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The simplest form of sensor–motor control is obtained with a reflex. In this case the
reflex can be interpreted as part of a closed-loop control paradigm which measures a
sensor input and generates a motor reaction as soon as the sensor signal deviates from
its desired (resting) state. This is a typical case of feedback control. However, reflex
reactions are tardy, because they occur always only after a (for example, unpleasant)
reflex-eliciting sensor event. This defines an objective problem for an organism which
can only be avoided if the corresponding motor reaction is generated earlier. The goal
of this study is to design a closed-loop control situation where temporal-sequence
learning supersedes a tardy reflex reaction with a proactive anticipatory action. We
achieve this by employing a second, earlier-occurring and causally coupled sensor
event. An appropriate motor reaction to this early event prevents triggering of the
original, primary reflex. Such causally coupled sensor events are common for animals,
for example when smell predicts taste or when heat radiation precedes pain. We show
that trying to achieve anticipatory control is a fundamentally different goal from try-
ing to model a classical conditioning paradigm, which is an open-loop condition. To
this end, we use a novel learning rule for temporal-sequence learning called isotropic-
sequence-order (ISO) learning, which performs a confounded correlation between the
primary sensor signal associated to the reflex and a predictive, earlier-occurring sen-
sor input: this way the system learns the relation between the primary reflex and
the earlier sensor input in order to create an earlier-occurring motor reaction. As a
consequence of learning, the primary reflex will not be triggered any more, thereby
permanently remaining in its desired resting state. In a robot application, we demon-
strate that ISO learning can successfully solve the classical obstacle-avoidance task
by learning to correlate a built-in reflex behaviour (retraction after touching) with
earlier arising signals from range finders (before touching). Finally, we show that
avoidance and attraction tasks can be combined in the same agent.

Keywords: temporal-sequence learning; control theory; reinforcement learning;
inverse controller; autonomous behaviour

1. Introduction

We assume that a central goal of every autonomous agent is to maintain weak home-
ostasis (McFarland 1971), without which it will eventually disintegrate (or ‘die’).
Weak homeostasis means that the agent tries to maintain a desired input state to
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the degree that it stays away from lethal boundaries (McFarland 1971). For exam-
ple, an agent wants to avoid experiencing pain as far as possible. A generic way to
achieve this is by reacting to a disturbance of the homeostasis with a closed-loop
negative-feedback mechanism (a reflex), which will compensate for the disturbance
by means of a (motor) reaction. In the example of a hot surface, the agent pulls
its hand away after touching it to restore the desired state (no ‘pain’). Thus, the
simplest form of sensible autonomous behaviour can be obtained by designing an
agent whose (re)actions are reflex based (Brooks 1989).

Such sensor–motor reflex loops represent typical feedback reaction systems,
because a reflex will always be elicited only after a sensor event has already been
encountered; as the word ‘feedback’ implies. The reaction delay, which is unavoidably
associated with every reflex loop, can in the worst case even lead to fatal situations.
Thus, in any kind of improved behaviour the acting agent will try to eliminate the
disadvantage of the reflex, namely that it is always too late. For example, the experi-
ence of pain can be avoided if there is another stimulus which predicts the trigger of
the pain sensor. In the example above, heat radiation and pain are causally related
such that the heat-radiation signal can be used to generate an earlier motor reac-
tion leading to a situation in which the primary reflex is no longer needed. Many
other similar causal relations exist during the life of an animal; for example, between
smell and taste when foraging or between vision and touch when exploring. In all of
these cases, a temporal sequence of sensor events occurs which needs to be learned
in order to avoid reflex reactions to the later event (see also Wolpert & Ghahramani
2000). Thus, temporal-sequence learning is a dominant aspect of animal behaviour.
It requires a late event which triggers the (unwanted) reflex to which the earlier
event temporally relates. The goal is to learn this specific temporal relation to issue
an earlier motor reaction.

