B shows that with a high gain
and a high learning rate the heat spike is compensated in a single trial, which
could represent a vital achievement in a real plant. In this case, compensa-
tion of the undershoot, however, takes much longer (not shown). In part C
a low gain was used and the system reacts rather slowly. Learning compen-
sates the overshoot after four trials and the effective equilibrium point is now
again reached, which was not the case before learning. In all situations (A-C),
weights essentially stabilise and drift only slightly around their equilibrium,
because no threshold was used at x0. These small oscillations are similar to
the behaviour of the weights in the real robot experiment, which were also os-
cillating around their equilibrium. Furthermore, we note that learning already
sets in strongly in the first trial immediately influencing the output.

In part D we show how the system reacts when using the Hebbian learning
rule (ISO-learning). We observe bad convergence even for rather small learning
rates of µ = 2× 10−11, which is more than 1000 times smaller than those used
for panels A-C. These findings mirror the results of the simulations performed
above. Some compensation occurs, but weights drift much more. To achieve
this specific result, a higher gain had to be used than in the equivalent exper-
iment shown in C. With a lower gain convergence was never reached probably
due to the noise in the signals. It should also be noted that this experiment
was the best out of 20 using ISO-learning.

5 Discussion

In the current paper we have presented a modification of our old ISO-learning
rule, which has led to a dramatic improvement of convergence speed and stabil-
ity. Mathematically we were able to show that under ideal noise free conditions
ICO learning approaches one-shot learning.

The relations of these types of differential Hebbian learning rules (Kosco,
1986; Klopf, 1986; Sutton and Barto, 1987; Roberts, 1999) to temporal se-
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quence learning and to reward-based learning, most notably TD- and Q-
learning (Sutton and Barto, 1998); and its embedding in the existing liter-
ature has been discussed by us to a great extent in a set of older papers (see
in particular Wörgötter and Porr 2005 for a summary). Here we would like to
restrict the discussion only to the relevant novel features of ICO-learning.

Now, we have to discuss the different application domains of ICO versus
ISO learning. ICO and ISO learning are identical, when using an orthogonal
filter set for the condition of µ → 0. In this situation, the autocorrelation term
of ISO learning vanishes and convergence is guaranteed for ISO learning as
well (Porr et al., 2003). The advantage of ISO learning as compared to ICO
learning is its “isotropy”: all inputs can self-organise into reflex inputs or pre-
dictive inputs, depending on their temporal sequence (see Porr and Wörgötter
2003a for a discussion on this property). For ICO learning one needs to build
the predefined subsumption architecture (Fig. 2) into the system from the be-
ginning. This means that we have to set up a feedback system which has a
desired state and an error signal (x0 → 0) which drives learning. In the context
of technical control applications this is usually given so that ICO learning is
the preferred choice against ISO learning (D’Azzo, 1988). In biology, however,
self-organisation is the key aspect. ISO learning has the ability to self organise
which pathways become reflex pathways and which pathways become predic-
tive pathways. Reflex pathways can be superseded by other pathways which
in turn can become reflex pathways. This also means that ISO learning is able
to use any input as an error signal whereas ICO learning can only use x0 as
an error signal. By hierarchically superseding reflex loops ISO learning is able
to self-organise subsumption architectures (Brooks, 1989; Porr et al., 2003),
which is not possible with ICO learning.

The filter-bank here is used to generate an appropriate behavioural re-
sponse. In contrast to our older ISO learning it is possible to use other filter
functions like step functions for the filter bank which has been demonstrated
in the real robot experiment. The only restriction imposed on the filter-bank
is that it should establish a low pass characteristic. This characteristic is has
to be established by the closed loop not by the open loop. This means that the
actual filter in the filter bank need not to posses a low pass characteristic but
the closed loop established by the environment. Filter banks have been em-
ployed in other learning algorithms, for example in TD-learning (Sutton and
Barto, 1998). In contrast to our learning scheme the filters there are used only
for the critic and not for the actor. In other words: they are used to smear out
the conditioned stimulus so that it can be correlated with the unconditioned
stimulus.

