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Abstract

“Intelligent, flexible, and autonomous behaviour will only occur in em-
bodied agents which are rooted in their environment.” This statement cap-
tures a currently widely accepted view about the requirements for designing
advanced robots. Implicit to this statement is that un-embodied, pure algo-
rithmic structures cannot become intelligent. In this article we will derive
the minimal conditions for an embodied agent employing the view-point of
systems theory. We will strictly employ the inner perspective of the agent,
building our arguments only on its intrinsic signals (on which the agent has
to exclusively rely) but not on its externally observable behaviour. We will
show that negative feedback interactions of the agent with its environment
are fundamental in establishing weak homeostasis by which the agent main-
tains its integrity. Furthermore we find that the border between agent and en-
vironment is solely defined through unpredictable contingent events called
disturbances arriving from the environment at the agent. In control theory,
events are in general described by transfer functions and it can be shown that
it is possible to integrate every predictable transfer function into the agent.
Thus, it is the environmental contingency which is the constituting element
subdividing the agent’s body from its outside. Examples from animals and
animats will be used to clarify the abstract concepts. As a result we arrive
at the conclusion that computer programs can be embodied. Such agents are
still pure syntactic, symbol-manipulation systems but we will show that they
can develop very simple inner semantic evaluations by means of anticipatory
learning which could be taken as a very first step towards intelligence.

Keywords: Embodiment, Intelligence, Observer Problems, Closed Loop, Self
reference.



1 Introduction

Over the last years the discussion about what makes an agent intelligent has been
augmented by introducing the so-called embodiment-principle [4, 17, 6, 7]. Ac-
cording to this, only embodied agents (artificial or natural) can perform intelligent
interactions with their environment and during the last years the literature on this
topic has become truly embodied [21, 27, 45, 8, 29]. Therefore the question arises
what we have gained with the introduction of embodiment? Is it an equivalent to
intelligence? Is it a necessary or a sufficient condition? And, can it be used to
quantify or “calculate” any of these properties?

For a reader who is not familiar with the field of robotics or computer-science
it may seem awkward that this community apparently needs to discuss the role of
a body. It seems so obvious that without a body intelligence can not exist. Why
does the field of robotics discuss the necessity of a physical body?

In order to clarify the motivation for the embodiment principle one needs to
go back and look what had happened before embodiment was introduced. About
30 years ago the field of artificial intelligence experienced great fervour and hopes
that artificial reasoning, expert systems and other approaches originating from this
field could be a model for (human) intelligence. These hopes probably originated
in the Turing-principle which essentially states that algorithmic computation is
not linked to a specific substrate like, for example nerve cells or electronic cir-
cuits. Intelligence was taken to emerge from abstract and therefore disembodied
computation.

The design of such classical Al-systems is based on the definition of sym-
bols and operations which manipulate them. The symbols and the operations are
defined by the designer of the Al-system. Typical Al-systems would, thus, try
to implement a model of (some sub-aspects of) the world and perform symbolic
operations on the modeled entities which it contained.

Alas, rather sooner it became clear that all these Al-systems were exceedingly
limited in their performance: Typically these systems failed as soon as they were
faced with real-world problems which would take them outside their sheltered
artificial world-model. One of central problem which causes the failure of Al
in the real world is the frame problem [10]: How much information does the
algorithm need to cope with all eventualities from the environment? This is an
unsolvable task for the (external) designer as he/she usually can not predict all
future situations. The environment it too unpredictable to include all possible
environmental influences into the agent by the external designer.

Another problem is the symbol grounding problem [11] which again relates



to the external designer of the algorithm: Who gives the symbols meaning in
the context of the algorithm? As a consequence of mainly these two problems,
specifically in the field of robotics, researchers observed over and over again that
a nice robot simulation would get into deep troubles as soon as it was implemented
on a real robot.

At some point the following conclusion was drawn: Algorithms are not inde-
pendent of their implementation. They are linked to a body. Thus, it was claimed
that intelligence requires a (physical) body [4].

However, it is quite obvious that a body by itself is not enough for expressing
intelligent behaviour. For example, a living and a dead fish have both a body and
therefore appear both to be embodied. However, somehow there seems to be a
striking difference between them. .. [8]. Therefore a body itself is not a sufficient
condition for intelligent behaviour, however, it could be a necessary condition.

Central to this article is that we are going to explore embodiment from the
organism’s point of view. Like Robert Rosen [30] we will start with the organism
as an entity which is protected by a boundary [35]. However, this boundary has
to be permeable [3, 30] to a certain degree to allow for interaction with its envi-
ronment. This permeability could be used for a first definition of embodiment like
the one suggested by Quick & Dautenhahn [27] however we will suggest other
definitions later on. A permeable boundary leads to the danger of disintegration.
In order to prevent this, agents have to operate in a state of homeostasis ensured by
a negative feedback loop through the environment. We will argue that, from the
organism’s view-point, feedback is the most fundamental form of interaction with
its environment [38] creating a specific form of quantifiable situatedness [44, 2].

At the end of this article we will augment the aspect of feedback and we will
argue, like McFarland [16, 17], that intelligence is linked to learning, especially
learning of anticipations. Or more specifically: If an organism is able to learn to
anticipate feedback reactions, then it has performed one of the first steps towards
intelligent behaviour which conforms to [16].

In this article we will to use a systems-theoretical approach which has been
developed in the field of control theory [36, 18, 9]. It offers the advantage that it is
accessible to a rigorous mathematical treatment. This shall not be attempted here,
but see [24]. It must be noted that control theory is not limited to active control. It
also includes passive control. For example, a marble running into a pit can also be
described by control theory. For a detailed description of the differences see [15].



2 A system’stheoretical description of a body

In this section we want to develop embodiment from the perspective of the agent.
We are going to develop four conditions which are necessary for embodiment.

2.1 Boundary

Defining a body seems to be easy by just introducing a boundary:

A body is defined by a boundary which subdivides its inside from its
outside®.