In this work, we present a new, linear and unsupervised algorithm for temporal-
sequence learning, which we call isotropic-sequence-order learning (ISO learning).
ISO learning solves the above problem of avoiding the late-coming reflex by replacing
it with a new earlier-occurring reflex. ISO learning has the special feature that all sen-
sor inputs are treated completely isotropically, which means that any input can drive
the learning behaviour. Thus, ISO learning is completely unsupervised and the out-
put is self-organized. Such a type of learning is highly desirable in autonomous agents
which can not rely on external evaluations. Unsupervised temporal-sequence learning,
however, usually leads—without additional measures taken—to rather undesirable
situations for the organism, since it will probably learn arbitrary behavioural pat-
terns. To avoid this, the ISO-learning algorithm will be placed into a non-evaluative
environment (i.e. without rewards or punishments), which provides feedback from the
motor output to the sensor inputs. In this behavioural context, the primary reflex
prevents arbitrariness by defining an initial behavioural goal (Verschure & Voegtlin
1998).

In this study, the predefined behavioural goal is simply either an avoidance reflex
only or a combination of an attraction and an avoidance reflex. These reflexes serve
as the reference behaviour in our system. The reference behaviour is superseded by
ISO learning, which replaces the late-feedback loop with a fast feed-forward pathway.
Part of this paper is devoted to demonstrating that these qualitative observations can
be embedded in a control-theoretical framework, and we will prove mathematically
that the system learns a simple type of feed-forward motor control.
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Figure 1. General form of the neural circuit in an open-loop condition. Inputs xk are filtered
by resonators with impulse response hk and summed at v with weights ρk.

2. The neuronal circuit

Figure 1 shows the basic components of the neuronal circuit on which ISO learning
is based. The learning system consists of multiple inputs xk, which are first bandpass
filtered by means of linear transfer functions (in the time or Laplace domain),

h(t) =
1
b
eat sin(bt) ↔ H(s) =

1
(s + p)(s + p∗)

, (2.1)

with a := Re p = −πf/Q and b := Im p =
√

(2πf)2 − a2, where f is the frequency of
the oscillation and Q is the quality factor. This operation is commonly observed at
sensorial inputs and/or in real neuronal circuits (Shepherd 1990). The transformed
inputs uk converge onto a single learning unit with weights ρk and output given by

v =
N∑

k=0

ρkuk, (2.2)

with time dependence left implicit. Note that all weights are allowed to change, which
makes this set-up isotropic. Since we are dealing with a behavioural paradigm, this
unit has the task of transforming a sensor input into a motor reaction. Weights ρi

change according to a learning rule which uses the temporal derivative of the output:

d
dt

ρj = µujv
′, µ � 1. (2.3)

To clarify the basic idea behind this algorithm, we have chosen the simplest case for
ISO learning, namely, reducing the number of inputs to two: the unconditioned input
x0 with a large initial weight and the conditioned input x1 with an initial weight
of zero. Characteristic waveforms of the system in response to δ-pulse inputs are
shown in figure 2a. The weight change can be calculated analytically by correlating
the two resonator responses of H0 and H1 in the Laplace space (Porr & Wörgötter
2002). Figure 2b shows how the synaptic weight ρ1 of the conditioned input changes,
assuming identical bandpass filters for two inputs which occur with a time difference
of T between them. The weight change ∆ρ1 is the result of the correlation of the two
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Figure 2. (a) Response curves. Curves for u show bandpass filtered responses to δ-pulse inputs
(Q = 1.0, f = 0.01). At t = 0 (first pairing of pulses) we get u0 = v. Note that v′ has a phase
lead of approximately 90◦ with respect to v. This arises from the bandpass filter characteristic
of the system and is the basis for the predictive properties of the learning rule used. (b) Weight
change curve: the same input signals as in (a) are used but now the dependence of the weight
change ∆ρ on the temporal difference T between both input pulses is plotted.

resonator responses u0 and u1 shown in figure 2a. Weights increase for T > 0 and
decrease for T < 0, which means that a sequence of events x1 → x0 leads to weight
increase at ρ1, whereas the reverse sequence x0 → x1 leads to a decrease.

3. Behavioural feedback

We now define a behavioural-feedback reflex loop first in an abstract way and below
in a real robot experiment. The generic goal of a (behavioural-feedback) control loop
is to attain a desired state as fast as possible—in this case x0 = 0 (Palm 2000).
Figure 3 shows the situation of a naive learner, who is only able to react to an
unconditioned stimulus by means of a (pre-wired) reflex. In the context of control
theory, such a system is described by the transfer function of the system H0, here
given by the properties of sensor–motor coupling and that of the environment P0,
which is usually unknown.

