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Abstract

The nervous system is operationally closed. It operates only in contact to
itself. This astonishing claim has been made by Heinz von Foerster, one of
the founders of radical constructivism. This work explores the consequences
of his claim in the context of linear signal theory, embodiment and the cre-
ation of artificial artifacts. In linear signal theory all transfer functions can
be directly associated with the neural activity where also the environment is
described by neural activity. This means that the environment is no objective
entity but is described in terms of internal activity. We construct the worlds
in our heads. The phenomenon of embodiment is interpreted here from the
perspective of the nervous system, thus from the inner perspective. To iden-
tify inside and outside an organism must learn to identify the disturbances
which are only in the environment. This can be done by anticipatory learn-
ing. Thus, embodiment is a process which emerges from the anticipation of
disturbances. If one wants to design artifacts in the context of constructivism
one has to obey that only quantity (activity) plays a role but no interpreta-
tion of activity. In addition one has to design an agent which performs input
control and not output control.

1 Introduction

One of the fathers of radical constructivism is Heinz von Foerster (von Foerster,
1960). He proposed the second order cybernetics which emerged from the classi-
cal cybernetics introduced by Wiener (1961) and his colleagues. In the classical
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cybernetics closed loop control systems are observed from the outside by an ob-
jective observer. All variables are observable and the system can be described in
an objective way (Kalman, 1963). Von Foerster argued that objective observation
is not possible since also the external observer operates as a closed loop system.
Observation means simply that the observer integrates the observed system into
his or her loop.

In this paper we will also deal with an observer problem: is it possible for
the organism itself to observe its own boundaries? Thus, we radically employ
the perspective of the organism. More precisely we will radically employ the
perspective of the nervous system. Therefore will ask if the nervous system is
able to distinguish between inside and outsida more modern terms we ask if
the nervous system is able to decide if ieisbodied (Brooks, 1989; Pfeifer and
Scheier, 1999) or not.

Mathematically we will stay in the field of lineacontrol theory and we will
try to give this mathematical formalism a new meaning in the light of radical
constructivism (Schmidt, 1994).

Having introduced the mathematical formalism it makes easy to switch over
to artificial agents (“animats”) which can be described by this formalism. Conse-
quently, we will give finally some guidelines how to apply the highly theoretical
claims to more practical situations.

2 Reactive systems

In this section we will elaborate on reactive systems (Phillips, 2000). We define a
reactive system as a system which only acts after a sensor event has occurred. In
the context of control theory a reactive system is know as a feedback system.

We will, however, show that the interpretation of the mathematical formalism
is different if we radically employ the perspective of the agent. This section will
basically put von Foerster’s ideas (von Foerster, 1985) into the context of linear
control theory (D’Azzo, 1988). We will do this in two steps: we will first introduce
reactive autonomous systems. Secondly, we will discuss the issue of embodiment
in the light of feedback control. It will be shown that from the perspective of the

In this work we assume that the nervous system is already there and that it is operational in
the sense that it generates stable reactions of the agent.

2We don’t make the claim, however, that everything is linear in real world applications. The
linear control theory only serves as an example. The claims below can be easily extended to
non-linear theories if one obeys causality.



agent it will be difficult to distinguish between environment and agent.

2.1 Transfer functions and signals

Linear control systems are described by transfer functions and signals (D’Azzo,
1988). A transfer function transforms an input signal into an output signal. If we
switch from the temporal domain to the Laplace space (Stewart, 1960) even this
distinction is no longer needed.

In this section we will show how the transfer functions and signals can be
interpreted from the organism’s point of view.

»[Hy]
Agent Xo Vv
Environ-
ment E{

Figure 1: A simple self referential system. The transfer function Hy transforms sensor
signals X into motor signals V. The transfer function P transforms the motor signals V'
back into sensor signals X.

The control diagram Fig. 1 represents a minimal system with feedback. The
symbol H, represents the transfer function which defines the agent. The transfer
function P, is the transfer function of the environment. The role of the transfer
function H, is to transform input signals into output signals. Here it may help
to think of a sensor-motor transforn¥'(s) = Hy(s)Xo(s)). P, on the other
hand defines the transfer function of the environment which performs the opposite
(Xo(s) = Fo(s)V (s)).