This definition, however, gives rise to some naive assumptions, for example, in
associating the boundary with a physical boundary (e.g. a membrane or skin).
We would like to emphasise early on that this association is most of the time
inappropriate, if not outrightly wrong. Boundaries must be seen in a much broader
context which goes beyond a physical interpretation. For example, also a society
can generate boundaries by forming groups (for example scientists which discuss
embodiment) or themes [13]. In order to go beyond the naive interpretation of a
boundary as a physical object one has to ask for the boundary’s function.

2.2 Disturbance and Desired state

The function of the boundary is to protect the agent from disturbances coming
from the environment [2]. This demands stability of the boundary over some
certain time in the sense that it must maintain its function for the agent in order
to keep it alive?. Note that the boundary is allowed to change in order to adjust to
new/unknown disturbances from the environment®. However, the boundary must
always be able to guarantee its function, namely maintaining stability.

Using the word “disturbance” implies that there is something which can be
disturbed, namely a “desired state”. We assume that it is the primary (implicit)
goal of the agent to maintain its desired state in spite of disturbances. Therefore
the function of boundaries can be expressed more explicitly:

Note that the boundary is an asymmetric distinction defining a limited space inside and a
possibly infinite space outside (see [35] for a set-theoretical treatment of such boundaries).

2In Maturana’s words the function of the boundary is the organisation of a living being [14].
Organisation must not be misunderstood by Maturana’s definition of structure. The organisation
remains the same as long as the organism is alive.

3Maturana calls this “structural coupling” with the environment.
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The boundary has the function to maintain a desired state as good as
possible by compensating against disturbances originating from the
environment.

This means that disturbances always come from the environment. At some point
later we will come back to the concept of disturbances which we believe is indeed
the constituting element needed to define a body (see below).

However, it is not a realistic assumption that a boundary can maintain a de-
sired state always and with infinite accuracy. Realistically every organism has tol-
erances for deviations from desired states [2]. Animals get attacked and injured,
but recover later. One gets hungry and then eats thereby restoring the desired state
of being sated. A deviation from the desired state is permissible as long as it is
within certain (non-lethal) ranges. We will call this weak homeostasis.

Interestingly this concept goes beyond mere qualitative statements, because
Ashby [2] has shown that quantification of the performance of a boundary can
be directly obtained from the demand that a desired state has to be kept within a
certain permitted range. Consequently such a quantification measures the devi-
ation from the desired state given the strength of disturbances coming from the
environment.

Also a clear definition of “death” can now be derived: If an agent (animal or
robot) is no longer able to maintain weak homeostasis it is dead.

It is important to note, however, what is a disturbance and what is not can only
be decided from inside the boundaries (body). An observer outside can never be
sure if a stimulus is a disturbance, a desired input or if it even goes unnoticed. As a
consequence, external observation leaves room for speculations (and misinterpre-
tations) about the causality of events which drives an organism. Really only the
organism “decides” what are disturbances which need to be eliminated in order to
re-establish weak homeostasis and maintain integrity.

2.3 Permeability

Ultimate stability could be obtained by a totally impermeable boundary which
would be inert against any disturbance from the outside. This, however, abolishes
any kind of interaction of the agent with its environment. We could call it a static
stability. This is, however, fundamentally incommensurable with intelligence, be-
cause intelligence is not a state, but a process and as such it can only manifest
itself through some kind of interaction of the inside with the outside. As a conse-
quence we have two assumptions which work to some degree against each other:



(2.2) Stability of the desired state and (2.3) exchange between the inside and the
outside*. Summarising we can state that in general agents are open and closed
at the same time. Open in the sense that they interact with the environment and
closed in the sense that they need to employ weak homeostasis [3].

2.4 Feedback

This leads to the consequence that a process must exist which governs exchange
and which at the same time guarantees stability. A multitude of possible processes
exist (e.g., in engineered systems) which would assure this. Here, we argue that:

Negative feedback is the process which most fundamentally assures
stability against disturbances while it at the same time permits inter-
actions of the agent with its environment.

Note, that the feedback principle is not an arbitrary assumption made by us. In-
stead, viewed from the perspective of the agent, is it truly fundamental, because
from its own perspective only those actions that are feeding back to its sensors
can be of any relevance to it. Actions that have an effect only on the rest of the
world will not be perceived by the agent and are effectively non-existent for it.

Since from the agent’s perspective every relevant motor action re-enters the
agent through its sensors the entire feedback-loop can be described entirely by the
agents internal signals (for example, neuronal signals as suggested by von Foerster
[38]). Such a description can be interpreted as being sub-symbolic as assumed by
Brooks [6] in his robot experiments. The central advantage of this view is that it
allows using control-theory to describe the whole loop in a quantitative way.

We emphasise here on negative feedback. Negative feedback counteracts
against disturbances and is therefore able to reestablish homeostasis. Homeostasis
established by negative feedback is only “weak” homeostasis as negative feedback
only reacts after disturbances have happened. Deviations from the desired states
are permitted and even essential in order to guarantee interaction with the envi-
ronment. Therefore there is no need for “perfect solidarity” between the organism
and its environment [34] having a pure feedback control. During ontogenesis a
system can achieve better (as judged by itself) maintenance of its desired state(s)

“Note that energy is required to maintain the boundary because the boundary is permeable. As
a consequence there will be a (thermodynamic) tendency to smooth out any existing gradient. This
can only be prevented by energy input into the system. The problem how to provide energy for
the system has been extensively addressed by Prigogine [26] and Bertalanffy [3] and shall not be
of further interest here.



by self-adaptation leading to improved homeostasis as we will show below with
an example.

2.5 Summary

In this section we have defined an absolute minimally necessary structure (Fig. 1 A)
that cannot be further simplified for an agent which could become intelligent: a
boundary, disturbances, a desired state, permeability and feedback. These are the
necessary conditions and we are going to describe the more abstract concepts by
control theory [36, 18, 9, 19, 22, 20].
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Figure 1: Transformation of the standard feedback-loop (a) into a unity-gain feedback
(b). The transfer-function of the environment P, can be integrated in the transfer-function
of the organism. However, any unpredictable disturbance can not be eliminated. c) A
predictable disturbance, on the other hand, can be subtracted.