Predictive learning changes this situation. The goal of predictive learning is to
generate an appropriate reaction in response to the conditioned signal which provides
the disturbance D filtered by P1 (see figure 4), thereby never having to perform the
reflex. When the learning goal is optimally achieved, the dashed reflex pathway can
be treated as functionally no longer existent. The learner’s transfer function

HV (s) =
N∑

k=1

ρkHk (3.1)

now essentially approximates the inverse of the transfer function P1 delayed by T . At
the moment that the inner loop is superseded by the feed-forward pathway via P1, a
new feedback loop is generated via P01. Note, however, that this loop normally only
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Figure 3. (a) Unconditioned reflex loop: the organism transfers a sensor event X0 into a motor
response V with the help of the transfer function H0. The environment turns the motor response
V into a sensor event X0 again with the help of the transfer function P0. In the environment
there exists the disturbance D which adds its signal to the loop at ⊕. (b) Signals of the reflex
loop in the time domain when a disturbance d �= 0 occurs. The desired state is x0 := 0. The
disturbance d is filtered by P0 and appears at x0 and is then transferred into a compensation
signal at v which eliminates the disturbance at the summation point ⊕.

adds phase shifts to the behaviour of the system. This will be clarified mathematically
below. For now we can conclude that in most cases we can, therefore, set P01 := 0
and neglect the secondary loop.

Let us try to gain a better mathematical understanding about what underlies the
situation after successful learning, i.e. when x0 = 0 holds. In the Laplace domain,
equation (2.2) becomes

V (s) = ρ0X0 +
N∑

k=1

ρkXkHk, (3.2)

with

X0(s) = P0[V + De−sT ] (3.3)

as the reflex pathway, and

Xp(s) =
P1D + P1P01X0H0

1 − P1P01HV
(3.4)

as the predictive pathway (see figure 4). Inserting equations (3.2) and (3.4) into
equation (3.3) and eliminating Xp(s) and V (s) we finally get

X0(s) = e−sT D + HV
P1D + P1P01X0H0

1 − P1P01HV
. (3.5)
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Figure 4. Conditioned reflex loop. (a) The circuit from figure 3 is extended by a second feedback
loop via P01, P1 and Xp. The organism is now identical to the circuit in figure 1, where the input
Xp is connected to all Xk, k � 1. Due to the delay T , the disturbance D reaches the organism
first via Xp and later via X0. (b) Time course of the signals after learning: at the moment the
disturbance d has been triggered, a compensation reaction at v is elicited and the disturbance
is eliminated at ⊕ before it can enter the input x0.

Solving for X0(s) = 0 we get

HV (s) =
N∑

k=1

ρkHk = − P−1
1 e−sT

1 − P01e−sT
. (3.6)

The numerator of this equation is the inverse transfer function of the environment
together with a delay T . The denominator can be neglected because it does not
provide any more poles to the transfer function HV (s). Thus, it can add only phase
factors (Palm 2000; Stewart 1960). Therefore, we can (as claimed above) set P01 := 0.
In general, it is possible to emulate the expression on the right of equation (3.6) by
a composition of appropriate transfer functions (Blinchikoff 1976, p. 372).

In the following we will assume that the transfer functions are resonators. There-
fore, we are looking for the weights ρk which lead to an approximation of equa-
tion (3.6). We start with the simplest case of N = 1 (one resonator) and, in addition,
we assume also that the transfer function P1 of the predictive pathway represents
unfiltered throughput given by P1 := 1. The right-hand side of equation (3.6) can
now be developed into a Taylor series

− 1
esT

≈ − 2T−2

2T−2 + 2sT−1 + s2 (3.7)
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and the middle part of equation (3.6) has to be explicitly written out according to
equation (2.1):

ρ1H1(s) =
ρ1

pp∗︸︷︷︸
(2πf1)2

+s (p + p∗)︸ ︷︷ ︸
−2πf/Q1

+s2 . (3.8)

We now can compare the coefficients of equation (3.7) with equation (3.8) and get
for the parameters

ρ1 = −2
1

T 2 , f1 = ± 1
π
√

2T
, Q1 =

√
1
2 . (3.9)