In terms of synaptic plasticity ISO- and ICO learning differ substantially:
While ISO learning can be interpreted as a homo-synaptic learning rule (Porr
et al., 2004), ICO-learning is strictly heterosynaptic. The neuronal literature
on heterosynaptic plasticity normally emphasises that it is essentially a mod-
ulatory process which modifies (conventional) homo- synaptic learning (Bliss
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and Lomo, 1973; Markram et al., 1997), but cannot lead to plasticity on its own
(Ikeda et al., 2003; Bailey et al., 2000; Jay, 2003). However, evidence was also
found for a more direct influence of heterosynaptic plasticity in Aplysia siphon
sensory cells (Clark and Kandel, 1984), in the Amygdala (Humeau et al., 2003)
and in the limbic system (Beninger and Gerdjikov, 2004; Kelley, 2004).

As a consequence, heterosynaptic learning rules have so far mostly been
used to emulate modulatory processes, for example, by the implementation
of three-factor learning rules, trying to capture dopaminergic influence in the
Striatum and the Cortex (Schultz and Suri, 2001). To our knowledge ICO
is the only learning rule that operates strictly heterosynaptically, which, for
network learning and plasticity, might open new avenues as compared to the
well established Hebb rules (Oja, 1982; Kohonen, 1988; Linsker, 1988; MacKay,
1990; Rosenblatt, 1958; von der Malsburg, 1973; Amari, 1977; Miller, 1996a).

For example, the tremendous stability of ICO, which is guaranteed for
x0 = 0 or can be enforced by using a threshold (x0 < Θ), will allow designing
stable nested or chained architectures of several ICO-learning units where the
“primary” units in such an architecture are controlled by the feedback neuronal
activity of the “secondary” ones. Hence, the secondary neurons in such a
setup would provide the x0 signal by ways of an internal feedback loop, which
takes the role and replaces the behavioural feedback employed here. Not only
does this shed an interesting light on neuronal feedback loops like the cortico-
thalamic loops (Alexander et al., 1986; Morris et al., 2005) but it might also
offer interesting possibilities for novel network architectures, where stability
can be built into the system by ways of such loops.

Like ISO learning ICO learning develops a forward model (Palm, 2000,
p.592) of the reflex reaction established by H0, ρ0 and P0. The forward model
is represented by the resonators and weights Hj, ρj, j > 0 (Porr et al., 2003).
The main advantage of ICO learning against ISO learning is that it is not
limited to resonators (Hj) as filters. We have shown here that instead of
resonators simple FIR filters can be used for the filter bank. The required low
pass characteristic came from the environment. The FIR filter was, however,
just an example. Future research has to systematically explore which linear
and non-linear filters are suitable for ICO learning.

Finding a target with a simulated or real world device has been employed
in earlier works. The oldest model with hand tuned fixed weights has been
employed by Walter (1953) where his tortoise had to find its home cage. To
find the optimal weights Paine and Tani (2004) have recently employed a ge-
netic algorithm which is able to solve a T-maze task. Their simulated robots
need 63 generations. When it comes to learning basically two paradigms are
employed: reinforcement learning or Hebbian learning. In reinforcement learn-
ing Q-learning seems to be the learning rule of choice. Q-learning generates
optimal policies to retrieve a reward where a policy associates a sensor input
with an action. The Q-value evaluates the policy if it leads to a reward or not.
The higher the Q-value the more probable is the future or immediate reward.
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Q-learning has been successfully to applied by Bakker et al. (2002) to a T-maze
task: The robot has to learn that a road sign at the entrance of the T-maze
gives the clue if the reward is in the left or in the right arm. To solve this
task the simulated Kephera robot needed 2,500 episodes. Thrun (1995) also
employs Q-learning to find a target. In contrast to Bakker et al., however, the
robot navigates freely in an environment. This task probably comes closest to
our task. Successful targeting behaviour is established after approximately 20
episodes. Our robot needed approximately 15 contacts with the white disk to
find it reliably. However, after 20 episodes the success rate in the experiment
by Thrun is still very poor. Further 80 episodes are needed to bring the suc-
cess rate up to 90%. Our robot has already a comparable success rate of 90%
after these 15 contacts, given that the camera can see the disk. The different
convergence speeds suggest that Thrun has employed a lower learning rate.