2.6 A minimal system with feedback

The control diagram Fig. 1A represents a minimal system with feedback. The
symbol H, represents the transfer function which in the first instance defines the
agent (or the body with its boundary, assumption 2.1), and by which it transforms
its input(s) into some output(s). Here it may help to think of a sensor-motor trans-
form. P, on the other hand defines the transfer function of the environment which
(passively) performs the opposite.

For simplicity we assume that the desired state of the agent is given by X, = 0
such that its output should negatively compensate any disturbance D which occurs
in the environment (negative feedback, assumption 2.4). If we want to have other
desired states than zero one can always subtract the desired state from the reflex



input z, so that the input of the transfer function H, becomes zero in the case of
equilibrium.

The resulting loop represents the interaction of the agent with its environment
(assumption 2.3). The fact that we have introduced negative feedback leads to
the simplest form of weak homeostasis and, as a consequence, to stability (as-
sumption 2.2). Note that there is no need to establish such feedback as active
control in the form of electrically driven sensors and effectors. Passive, especially
mechanical control can also be considered.

Such a system is strictly reactive, because it can only re-establish homeostasis
after a disturbance has already taken place. Furthermore it operates purely in
a syntactic way. This means that processing in such a system takes place by
manipulation of signals and nothing but signals. Thus, we do not assume (or
demand) that semantics (“meaning”) and interpretations would exist in such a
simple system. Really such a system is a simple feedback controller or a purely
reflex driven animal. As a consequence such a system is not intelligent. How
intelligence could arise, building on top of such a structure will be discussed later.

2.7 What does this mean “in everyday life”? - Exemplifying
the transfer functions

In the following paragraphs we want to find examples what H,, P, and D actu-
ally represent for an agent. To this end we will start with a technical observation
stating that the diagram in Fig. 1A is problematic because one can integrate the
transfer function of the environment into that of the agent (Fig. 1B). This is com-
mon practise in control engineering in order to simplify circuit diagrams. Now
this seems like an awkward trick used to confuse the situation by creating a rather
soft (changeable) boundary between a body and its outside. Suddenly we have
created a “new agent” %3 by combining H, and P, and this seems to be fairly
counterintuitive because the distinction between environment and agent becomes
very fuzzy this way. After all, we humans normally believe that our body ends at
the skin beyond of which clearly there is the environment. This, however, is not
necessarily always appropriate in practice. Let us introduce a living and a techno-
logical example thereby creating several apparently paradoxical “bodies” in oder
to clarify this concept. Thereby we will at the end show that exactly this softing
of the boundary takes place in the everyday life of humans (and robots).

First we consider the nervous system as such. Its properties define H§ and
everything else is defined as the nervous system’s outside P§*. This subsumes the



sensors, muscles, bones, etc. of the physical body which surrounds the nervous
system but also its outer surroundings given by the world. For example if this
nervous system belongs to a human, we could consider the case that it sits in a
car and drives on a road, which is clearly part of the outside, or is it not? The
fact that the nervous system is comparatively stable over prolonged periods of
time shows that it exists in some kind of (here unspecified) process that leads to
homeostasis with its outside. Also there exists an interaction between the nervous
system and the outside world and it will react to disturbances trying to re-establish
its homeostasis. Thus, such a system obeys the structure of Fig. 1A. In this sense
the nervous system would be an embodied agent. This looks queer. It seems
so much more natural to assume that sensors, muscles, bones, etc. belong to
this embodied agent and indeed within the framework introduced here, nothing
prevents us from treating them as such. Thus, if we take some parts of the original
Pg* and combine it with H§' in the way suggested in Fig. 1B we arrive at a new set
of transfer functions HOB and Pf. This way we have arrived at the (very abstract)
description of the body of a human (or an animal). Interactions between P# and
H? and the desire to maintain homeostasis also characterises this system.

Let us now come back to the example above and place this human into a car.
Much in the same way as above we could now continue to extend the body of
our agent towards the surface of the car by integrating the sensors, motors and
the structural components (“bones™) of the car into the body of the agent creating
again a new set of transfer functions H” and P”. Indeed many drivers report that
they regard the car as an extension of their body (this observation is even more
pronounced in fighter plane pilots, when they report that they become “merged
with the machine”). Also such a system interacts with its outside and tries to
maintain homeostasis (e.g. in avoiding accidents). Common Sense, however, is
very reluctant to accept such a seemingly arbitrary extension of a living body into
a human/machine hybrid.

The same “Common Sense”, however, does not seem to have any problem
with this concept as soon as we transfer our example of a human/car “hybrid
body” entirely into the non-living world. The nervous system could be associated
with the control circuit of a modular robot. The human body-parts now turn into
the metal, plastic and inanimate parts of the robot and there is no-one who would
prevent us from designing a first-order robot (with some kind of physical body)
which cannot drive and a second order robot (with an augmented physical body)
which can drive. This way we have arrived at different embodied robots with
different properties.

In the example of the robot we can even give up the integrity of the first or-
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der body when designing the second order body. Maybe this is the difference
between animates and in-animates? Animates need to preserve their bodily in-
tegrity, whereas in-animates don’t. A re-structuring of an agent will normally
have to go through a state where homeostasis cannot be maintained (the robot is
disassembled). At the moment this cannot be done with the physical body of a
human. Disintegration and re-assembly still remains science fiction of the “beam-
ing” process in Star-Trek.

However, even humans can be “re-assembled” to some degree (usually after
accidents) and hybrids created between flesh and metal by integrating implants
into the human. For example, many patients report that in the case of a limb-
prosthesis this is soon felt to belong to their body. Furthermore, sensor implants,
like an artificial cochlea or an artificial pacemaker for the heart are during nor-
mal operation never felt as being outside the patient’s body because the patient
does not have the means of self-observation as long as homeostasis is maintained.
Only if the device fails, its property of being an integral body part fails as well and
the device turns into a disturbance. The same, however, holds true for our orig-
inal body parts as everyone who ever had tooth-ache can tell. Removal of such
disturbances is highly desired.