Both P, and H, form a closed loop system with its own dynamics. Such a
system can be stable or unstable. Von Foerster like other cyberneticians demands
that such a system must be stable. Stability in our simple linear system means that
there is a desired state of the system and this state will be reached after a finite
time. The actual desired state is defined by both transfer funcitgasd H,. To
achive stability usually negative feedback is introduced which is a counterforce
which compensates the disturafice

3Negative feedback shall not be interpreted as a form of evaluation like a punishment. It simply
means that any deviation receives a counterfource which restores the desired state. If a room is



The two transfer functions can be combined to one transfer functicn
by, for example, dividing both transfer functions by the environmental transfer
function P(s). Thus, the transfer functiof(s) = Hy(s)/FPy(s) represents both
the environment and the organism. This seems to be weird as this makes organism
and environment indistinguishable.

To make sense of(s) we have to interpref{(s) and P(s) in a different
way. ldentifyingH (s) and P(s) with the agent and the environment respectively
doesn’t work any longer. It makes more sense, howevatjeiatify both H and
P with the agent. Given this interpretatiot(s) would also simply represent the
organism.

ldentifying both functions?(s) and Hy(s) with the agent is a reasonable ex-
planation if we are radically employing the perspective of the agent. In particu-
lar if we are here employing the perspective of the nervous system. One of von
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Figure 2: Self referentiality: Nerve cells (N) are interconnected by synapses (syn) and by
the sensor- (S) motor- (M) loop. They also influence themselves with the help of hormons
(NH). Taken from von Foerster (1985).

Forester’s famous statements is that the nervous sysigniransforms neuronal
signals into neuronal signals. Signals transmit only quantities but no quality. A
light sensor transmits only intensity but not that it is light. From the perspective
of the nervous system also the environment only transforms neuronal signals into

too hot the central heating will goff. If the room is toocold the central heating will gon. The
negative feedback involves only a sign inversion but no evaluation.
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other neuronal signals: Thetivity of motor neurons only cause changes of the
activity at sensor neurons (see Fig. 2). Thus, the environment is only a special
synaptic “gap” from the perspective of the nervous system. Knowing that the ner-
vous system only operates with neuronal signals we see that the transfer functions
above represent simply neuronal activity and their transformations. This is triv-
ially the case for the agent’s transfer functiéfy but it is also the case for the
environmental functio,.

Only an observer can distinguish betwdénand F,. The observer, however,
has difficulties to identify the right transfer functions. Therefore an observer might
argue that such transfer functions are also not known to the agent. This, however,
is only a problem of the observer. For the agent the transfer functions simply result
from the neuronal activity which is transformed into itself — no matter where this
actually takes place. For the agent it is simply his/her own personal neuronal
activity. The world is in our head.

In summary the transfer functiorg(s) and P(s) simply represent transfor-
mations of neuronal signals. From the perspective of the nervous system there is
no distinction between inside and outside. This is one of the main arguments of
radical constructivism.

Thus, embodiment in the naive sense of having a physical body with physical
boundaries does not make sense from the perspective of the organism. In the
context of radical constructivism physical embodiment does not exist. We will,
however, try to rescue the concept of embodiment by introducing disturbances
from the environment.

2.2 Disturbances

At this point we refer to von Foerster’s colleague Ashby (1956) who introduced
disturbances(denoted byD here). A disturbance is a signal which causes a de-
viation from the desired state in the feedback system. Every feedback system
experiences disturbances. We get, for example, hungry which can be interpreted
as a deviation from the desire state. To eliminate this undesired state we usually
eat to restore the desired state. An optimally designed feedback system is able to
cope with any disturbance. In Ashby’s terms: The system has enough requisite
variety to cope with any disturbance. In biology, however, this might not be nec-
essary: McFarland (1989) argues that for an organism it is sufficient to maintain

“Maturana called the disturbances “perturbations” to make clear that he stresses the inner per-
spective of the organism. We will stay with the word disturbance.



a “weak” homeostasis which keeps the organism away from lethal boundaries but
allows in general deviations from the desired state.

What makes a disturbance different to an ordinary (neuronal) signal? A dis-
turbance can also be formulated by a transfer funciigg). From a pure mathe-
matical point of viewD is not special. The disturbance, however, addsitipee-
dictable component to the control system. It can not be absorbed by the control
loop.