The other learning rule which has been employed to solve targeting tasks
is Hebbian learning. In Verschure and Voegtlin (1998) and Verschure et al.
(2003) the robot has the task to find targets. Similar to our robot, their
robot is equipped with proximal and distal sensors. The proximal sensors
trigger reflex reactions. The task is to use the distal sensors to find the targets
from the distance. In contrast to our heterosynaptic learning, Verschure and
Voegtlin employ Hebbian learning and not heterosynaptic learning. In order
to limit unbounded weight growth they modified the Hebbian learning rule.
In Verschure et al. (2003) this has been done directly by adding a decay term
proportional to the weight. In Verschure and Voegtlin (1998) infinite weight
growth is counteracted by inhibiting the signals from the distal sensors or in
other words the conditioned stimuli. Unfortunately a direct comparison of the
performances with our experiment is not possible because it is not clear from
Verschure and Voegtlin (1998); Verschure et al. (2003) how many contacts with
the target were needed to learn the behaviour.

Touzet and Santos (2001) have systematically compared different reinforce-
ment learning algorithms applied to obstacle avoidance. Such systematic ap-
proaches are difficult to achieve because of different hardware platforms, dif-
ferent environments and different ways of documenting the robot runs. Thus,
a systematic evaluation of the different learning rules will be subject of further
investigation.
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A Using the z-transform for the convergence

proof

In this section we are describing in detail how we transformed the learning
rule Eq. 5 into the z-domain. The z-transform of a sampled (or time discrete)
signal x(n) is defined as:

X(z) =
∞
∑

n=−∞

x(n)z−n (19)

The capital letter X(z) denotes the z-transform of the original signal x(n).
The z-transform is the discrete version of the Laplace transform which in
turn is a generalised version of the Fourier transform. The original signal
and its z-transform are equivalent if convergence can be guaranteed (Proakis
and Manolakis, 1996).

The z-transform has a couple of useful properties which simplify the con-
vergence proof shown in section 3.2.2.

• Convolution: The z-transform can be applied not only to signals but
also to filters. Filtering in the time domain means convolution of the
signal x(n) with the impulse response h(n) of the filter. In the z-domain
it is just a multiplication with the transformed impulse response:

x(n) ∗ h(n) ⇔ X(z)H(z) (20)

For example, Eq. 2 turns into Uj = XjHj in the z-domain where the cap-
ital letters indicate the z-transformed functions. Once transformed into
the z-domain equations can be solved by simple algebraic manipulations.
For example Eq. 6 can be solved for X0 by subtracting X0H0ρ0P0 from
both sides and then dividing the equation by 1 − ρ0P0H0.

• Correlation: The correlation of two signals can be derived from the
convolution (Eq. 20) by recalling that a correlation is just a convolution
where one signal is reversed in time. Time reversal x(−n) in the z-domain
X(z−1) leads directly to a formula for correlation:

x(n) ∗ h(−n) ⇔ X(z)H(z−1) (21)

• Derivative: The derivative in the z-space can be expressed as an oper-
ator (Bronstein and Semendjajew, 1989):

d

dn
⇔ (z − 1) (22)

With that background it is now possible to z-transform the learning rule
Eq. 5:

ρ′
j = µuju

′
0 ⇔ (z − 1)ρj = µUj(z

−1)(z − 1)U0(z) (23)

which is equation Eq. 10. Note that the derivative on the right hand side is
not time reversed because it belongs to U0.
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