While in the example of prosthesis, artificial body parts become integrated
into the concept of the owner’s body, the opposite is also observed. Cases are
reported where a patient suffers from the loss of the mental image of some parts
of his/her body (“negative ghost”, [31]). The patient reports that the respective
limb is not anymore felt as belonging to his/her body. The inverse situation is also
observed; amputation patients often report that they still feel their missing real
limb (“positive ghost”).

All these examples show that from the organism’s perspective boundaries can
be drawn differently. Changing the boundaries means that the transfer-functions
are changing like in the transition from Fig. 1A to B. In this case the entire en-
vironment is perceived of being part of the body. As mentioned above, this is
common practise in control engineering in order to simplify circuit diagrams but
it is also the central thesis of Constructivism how we construct our own world.
The world is in our head — like radical constructivists, for example von Foerster
[39], use to say. If we strictly adopt the perspective of the agent, who will have to
operate only by its intrinsic signals, then there is no way for it to distinguish be-
tween different boundary-settings. The agent cannot find out where the influence
of P, came from (the inside or the outside). Therefore, from the perspective of
the agent P, could be an integral part of its body (its inside). This view is much
more radical than, for example, the view by Weng [42] who demands that the or-
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ganism must be aware of its own signals. We state that there is no other chance
than of being self-aware of it own internal states as there are only internal states
from the perspective of the organism. The organism can not distinguish between
internal and external signals. Only an observer can perform this distinction. We
will elaborate on observer problems later in this text.

Thus, we observe that the abstract concept of being allowed to integrate (some
aspects of) the environmental transfer characteristic into “the body” (or doing the
opposite) as depicted in the transition from Fig. 1A to 1B (or back) does indeed
take place in the reality of human lives. It seems that even for a human the notion
what constitutes his/her body is fuzzy under certain circumstances. Thus, the
same should apply to robots.

As a consequence, our central conclusion is that everything which belongs to
the feedback loop cannot be used to distinguish between the inside and the outside
of a body. The only thing that objectively can normally never be integrated into
the agent is the disturbance D. The disturbance (of the homeostasis) is always
a property of “the outside”. Ultimately only this can be used to subdivide inside
(body) from outside (environment).

But what is a disturbance D? In the example of the aching tooth we have
shown that an integral body part can also turn into a disturbance. So something
which was definitely part of the loop (i.e.; part of Hy/Py) now leaves the loop and
becomes part of the outside. Thus, it seems that not even even disturbances are
a unique distinguishing property in the temporal existence (lifetime) of an agent.
Have we now reached a point where the embodiment concept has finally failed?

In answer to this question one has also to consider the temporal properties of
such systems. Anything which is predictable cannot be a disturbance. Or, tech-
nically speaking, if we know or if we can predict the properties of D, we can
subtract it by including the negative transfer function —D into the loop (Fig. 1C).
For example a constant (unchanging) input can be fully compensated for in this
way and this holds for any other fully predictable signal. Indeed also this happens
in many situations in physiology. For example, if a person permanently looses one
side of his/her vestibular sensor input, he/she will feel this as a strong disturbance
only for a while. After several days the system adapts to this permanent change
of its inputs and the person fully recovers. Pain adaptation is a similar example.
Constant pain is in many cases to some degree ignored. This also happens with
some forms of tooth-ache. This shows that human (or animal) bodies can indeed
integrate predictable signals into their homeostatic loop(s). In the same way, un-
predictable signals even when they arise from a formerly integral body part of the
agent (like the starting tooth-ache) will be regarded as a disturbance and the agent

11



will try to re-establish the desired state of the loop (e.g., “no pain”) by means of
compensating for this new disturbance (drawing the tooth).

Thus, it is truly the aspect of contingency which constitutes a disturbance and
the existence of such disturbances is the constituting necessity for the existence
of negative feedback closed loops. Without disturbances such loops would be un-
necessary. The existence of contingencies has been suspected to be the central
underlying driving force of evolution as well as for the forming of social sub-
groups [13].

2.8 Can computer programs be embodied?

This extraordinarily broad concept of embodiment raises the question if it still has
any explanatory power. Specifically one has to ask if the notion cited above that
computer programs always fail to be embodied (and, thus can never be intelligent)
would really hold. We believe [29] that computer programs can be embodied in
our sense.

The central constituting property of an embodied agent in the current
framework is its homeostatic loop and its boundary with respect to
contingent disturbances outside.

Computer programs can fulfil these two properties without any problem. The
simulated agent shown in Fig. 2 is a practical implementation of Fig. 1la. It has a
temporally stable boundary given by its numerically defined margins (assumption
2.2). It possesses a simple simulated reflex avoidance reaction in response to a
simulated touch signal. Whenever it hits a simulated obstacle, it will perform
a simulated retraction reflex through negative feedback (assumption 2.4). Thus,
its desired state of homeostasis is to keep its touch-input signal equal to zero (see
also assumption 2.2). This way it reacts to disturbances and thereby it does indeed
interact with its simulated environment by being able to receive (touch-)inputs and
perform simulated motor reactions (assumption 2.3). Thus, this agent is only a
computer program and certainly it is not intelligent, but its visualisation in Fig. 2
IS not necessary for its embodied (in our sense) existence inside the electronic
circuits of its host computer.

12



i Environment

Figure 2: A reactive agent based on Fig. 1a. The agent is equipped with three collision
sensors (CS) and two motors which are controlled by two neurons which determine the
speed (ds) and the angle (d¢). The transfer functions H, have the task to transform
a sensor-input into a timed motor-reaction. The Speed Bias causes the robot to drive
forward with constant speed as long as there are no bumps detected.