These parameters can be interpreted in the following way: the maximum of the
resonator with the frequency f1 occurs approximately at time T . (It would occur
exactly at T if a higher-order approximation of the delay T were used.) T is the
time by which the disturbance is delayed before it enters the inner reflex loop (H0,
P0, ρ0, see figure 4). Thus, the response maximum of H1 occurs at the same time
as the disturbance is to be expected at the input x1. Therefore, the signal from
the resonator H1 is suitable to eliminate the disturbance D so that x0 is no longer
triggered. To achieve an elimination of the disturbance, the right strength (and sign)
of the resonator response has to be learned, which is in the end given by the weight
ρ1. We find that the value of ρ1 renders the integral∫ ∞

0
ρ1h1(t) dt = −1,

so that it has the same energy as the disturbance D and therefore optimally coun-
teracts it. The shape of the disturbance in the form of the δ-pulse can obviously not
be achieved by a single resonator but its energy is preserved.

This solution shows that with one specific resonator it is possible to approximate
one specific temporal interval T . However, if we build our system with a large enough
number of resonators with different frequencies f (but constant Q), we can state that
with such a system one can construct an appropriate approximation for every T in
the limit of N → ∞.

Now we have to show that the above approximation is stable. Let us assume that we
have found a set of weights ρk, k > 0, which solves equation (3.6). The development
of the weights follows,

∆ρj =
µ

2π

∫ ∞

−∞
−iωV (−iω)Uj(iω) dω, (3.10)

which is a correlation in the Laplace domain.
Now we perturb the system, substituting ρj → ρj + δρj = ρ̃j . In order to ensure

stability we must prove that the perturbation is counteracted by the weight change;
thus we hope to find

∆ρj ∼ −δρj . (3.11)

We need to define U and V . The first of these, U , is easy:

Uj = XjHj =

{
X0H0 for j = 0,

X1Hj for j > 0.
(3.12)
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However, V is more complicated. From the definition, we have

V = ρ0X0H0 + X1

N∑
k=1

ρkHk. (3.13)

Eliminating X0 by inserting equation (3.3), we get

V =
ρ0P0H0De−sT + X1

∑N
k=1 ρkHk

1 − ρ0P0H0
. (3.14)

Substituting ρk → ρk + δρk and identifying V , we get

Ṽ = V +
X1

∑N
k=1 δρkHk

1 − ρ0P0H0
. (3.15)

Then the weight change is found using equation (3.10),

∆ρ̃j =
µ

2π

∫ ∞

−∞
−iω

[
V − +

X−
1

∑N
k=1 δρkH−

k

1 − ρ0P
−
0 H−

0

]
X+

1 H+
j dω, (3.16)

where we have introduced the abbreviations ‘+’ and ‘−’ for the function arguments
iω and −iω, respectively.

We realize that the first part of this integral describes the equilibrium state con-
dition and can be dropped; thus

∆ρj =
µ

2π

∫ ∞

−∞

N∑
k=1

δρk
−iω|X1|2H−

k

1 − ρ0P
−
0 H−

0
H+

j dω, (3.17)

where for X1 we have made use of the fact that for transfer functions in general we
can write Y +Y − = |Y |2.

If we assume the orthogonality given by

0 =
∫ ∞

−∞
−iω

|X1|2H+
j H−

k

1 − ρ0P
−
0 H−

0
dω for k �= j, (3.18)

then we get

∆ρj =
µ

2π
δρj

∫ ∞

−∞
|X+

1 |2|H+
j |2 −iω

1 − ρ0P
−
0 H−

0
dω. (3.19)

Note that this integral becomes zero if the primary reflex has been avoided
(P0H0ρ0 = 0). This is due to the symmetry of the transfer functions |X+

1 |2|H+
j |2.

To prove that in all cases the integral equation (3.19) will be negative (assuring
convergence), a general stability analysis will have to be performed about the inner
(reflex) loop which is determined by ρ0H0P0. Since we are not dealing with a specific
feedback system, we choose one which is rigorously analytically tractable and which
can be used as a prototype for more complex applications. To this end, we use the
so-called unity feedback loop defined by

ρ0 ∈ ]−1, 0 [ , H0 = 1, P0 = e−sτ . (3.20)

The resulting reflex loop is, thus, entirely determined by its gain ρ0 and by the
delay τ (not to be confused with T ), which is the delay between the motor output
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V and the sensor input X0. The range of ρ0 results from the demand that the reflex
should be a negative-feedback loop and that it must be stable. When making these
simplifications, the most important aspect of the feedback loop is still preserved,
namely its delay characteristic. This property underlies the conceptual necessity for
temporal-sequence learning and it is essential for any relevant mathematical treat-
ment. The specific characteristics of some of the transfer functions, on the other
hand, are secondary and can, therefore, be neglected.