Environ-

ment 0
D

P

°

Figure 3: Transformation of the standard feedback-loop (a) into a unity-gain feedback
(b). The transfer-function of the environment Py can be integrated in the transfer-function
of the organism. However, any unpredictable disturbance can not be eliminated. c) A
predictable disturbance, on the other hand, can be subtracted.

Now we have to define more precisely what actually a disturbance is. We have
to add the disturbance to Fig. 1. This results to Fig. 3. Anything whigirds
dictable cannot be a disturbance. Or, technically speaking, if we know or if we
can predict the properties @f, we can subtract it by including the negative trans-
fer function— D into the loop (see Fig. 3C). For example a constant (unchanging)
input can be fully compensated for in this way and this holds for any other fully
predictable signal. Indeed also this happens in many situations in physiology. For
example, if a person permanently looses one side of his/her vestibular sensor in-
put, he/she will feel this as a strong disturbance only for a while. After several
days the system adapts to this permanent change of its inputs and the person fully
recovers. Also periodic inputs are no disturbances. They also can be integrated in
the loop.

Thus, it is the aspect afontingency which constitutes a disturbance and the
existence of such disturbances is the constituting necessity for the existence of
negative feedback loops. Without disturbances such loops would be unnecessary.

This makes it also clear that disturbances only make sfengiee agent but not
for the environment. Disturbances disturb the homeostasis of the agent. The en-
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vironment, however, does not maintain a homeostasis. Therefore, only the agent
knows what is a disturbance and what is not. The environment can not be dis-
turbed. The environment is not a closed loop system itself. In the environment,
however, might exist other closed loop systems in form of other organisms but this
is not necessarily the case. Reciprocal disturbances exist in the very special case
of social interaction (Luhmann, 1984, 1995) where two (or more) agents disturb
each other and try to form together a closed loop system. In general it cannot
be assumed that the environment is disturbed by the agent. This would demand
an objective external observer which is not given in second order cybernetics.
Consequently definitions of embodiment which assume that the environment is
perturbed cannot be used in the context of second order cybernetics (Quick and
Dautenhahn, 1999).

Now we have to ask the question: has anything changed? Is the agent able
to distinguish between inside and outside if we make the disturbance explicit?
The answer is yes and no. Yes, because the disturbance can be assumed of being
outside. No, because the organism is still not abl@¢etify the disturbance. The
disturbance could have entered the loop at any place.

Consequently the next question which has to be addressed is: How can an
agent identify the disturbance in the outside world? This leads to the general
guestion: what is the agent able to observe? Thus, we have to postpone the ques-
tion if the agent is able to distinguish between inside and outside. We first have to
give an answer what observation means from the perspective of an agent.

3 Input Control

This section will show that organisms can only observe their inputs but never their
own outputs. This claim will be derived from the more general concept of second
order cybernetics which argues that every observer is part of a closed sensor-motor
loop.

Let us interpret the input control in the light of the findings of the last sections.
We have learned that the nervous system only operates in self contact. This holds
also true for the contacts with the environment. Now we can think how (motor)
actions are actually observed by the organism. From the organism'’s point of view
only actions whichfeed back to the organism’sensors can be observed (see
Fig. 4). Any other action which simply disappears in the environment cannot be
observed by the organism. Thus, there is no other chance for the organism as to
analyse its inputs as this is the only aspect that the organism is able to observe.
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Figure 4: The organism as an observer: H transfers a sensor-signal to a motor-reaction. P
is the property of the environment and transfers a motor-reaction into a sensor-stimulus.
The organism as an observer is only interested in those aspects of its own behaviour which
feed back to its sensor-inputs (a). Any behaviour which never feeds back can not be of
any interest (b).

Even its own actions are only observable through its inputs.