3 Towardsinteligence

But is this very simple type of embodiment enough as a basis on which intelli-
gent, flexible, meaningful (i.e. semantic) behaviour could be built, or did we just
miss some important, fundamental aspects? There is no way to prove or disprove
this rigorously given the fact that many viewpoints exist about what intelligence
is. We can, however, show that such systems can be extended in a generic way
and that by this extension a pure syntactic system turns into a system which can
perform very simple (implicit) semantic evaluations. Let us emphasise again that
we will focus on the inner perspective of the agent, not considering any external
observation (and evaluation) of behaviour. A special section will be devoted to
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the problems of the “observer perspective” and that of “behavioural observations”
later. Furthermore, one should keep in mind that the obtained augmented system is
at the end still exceedingly simple such that we cannot claim to have achieved any
kind of intelligence. The development of an inner semantic can only be regarded
as a very first step towards this direction.

Figure 3: The inner feedback loop is observed by the outer feedback-loop. The inner
feedback loop is established by the transfer functions Hy and Py. The outer feedback
loop is established by the transfer functions Hy, Py, Py. D is the disturbance and T
delays the disturbance. The eye stands for the observation process: the outer feedback
loop observes the inner feedback loop and adjusts H, so that the inner reflex loop is no
longer needed.

In order to generate personal semantic evaluations we have to extend our very
simple embodied agent from above (Fig. 2). This agent is reflex based (reactive)
and its structure is that of a purely syntactic system. Now we design a so-called
subsumption architecture of loops upon loops [5] (see Fig. 3). This way — we
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will argue — “meaning” (semantics) can be objectively (i.e., in a measurable way)
constructed by the intrinsic observation process performed by the outer loop(s) on
the inner loop(s). When the agent has come to life there is only the innermost loop
working. This loop has a desired state, which, however, can not be maintained all
the time (weak homeostasis). These deviations from the desired state of the first
loop are observed by the second loop. Thus, the second loop can adjust itself in
a way that the deviations from the desired state of the inner loop are minimised.
This observation process takes place implicitly and happens strictly inside the
agent (without any external evaluation). From the moment a second loop has been
established it can be observed by a third loop and so on. Thus, an agent-centred
semantic is developed which has only a meaning for the agent itself.

The nested observation-process becomes more clear with an example of build-
ing a secondary loop (Fig. 3) on top of the primary reflex loop in our reactive agent
(Fig. 1 a and Fig. 2). The primary loop receives touch- and the secondary loop
visual input. When the agent moves around, obstacles will lead first to a vision
signal and only later to a touch signal as soon as the agent hits them. The tem-
poral correlation between vision and touch signals can be learned by means of
temporal sequence learning (a more detailed description can be found in [25]).
After learning the agent produces an active avoidance movement before touching
an obstacle.

How does “meaning” arise through such a process? To understand this we
realise that the reflex loop is for the agent an objective frame of reference and by
this a temporal symmetry breaking point is defined. Measured against this pointin
time there are signals and actions which are “earlier” and others which are “later”.
The desired state of the agent is to keep its touch sensor signals zero by avoiding
the touch reflex. Thus, signals, such as the vision signals used here, which arrive
before the reflex-eliciting touch-signal can potentially improve maintenance of
the desired state. Improvement (or deterioration) can be objectively measured by
the agent against the moment of triggering the reflex. While this is not explicitly
done in such a simple agent, it still represents a very simple intrinsic, semantic
evaluation. The outer loop implicitly attributes a meaning to a reaction (e.g. “ear-
lier” or “later””) with respect to the temporal frame of reference given by the inner
(reflex) loop.

It is also very important to realize, that there is no external evaluation (by
means of a punishment or reward signal) necessary for this type of learning.
Learning is strictly correlative and takes place without the interference of an ex-
ternal observer.

Furthermore, we note that this example is certainly not exhaustive and many
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other ways may exist for achieving the same, but here we have shown that we can
still employ a strict inner (organismic) perspective in defining “meaning”.

4 Arerobotssuperior torobot ssmulations?

So far we have tried to provide evidence that computer programs can be embodied
in the sense described above. Furthermore, such structures, when built as nested
loops, are able to develop their own internal semantics which was taken as a very
first step towards intelligence. The remaining question is: If there is a robot and a
robot simulation, both using the same architecture and the same algorithms, will
they be indistinguishable or will the properties of the physically embodied robot
always be superior to that of the simulation.

One advantage of a technical systems is that we have access to all inner states
and can address this question - as before - “from the inside”. What does indis-
tinguishable (or even identical) mean with respect to inner states? Certainly the
synaptic weights that develop in the robot and in the simulation will never be
identical. Only when using similar initial conditions (and a similar environment)
they would be roughly similar, but this does not tell much. Having to adjust the
environment is a questionable procedure when wanting to show that robot and
simulation are in essence identical.

Thus, the question cannot be so easily answered by just looking at structural
similarities. One has to go back one step and consider that robot and simula-
tion both develop into the same weak homeostasis with their environment. For
the robot-simulation the environment is very simple (and defined in algorithmic
terms only), the environment of the real robot is by far more complex. However,
both robot and simulation only receive extremely restricted sensorial inputs from
their environment and both experience (essentially) the same (collision- and range
finder) signals. Thus, the richness of the real environment, which we experience
with all our senses, remains hidden from the simulated as well as from the real
robot. Nonetheless, both develop into the same homeostasis. This is due to the
fact that they have both identical desired states (“no collision”) and a robustly
working reflex to begin with. Thus, both robot and simulation are identically em-
bodied. Differences could only arise from the structure of the environment with
which they are confronted. Above we have shown that the environment is ex-
clusively defined via the disturbances that arrive at the agents. Thus, if we can
assure that the fundamental properties of the disturbances are identical for robot
and simulation then both would indeed be indistinguishable.
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This has interesting practical implications. The robustness of the employed
feedback loop structures is due to the fact that only very limited knowledge of the
environment is needed to set it up.

If one is able to create a robot simulation which attains weak home-
ostasis then one should also be able to successfully transfer this simu-
lation to the real world. This assumes that the fundamental properties
of the arriving disturbances are the same.

What are the fundamental properties of the disturbances? Here we note, that
any disturbance once it has entered the agent turns into a (sensor-)signal. Given
that robot and simulation are in our case identically embodied one only needs to
analyse the properties of these signals (and not anymore the complex properties of
the world) in order to find out if the disturbances are identical, similar of different
for robot and simulation. Thus, this viewpoint — the inner perspective — is again
helpful for the engineer to assure that a simulation and its corresponding robot are
indeed in principle identical.