Thus, equation (3.19) turns into

∆ρj =
µ

2π
δρj

∫ ∞

−∞
|DHj |2︸ ︷︷ ︸

A(iω)

−iω
1 − ρ0eiωτ︸ ︷︷ ︸
−iωF (−iω)

dω. (3.21)

We now apply Plancherel’s theorem (Stewart 1960) to equation (3.21) to transfer
the integral back into the time domain and prove that it is negative. We have

∆ρj = µδρj

∫ ∞

0
a(t)f ′(t) dt. (3.22)

The function F (s) of equation (3.21) is given by the transformation pair

F (s) =
1

1 − ρ0e−sτ
, (3.23)

f(t) = (−1)nδ(t − nτ), n = 0, 1, 2, . . . , (3.24)

where f represents an alternating delta function at t = 0, τ, 2τ, . . . , which starts with
a positive delta pulse (Doetsch 1961). Thus, together with −iω, the complete term

−iω
1

1 − ρ0eiωτ

represents f ′(t), hence the temporal derivative of f .
The other term A(s) of equation (3.21) is given by

A(s) = |DHj |2, (3.25)

a(t) = Φ[d(t) ∗ hj(t)], (3.26)

where ‘∗’ denotes convolution and Φ is the autocorrelation function.
As a consequence of the above, we have to discuss the integral in equation (3.22)

specified by equations (3.24) and (3.26). The integral should be negative to ensure
stability. We know that D is short-lived with a duration shorter than τ , without
which the loop system would be unstable to begin with. Thus, we can restrict the
discussion of the integral to t = 0. We know that the autocorrelation function has a
positive maximum at t = 0 and that the derivative f ′ of a δ-pulse at zero approaches
−∞ for t → 0, t > 0. As a consequence, the integral is negative as required for
convergence. Thus, for an orthogonal set of Hk, where we assume a unity reflex loop
we have found that ISO learning will always converge if we use a disturbance that
has a duration which is shorter than the loop delay τ of the unity reflex loop.

In § 4, we will use real resonator functions for Hk and Hj (which are not orthogonal)
and show numerically that the system still converges. We use the unity feedback
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Figure 5. Numerical integration of equation (3.27). The disturbance D and the reflex loop delay
τ were both set to unity. The frequencies of the resonators Hk and Hj were varied from 0.01 to
0.1 in steps of 0.001. The value of Q was set to 0.9 for both resonators. The weight of the reflex
loop was ρ0 = −0.9.

condition defined above (equation (3.20)) and get, for equation (3.17),

∆ρj =
µ

2π

N∑
k=1

δρk

∫ ∞

−∞

−iωH+
j H−

k

1 − ρ0eiωτ
dω, (3.27)

where we have set D = 1 which represents a δ-function as a disturbance.
Figure 5 shows the results obtained numerically for ∆ρj as defined in equa-

tion (3.27) in the case of a perturbation. We note that the resonators are not orthog-
onal, since we have for nearly all j �= k non-zero contributions. The system, however,
still compensates for perturbations and thus converges for the following reason. In
figure 5, we find on the diagonal that the values of the integral (equation (3.27)) are
negative. This means that any perturbation at ρj will lead to a counterforce onto itself
and, consequently to a compensation of the perturbation. However, the non-diagonal
elements k �= j are non-zero. Thus, the question of stability must be rephrased into
the question of how a perturbation at one given weight ρk will influence the other
weight(s). We observe that the value of the integral (figure 5) is substantially smaller
than unity everywhere. This, however, shows that any perturbation at index k will
reenter the system at index j only in a strongly damped way. This process leads to
a decay of any perturbation through further iterations. This strictly holds for two
paired indices j and k. However, even for the complete sum in equation (3.27), which
describes all cross-interference terms, we can argue that perturbations will be elimi-
nated. This is true as long as the sum remains below unity, which is realistic given
the small and sign-alternating values of the integral surface.