What does this mean for embodiment? We have seen that the boundaries from
the perspective of the organism no longer exist. The concept of input control,
however, brings us back on track towards a more abstract form of embodiment.
Input control is strongly related to the disturbances we've introduced in the last
section. Disturbances appear at the sensor inputs of the organism and trigger a
compensation reaction which in turn is again evaluated at the sensor inputs of the
organism. We have argued, however, that this disturbance can enter the loop at
any stretch of the loop. Thus, no distinction between organism and environment
is possible so far. A solution of the problem arises if we take another sensor input
which gives us an explicit information about the disturbance itself. If such an
input exists the disturbance as such is identified. If we assume that the organism
is not generating disturbances by itself it can conclude that the disturbance has
originated in its environment. Thus, if we are able to gain information about
disturbances we gain information about the environment.

One might argue that even the simple feedback system is able to distinguish
between inside and outside. This however, is not the case. The simple feedback
system has only to cope with the disturbance but it needs no knowledge where
the disturbance enters the loop. This is the power of any feedback system. It
needs least knowledge about its environment. One could say: it needs no explicit
knowledge about its environment.

The main advantage of the feedback system is, however, also its curse: It can
only react after a disturbance has happened. In von Foerster’'s words: this is the
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blind spot of the feedback system. To make this clear we have to recall that the
input X, measuresieviations from the desired state. It measures, however, not
the disturbance itself. This is due to the fact that the disturbance triggers a, often
complex, reaction of the feedback system. Thus, the feedback system

can not distinguish between cause and effect. Again, only the external observer
sees that there has been a disturbance which has entered the feedback loop. The
organism itself is not able to determine if theviation from the desired state was

due to the disturbance itself or due to its own reactions caused by the disturbance.
In more mathematical terms: The inphi§ receives aum of the disturbance and

the output of the organism. Thus, the organism cannot distinguish between the
disturbance and its own reactions against the disturbance.

Despite of these problems there is a way for the organism to detect the distur-
bance in it's environment. The organism has to find a way to separate the distur-
bance from its own reactions against it. Thus, the organism needs another input
which is not influenced by its own reactions and which carries the disturbance as
a signal.

4 Anticipatory systems

In this section we will show that the agents are finally able to distinguish between
inside and outside. This also opens the field to semantics as now “objects” in
the outside world can be labelled. Let us emphasise again that we will focus on
the inner perspective of the agent, not considering any external observation (and
evaluation) of behaviour.

Now we extend Fig. 3a by adding another input to the organism (see Fig. 5).
When the agent has come to life only the innermost l6pF, is operational.
This loop has a desired state, which, however, can not be maintained all the time
as disturbanced]) arrive at the loop occasionally. These disturbanbesnter
the inner loop delayed by tiniE. Theundelayed disturbances enter the organism
via the sensor inpuX’;. In other words: The organism receives a predictive signal
at the inputX; in relation to the inputX,. The signal atX; can now be used to
observe the primary feedback lool{, F,) and determine what is the effect bf
on the primary feedback loop. This observation can be used to ddjusta way
that the inner feedback loop does not feel the disturbahcany more.

How this works in practise can be seen in the following example (Porr and
Worgotter, 2003b): Imagine an agent is equipped with touch- and vision-sensors.
Itis moving around in a world which consists of rigid obstacles. The initial wiring



Figure 5: The inner feedback loop is observed by the outer feedback-loop. The inner
feedback loop is established by the transter functions Hy and Py. The outer feedback
loop is established by the transfer functions Hy, Py1, P1. D is the disturbance and T'
delays the disturbance. The eye stands for the observation process: the outer feedback
loop observes the inner feedback loop and adjusts Hy so that the inner reflex loop is no
longer needed.

of the agent is as follows: The primary feedback loop is established by its touch
sensors which are connected to the motor outputs. The moment the agent receives
a touch input &) the agent moves backwards and turns. Thus, the desired state
of the agent is to keep the touch sensor silent. This however, is not achievable as
collisions will sometimes occurf). There is, however, a way to avoid the trigger

of the collision sensor. The signal from the vision sensedicts the trigger of the

touch sensors. The temporal correlation between vision- and touch-signals can be
learned by means of temporal sequence learning (a more detailed description can
be found in Porr and \&gotter (2003a) and Porr et al. (2003)). After learning the
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agent produces an active avoidance movement before touching an obstacle. The
same idea can also be applied to attraction cases.