From the perspective of control-engineering the term weak homeostasis can be
made more specific. Weak homeostasis means that a system remains stable under
the influence of disturbances. Hence, the values of the variables of the system have
to remain bounded. Engineering has provided us with powerful tools which allow
us to analyse the stability of systems such as those depicted in Fig. 1a [9, 19, 22].
Stability is guaranteed if the disturbance D only leads to bounded values in the
loop. For example, one can choose V' and ask if V' remains bounded if a certain
disturbance D enters the loop. In the Laplace domain this leads to:

PyHy

V=DG=D—2"_
1 — PyH,

(1)
Stability is usually guaranteed if the poles of this equation remain on the left

half plane of the transfer function G. This assures that any disturbance causes a
damped reaction of the feedback towards the desired state.

5 Observer Problems

Up to this point we have radically employed the perspective of the organism. In
this section we want to explore in the same radical way the other perspective,
namely the perspective of an external observer. It is an interesting question, how
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an autonomous agent appears to an external observer who can only observe the
behaviour of the agent. The input-processing and therefore also the feedback-
loop is not observable. Can we through such an observation process assess the
inner states of an agent? Can we make clear-cut observations if an agent might
be autonomous or intelligent? Can we draw conclusion concerning the similarity
between robot and robot simulations?

This and the next section we will show that the observer perspective has to be
very carefully applied in trying to answer such questions. In particular, one should
now rigorously apply the observer perspective carefully avoiding to mix inner and
outer views which may have led to several fallacies in the treatment of the above
problems.

5.1 Can we draw conclusions about inner states?

With some frustration, we find that even in the case of our very simple agent
the answer to this question is no, because we have constructed two examples of
either an attraction or a repulsion behaviour based on the same desired inner state,
namely that of a reflex-avoidance.

In Fig. 4 we show a robot simulation where the robot is learning to avoid
obstacles and, at the same time, to find food, simulated by the disks. The learning
process for obstacle avoidance is the same as above. The desired inner state of
this circuit is to keep the signals at the collision sensors zero; hence to avoid the
retraction reflex. Food finding is learned in the following way. The robot has two
simulated taste-sensors at its two front corners. At the same locations it also has
two sound sensors. We simulate the case that food-sources also produce noise®
indicated by the circular fields which surround each food-source.

The robot has a built in taste-reflex. Whenever it tastes (i.e. touches) a food
source with one of its taste-sensors it will turn in the direction of the body corner
where the touched sensor is located, thereby driving more centrally into the food
source. Thus, a sign is associated to each of the sensors and we use the difference
signal Left-Right to control the turning. No turning reflex will be elicited if the
robot moves straight into the food source because then both taste sensors will
respond at the same time and the difference signal is zero. The food sources are
removed after they have been touched.

The robot learns to produce an anticipatory turning reaction in response to

5As a sideline we note that this actually many times happens in reality when a prey moves and
rustles in the shrubs.
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Figure 4: Comparing two paradigms. a) An arena is shown which contains food-sources
(disk) surrounded by a sound field. Food sources are not regarded as obstacles and they
are moved out of way when touched (i.e., when “eaten”) and reinserted somewhere else.
Only at the end of the simulation food sources finally disappear (see c). Panel (b) de-
picts the situation before and panel (c) that after learning. Arrows indicate success-
ful (plain arrow) or unsuccessful (devil’s arrow) obstacle avoidance, which for an ob-
server looks like a “punishment-avoidance” paradigm. Whenever the robot has driven
through a disk it has obtained “food”. This could be interpreted as a “reward-retrieval”
paradigm. In (b) both actions occur as the consequence of two reflexes. Obstacle avoid-
ance by means of a retraction reflex (negative motor signal) and food retrieval by an
attraction reflex (positive motor signal). In (c) both reflexes are replaced by anticipatory
actions. Thus, in both cases the inner state is to avoid either reflex. Punishment and
reward associations are not applicable. The complete simulation can be obtained from:
http://ww. cn. stir.ac. uk/predictor/animat/

the sound field. In the same way as the taste-reflex is performed it learns now
to turn towards the more strongly stimulated sound sensor. Also here we use a
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difference signal between the left and the right sound sensor. As a result the robot
will finally already from some distance drive straight into the food source. An
external observer will find that the robot now performs an anticipatory attraction
reaction towards the food, while the same robot is being repulsed by obstacles and
walls.

However, what is the desired state of the taste-reflex circuit? Without any
difference to the collision-reflex circuit, also here the desired state is to keep the
control signal equal to zero thereby avoiding the taste reflex.

Thus, attraction and repulsion behaviour are both learned by avoiding their as-
sociated reflex actions. There is no way to draw this conclusion by just looking at
the simulations. The inner states of even such a simple agent remain inaccessible
by observation.

An important follow-up problem which arises from these observation is that
one has to be exceedingly careful in applying the concepts of “punishment” or
“reward” to data obtained from behavioural observations. Our examples are both
cases of “reflex-avoidance”: Does the one process now avoid a “punishment”
while the other retrieves a “reward”? We do not think that such associations can
be rigorously applied, neither in such a simple robot, nor in much more complex
animals [32]. There is always a (possibly strong) interpretational aspect included
in such conjectures.

5.2 Can we draw conclusions about intelligence or autonomy?

From a restrictive point of view the answer to the second part of this question is
yes. This, however, requires to accept and not question one certain definition (or
dominant sub-aspect) of autonomy: Several authors claim that unpredictability of
behaviour is one of the basic properties which shows that an agent is autonomous
[41, 1]. Note, this definition is rooted in the behavioural domain and therefore it
can also be rigorously answered by looking (only) at behaviour.