What is learned through such a process? To understand this we realise that the
reflex loop is for the agent an objective frame of reference and by tleigporal
symmetry breaking point is defined. Measured against this point in time there
are signals and actions which are “earlier” and others which are “later”. The
desired state of the agent is to keep its touch sensor signals zero by avoiding the
touch reflex. Thus, signals, such as the vision signals used here, which arrive
before the reflex-eliciting touch-signal can potentialiyiprove maintenance of
the desired state. Improvement (or deterioration) camMtgectivelymeasured
by the agent against the moment of triggering the reflex-loop. The outer loop
implicitly attributes therefore a meaning to a reaction (e.g. “earlier” or “later”)
with respect to the temporal frame of reference given by the inner (reflex) loop.

In the last section we demanded that we need another signal to identify the
disturbance in the outside world. We have to recall that it was not possible for
the feedback loop itself to decide where the disturbance has entered the loop.
Having the additional sensor inpu; the system can identify the disturbance
itself through the pathway — P;. In Spencer Brown’s words the system has
introduced another distinction in the form of the inpGt (Spencer Brown, 1969).

The problem however is still not completely solved if the transfer function
Py is not zero. This transfer function creates a new feedback loop which itself
incorporates the problems of the inner loop. Wi # 0 also the outer loop
cannot identify the disturbance. Consequently a third and finalljv#msensor
input is needed which is then finally not part of a loop. Only in the very last
input X y receives the disturbance being not part of a loop. Therefore this is the
chance to identify the disturbance and therefore the outside. Thus, having a nested
feedback loop or a subsumption architecture makes the organism step by step
“aware” of its outside. The more feedback loops arise the more the environment
becomes distinguishable.

Let us leave this academic question and ask what the agent has learned in
the context of signal and control theory. To clarify what the agent has learned
about the environment we have to recall that the basis for learning was the fixed
reflex reaction. In a living organism this fixed connection can be identified by a
preprogrammed genetic disposition. The learning goal is to avoid this genetically
defined reflex. This means that after learning the reflex-loop is no longer triggered.
Thus, also the inpuX, is no longer needed. The organism detects a disturbance at
X, and then issues a reaction which eliminates the disturbance before it can reach
Xo. In engineering terms this is called a forward model which has been learned
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by the organism. Also Rosen (1991) concluded that the organism calculates a
forward model. Consequently the forward model which has been learned by the
agent is the forward model of the primary reflex. In the case of nested feedback
loops we get forward models of forward models. This reminds pretty much of
Bateson’s theory of learning (Bateson, 1979).

In the former section we have demanded that organisms perform input control.
In this section we can extend this claim: Organisms perfadaptive anticipatory
input control. Before learning the organism is able to cope with unpredictable
situations because of its inherited requisite variety. After learning the organism
has learned how to use predictive sensor information to eliminate disturbances
before they trigger its slow feedback reaction.

Having all this we can try two definitions of embodiment:

1. An organism is embodied if it has enough requisite variety to react against
disturbances from the environment so that it stays away from its lethal
boundaries.

2. An organism is able to distinguish between its inside and its outside if it is
able to learn forward models of its own reflex-loops.

The first definition dates back to Ashby, has been modified by Mc Farland and has
been adopted by Maturana. This definition means that if even the reactive system
doesn’t work the organism will disintegrate and die. The second definition dates
partially back to Robert Rosen who also demands that feedback systems have to
develop forward models. The difference is, however, that Robert Rosen observed
the control system from outside as an external observer. The external perspective
is questionable as it demands that the observer has a complete knowledge of the
transfer functions. This however, is usually not the case (Dennett, 1984). Only
the internal perspective eliminates this problem as pointed out above.

5 Practical consequences for the design of animats

In this section we are going to give some guidelines for constructivists who want
to design animats.

5.1 The internal perspective

The internal perspective demands that we have to develop the animat from its own
point of view. This seems to be trivial. This, however, is not the case. Let us recall

12



the simple task of obstacle avoidance. We have to define obstacle avoidance from
the perspective of the agent. The internal perspective demands that only quantities
are correlated with quantities. This perspective forbids the integration of qualities
into the design of the system. Consequently we have to establish rules which
relate only signals with signals. In the case of obstacle avoidance this can be
established by simple rules. Braitenberg (1984) has shown this very impressively
by his thought experiments. The rules only relate sensor signals to motor signals
and the robot performs obstacle avoidance. They don’'t have to “know” that they
perform obstacle avoidance. They only have to know how to transform signals.
This is equivalent to an instrument-flight on a plane at night. The pilot reads
instruments and operates handles. The pilot doesn’t need to know that he or she
is flying a plane (Maturana and Varela, 1980).