In our case one can see that during learning the complexity of the observable
behaviour clearly grows. The reflex based agent performs very stereotyped reac-
tions when hitting an obstacle. These reactions can be exactly predicted by the
observer. After learning the agent has developed a proactive behaviour and his
actions have now become largely unpredictable from the outside. The level of
behavioural complexity (i.e., unpredictability) which our agents develop is still
rather low. Nevertheless, this also shows that such embodied nested loop archi-
tectures may represent one possible early step towards autonomous agents which
are not bound to a physical substrate. Other more complex aspects of autonomy
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are not necessarily covered by such an architecture, but we do not see any funda-
mental reasons why more complex aspects could not be built on top of this.

Concerning intelligence, the situation is similar. Strictly adopting the observer
perspective means that one has to accept the significance of a Turing Test. We
will not enter the ongoing discussion if such tests are conclusive or not (essen-
tially questioned by Searle [33]). Instead we state that from the perspective of
an observer, our agent would have to be judged as intelligent as any other agent
whose behaviour is indistinguishable from it. From this it is obvious that the ob-
servable “intelligence” of such agents is still fairly low. The development of a
simple semantic evaluative inner structure can also only be seen as perhaps one of
the first steps towards true intelligence. Important to remember at this stage how-
ever is that an external behaviour will not be able to use his/her own semantics
in the same way as the agent does. For an observer a certain type of behaviour
may “look” better (or worse) than the behaviour prior to learning. These same
attributions may not at all apply to the agent, though. This problem is similar to
the problem of punishment-reward associations discussed above.

5.3 Can we distinguish robots and robot simulations?

From the perspective of an external observer robot and simulation will have to
be regarded as identical if, after in-depth observation, there are no behavioural
differences to be discovered. This amounts again to a Turing Test.

Fig. 5 shows four movement traces obtained with a robot and a simulation in
the obstacle avoidance task. Two traces show the animats before and after antici-
patory learning. The algorithm used was fully identical in simulation and the real
robot also using the same parameters for the initial setup and a similar environ-
ment. However, even such a simple task (i.e. obstacle avoidance) leads always to
different solutions for robot and simulation. In the shown examples this is very
obvious because different starting positions were chosen, but, even if those were
the same one would observe that even a small initial difference in the setups will
lead to growing differences in the runs. This, however, is not the point. The ques-
tion is rather, are there fundamental, observable differences between robot and
simulation. Here, we challenge the reader to tell us which set of traces comes
from the simulation and which from the real robot®. We think these traces do not
show any fundamental difference. Of course this example is exceedingly simple,

6Solution: a) and c) are the traces from the a real robot and b) and d) are the traces from a robot
simulation.
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Figure 5: Can we distinguish between the simulation and the real robot? What is the sim-
ulation and what is the real robot experiment? Part A to D show the traces of a simulated
robot and a real robot before and after learning. The traces were obtained by hand for both
experiments by clicking on the robot-image. Learning was performed by the ISO-learning
algorithm [25] which turns the avoidance-reflex into a pro-active avoidance action.

but we would like to direct the reader’s attention to the existing state-of-the-art
animations of the movie industry. These artificial dinosaurs look and behave so
realistically that behavioural observation does not reveal that they are just simula-
tions.

When considering animals or other humans, behavioural observation is the
only way to address these questions because we do not have access to their inner
states. As a consequence it has long been known in field of psychology that it is
exceedingly hard to “correctly” interpret behavioural studies [28]. Simulated be-
haviour in form of robots or its equivalent simulations can overcome this problem
as all their internal states are accessible and therefore the sensor-motor loop can
really be closed and interpreted. Thus, robotics can help to overcome observer-
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problems.

6 Thefailureof traditional Al

So the question why Al has encountered so many problems should be re-addressed
here. We believe that it is not the failure of algorithms to be embodied in any
(physical) sense which is the underlying reason. Instead, we think that a central
problem lies in the traditional Al-approach as such. Conventional Al has always
adopted an engineering (observer) perspective. Algorithms were treated as input-
output systems and only the engineer received feedback about the success or fail-
ure of the algorithm. In a simulated Al input/output system a large but limited
number of input conditions exists and an external observer will still be able most
of the time to hand-adjust the algorithm to produce an 1/0O-reaction which he/she
deems correct. This way the engineer is building a forward-model of the simu-
lated world into the system, which is possible as long as the complexity remains
limited and foreseeable.

Transferring the successful simulation to the real world, however, now intro-
duced unforeseeable contingencies and many times the algorithms failed. This
was taken as evidence that only physically embodied agents which can be rooted
in the environment will be able to succeed and perform “correctly” (or “appro-
priately”). We believe that this was the wrong conclusion. Instead this article
has argued that it is indeed the lack of feedback which leads to the failure of en-
gineered 1/0-systems. The algorithm does not receive any information about its
own success and hence cannot adapt its own reactions. As a first order problem
this is due to the fact that the engineer, who does receive the feedback, cannot
in the real-world decide which aspects of the complex sensor-motor action cycles
has led to the wrong results. The complexity of the real world prevents designing
complete forward models.

There is, however, a second problem with the 1/0-perspective. In general
one finds that engineers and agents may have different intentions which relates to
different desired states. We call it the Second Chicken & Egg Problem: The farmer
(engineer) wants to maximise the egg-production output and hence removes the
freshly laid eggs. The chicken wants to maximise the sit-on-the-egg-time in order
to facilitate breeding.

Let us have a look at the chicken-egg problem #2 in a more formal way (see
Fig. 6), namely as a cybernetical feedback system [15]. Let us first describe it
in the classical way and then identify which variables and transfer functions are
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Figure 6: The chicken egg-problem #2 in cybernetical terms. a) A typical cybernetical
control setup. The input X is filtered by the feedback-system and generates an output
Y. Note that all components are observable (see [12]). b) The feedback system can be
collapsed into a single transfer function: G = % c) A cybernetical control setup of
an organism. The organism wants its input X' to take the value defined internally by the
set point X. This should be achieved by the motor output Y'. Only Y' is observable
from the outside. From the organism’s point of view X, X'andY are observable. d) An
external observer can also try to collapse the organism into an I/0 system, for example by
performing stimulus-response experiments and trying to deduce G'.

observable from the organisms point of view (the chicken) and from the external
observer, namely from the farmer or engineer [16, pp.133-135].