To make the design from “inside” clearer we shortly describe how a design
from the “outside” might be developed. The external observer (for example an
engineer) will probably start with the environment of the animat which surrounds
the agent. Consequently he/she will start with objects in the environment. The
objects form a certain pattern in the environment and therefore it seems to be
straightforward to introduce a representation of the objects in the agent. Conse-
guently an object recognition system must be built into the agent and the agent
must develop a map of its environment. In fact many people draw this conclusion
while watching Braitenberg vehicles and often attribute human features into the
vehicles. Thus, the external perspective leads probably to completely different
design goals. In particular the external perspective implies output control whereas
the inner perspective implies input control. The consequences of input control
will be discussed in the next section.

5.2 Input control

The inner perspective demands input control in contrast to output control (von
Glasersfeld, 1996). This means that the success or the failure of the agent’s actions
has to be measured at its inputs (sensors) and not at its outputs. If one wants to
employ learning rules this has to be taken into account. Many neural network
rules usually target a certautput condition and not a certain input condition

like, for example, rules derived from the delta rule (Widrow and Hoff, 1960). A
suitable learning rule is ISO-learning (Porr andidbtter, 2003a) which is based

on differential Hebbian learning (Kosco, 1986). ISO learning stops if a certain
input condition is met. Rules from the class of reinforcement learning (Sutton,
1988) might also be useful if they can be modified in a way that they target a
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certain input condition. In principle this seems to be possitille our knowledge,
however, this has not been done so far.

At this point it must be noted that input control can lead to surprising results
for the external observer: Since the agent controls its inputs the output can be-
come quite unpredictable for an external observer. This, however, reflects only
the different intentions of an external observer and of an agent. Luhmann (1995)
claims that this partial unpredictability of input controlled agents is the driving
force for social systems where unpredictability is reciprocally generated between
social agents (“double contingency problem”).

5.3 Anticipation

We have learned that anticipation is an important factor in autonomous learning
(Rosen, 1991). The learning goal is defined simply by the “physics” of a reactive
system, namely that it always reacts too late. Learning rules which tackle this
problem stay on the level of signals (quantities).

Input control demands that an agent has to learn from its input statistics. This
claim has been derived from the self-referentiality of the nervous system. Antic-
ipatory learning in particular is based on the causality of events. The agent can
not look into the future. It can only look into its past. Consequently the favourite
mathematical tool is signal- and control-theory in the Laplace space. It operates
always causally.

Reenforcement learning also belongs to the class of anticipatory learning rules
(Balkenius and Mazn, 1998). As pointed out above, however, those rules must be
adjusted in a way that they perform input control and not output control. Thus, in
particular the reenforcement signal must be generated in a way that certain input
conditions will be reached. This implies that the reenforcement signal must be
generated by the nervous system itself so that it serves the internal goals of the
nervous system and not the goals of the observer.

6 Conclusions

\Von Foerster has given very important contributions to the theory of construc-
tivism. They have been the basis of this article. In particular, his claim that the
nervous system operates as a closed loop system has been applied to the embodi-
ment principle. Embodiment from the perspective of the nervous system is not the

5Jirgen Schmidthuber claims that this is possible. Personal communication.
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starting point it is more the final result after learning. Before learning the closed
loop structure of the nervous system does not allow a distinction between inside
and outside. After learning the nervous system is able to detect disturbances in
the environment which allows the nervous system to identify inside and outside.
The main result, however, is that the nervous system has learned to cope with
disturbances from the environment. An observer might interpret this as gain of
“competence” in the environment (Riegler, 2002) or as the “recognition” of ob-
jects in its world (Scheier and Lambrinos, 1996).

These more abstract results can also be transformed into practical guidelines
for the development of artificial agents. If one wants to develop animats in the
context of constructivism one has to start from the perspective of the animat. This
means that only signals with other signals are correlated. This also means that the
animat performs input control and not output control. Learning rules have to obey
this. They have to change the internal structure according to the animats input
statistics.
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