In classical feedback control all variables are observable per definition [12, 2].
The feedback loop in Fig. 6a represents such a feedback control system. The
transfer function C' of the controller is also known and the transfer function of the
plant P can be at least approximated with appropriate test signals. The input X
of the system is given by the engineer in form of a set-point. The output Y should
follow the input X in an optimal way. As a consequence it is in principle possible
to collapse the feedback-loop into an input-output transfer function G = lng.
Even if the transfer function P is not given, the system can still be physically
designed as a feedback loop — as drawn above — because such a system does
not need precise knowledge of P. This is the advantage of feedback control in
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general and we have mentioned it before.

Let us now look at the system shown in Fig. 6¢ which represents the situation
we are facing when we are dealing with an organism. We have to decide if we
are employing the perspective of the organism or the perspective of the external
observer. The perspective decides which variables are observable and which are
not. We find that from the organism’s point of view the variables X and Y =
X' are observable. Here we have for simplicity neglected any possible signal
transform at the sensor which renders Y = X". This is basically the same situation
as that shown in Fig. 6a with the exception that Y is not directly observable by
the organism because this signal will only arrive at its sensors after having been
filtered by the environment P. Again we note that knowledge of this signal is
not necessary for the function of the feedback loop. In terms of the chicken Y’
is the egg output. X’ = Y is the sensation of the egg and X is the set-point
which defines that sensing an egg is the desired state (in contrast to not sensing
an egg). The transfer-function G defined by the chicken itself is optimal if in case
of a disturbance D (the farmer) the loop instantly reestablishes the desired state,
namely by producing a new egg. The same applies if the chicken is initially in the
state of not wanting an egg (set-point is zero) and then at some point decides that
“it would be nice to have an egg now” (changing the set-point to one). If the loop
establishes quickly the desired state then it operates in an optimal way.

For the farmer/engineer there are different variables observable. He/she can
only observe the output of the chicken Y. All the other variables are hidden in
the organism and cannot be observed. However, this is sufficient for the farmer as
he/she is only interested in the output of the chicken. Note that there is no way
of easily defining the transfer function G’ of the whole system from this outside
perspective (Fig. 6d). One has to guess the input-channels which are part of the
feedback-loop, one has to guess the environmental feedback, the disturbance and
the set-point. Only with this knowledge one could try to define a transfer function
which predicts how the organism reacts to a disturbance D: Y/ = SX=CAL or to
an input X’. Note, that the latter paradigm: Trying to assess G’ by measuring the
output Y in response to an input X"’ represents the traditional and widely used ap-
proach of treating an organisms (or a sub-system) as a stimulus-response system.
Most physiological and many psychological experimental paradigms follow this
approach, which may be problematic as it ignores the feedback, which — at least
in a non-laboratory situation — plays a major role for the organism.

Thus, the intentions of an external observer may be quite different from that
of an agent. While the agent tries to keep its input at a certain level the observer
desires to have the agent’s output at a certain level.
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The chicken-egg problem #2 can be summarised in the statement that:
Autonomous systems control their inputs and not their outputs [40].

This is why deep-inside true engineers should never like autonomous systems
which hide their variables and transfer functions.

As a consequence the engineer outside will not only build an incomplete for-
ward model, even worse, he/she might have built from the viewpoint of the agent
the wrong forward model of the world. The right forward model can only be
created by the agent itself as the agent evaluates at its inputs as to whether the
forward model has been successful or not.

Learning plays a crucial role in developing the optimal forward model for the
agent as it can develop the forward-model from its own perspective. It should be
emphasised that also learning is guided only by inputs, namely by deviations from
the desired state measured at the agent’s sensors. Therefore, in order to gener-
ate true (observer-free or teacher-free) autonomy, only learning rules can be used
which are guided by an input-condition and not by an output-condition. Learning
rules which are suitable for creating autonomy belong to the class of unsupervised,
Hebbian (i.e., correlation based) learning-rules. Note, that on the other hand most
of the existing learning rules are guided by an output condition, especially all re-
inforcement learning rules like TD-learning [37] and all supervised rules like the
delta-rule [43]. Very complex goals can indeed be achieved with these rules, but
those are always the goals of the network designer and normally not the goals of
the agent.

7 Practical implications

We have tried to make clear that a very broad concept of embodiment may suffice
as a necessary condition for intelligence. Furthermore, we have shown how such
systems should operate in conjunction with their environment. Essentially, to use
a more novel term, how they should be situated (or rooted) in their environment.
This has been done by applying concepts from control- and systems-theory.

We believe that there are two aspects in this study which could be of a some-
what longer lasting relevance.

1. As opposed to other approaches, a system theoretical approach provides the
opportunity of mathematical treatment in three respects:
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(@) Creating an agent means employing stable feedback loops in order
to establish desired states in a weak homeostasis [22]. This implies
that (non-lethal) deviations from the desired states are permissible and
even wanted in order to keep the system open to its environment.

(b) Forward-models [20] of the above feedback-loops have to be created
by the agent itself in order to improve homeostasis. That this is pos-
sible has been successfully demonstrated by rigorously proving that
temporal sequence learning (using the 1SO-learning algorithm) is able
to generate a forward-model of a reflex [24].

(c) The degree of embodiment can be measured in this context by the per-
formance of the boundary. Possible measures are Ashby’s requisite
variety [2] or Polani’s relevant information [23] which are both suit-
able for a closed-loop context.

2. Furthermore, through such a treatment the problems of applying the inner-
versus the outer perspective can be more clearly discussed. Living agents
do not reveal their desired states and their strategies how they control their
inputs. However, their output is observable and tempt the observer to treat a
living being (or an autonomous robot) as an 1/0-system. Robotics, however,
gives us the opportunity to observe even closed-loop systems because all
the components (inputs, desired states, etc.) of such loops can be uniquely
associated to observable (physical) structures and/or processes.

Having said this, it is quite clear to us that the systems discussed in this study
are still terribly simplistic. It will be a matter of future research to show if the
concepts presented here will survive under more complex conditions.
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