From this, we realize that strict orthogonality as defined in equation (3.18) is not
necessary to ensure convergence. This constraint can be relaxed to the constraint that
the absolute value of the sum in equation (3.27) (or equation (3.17), representing the
general case) should remain below unity. Thus, for all practical purposes we can
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concentrate on the behaviour of the diagonal elements without having to employ an
orthogonal set of H.

Now we have to consider more complex transfer functions for P1. Up to this point,
we have set P1 = 1. The analytical derivation above does not show what will happen
when we use more complex functions for P1. However, when we recall that we have
approximated the delay e−sT with a Taylor series and matched it with the sum of
resonators, we see that it is also possible to approximate more complex functions in
developing them in a similar way. To allow more complex P1, we need to make sure
that P1 can also be written as a product series of conjugate poles/zeros (hence, that
it represents a standard passive transfer function). This, however, should normally
be the case, because one would not expect that the environment would introduce any
kind of complex signal transformation. Therefore, we can conclude that ISO learning
will be able to generate anticipatory reactions in all cases where the environmental
transfer function P1 can be spelt out as a passive transfer function.

Finally, we come back to the feedback loop (H0, P0, ρ0) to consider how more-
complex reflex loops behave. The answer to this question was already partly given
by the finding that ρ0 has to be kept in a specific range. The restriction on ρ0 came
from the demand that the feedback loop must be stable. The same holds if we want
to set up more complex feedback loops. We can expect a convergent behaviour of
the complete system as soon as the reflex pathway is stable and able to maintain
homeostasis. Thus, the question about the action of P0 gets deferred to the demand
of having to design an organism which has a working feedback loop to begin with.
This means that an organism does not start as a tabula rasa (cf. order from noise,
Der & Liebscher 2002; Haken 1995) but is already structured by reflexes (Verschure
& Voegtlin 1998).

4. Robot experiment

The performance of ISO learning is demonstrated by two robot experiments. The
first involves a collision-avoidance task and the second an additional attraction task.
Both experiments were first simulated on a computer with a simple artificial envi-
ronment. To prove the robustness of the approach, the avoidance task has also been
implemented in a real robot. No substantial changes of the parameters needed to be
performed when ISO learning was transferred from the simulation to the real robot.

(a) Avoidance reaction by reflex avoidance

The robot’s circuit diagram is shown in figure 6. The robot has three collision
sensors (CSs) and two range finders (RFs). Their signals are bandpass filtered and
converge onto two neurons, which generate two different motor outputs: one controls
the robot’s speed (ds) and the other its steering angle (dφ). The speed of the robot
is set to a fixed value and its steering set to zero so that the undisturbed robot drives
straight forwards. In the initial condition, before learning, the robot has only a fixed
retraction behaviour (a reflex), which is triggered by the collision sensors. The range
finders initially trigger no reaction (zero weights).

The signals from the range finders are able to predict the looming collision and,
therefore, to generate an avoidance reaction which prevents the trigger of the collision
sensors. ISO learning has the task of detecting the temporal correlation between the
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Figure 6. (a) Robot-circuit and (b) dimensions of the robot. The robot has three collision sensors
(denoted ‘CS’), two range finders (‘RF’) and two output neurons (speed ds and steering angle
dφ). The output neurons are simple summation circuits (

∑
). The reflex behaviour is triggered

by the collision sensors (dotted lines) and performed by four bandpass filters (H0 with f0 = 1 Hz
and Q0 = 0.6). The corresponding weights are adjusted in such a way that the robot performs an
appropriate retraction reaction (ρds

0 = 0.15 and ρdφ
0 = −0.5). The two signals from the left and

the right range finders are fed into two filter-banks with N = 10 resonators with frequencies of
fk = 1 Hz/k; k � 1 and Q = 1 throughout. The 20 signals from the two filter banks converge on
both the speed neuron (ds) and on the neuron responsible for the steering angle (dφ). ‘L’ depicts
the implementation of the learning rule (equation (2.3)) with µ = 0.000 02. Schematic (b) shows
the dimensions of the robot and the operating ranges of the range finders. The wall demonstrates
that in most of the situations both range finders are triggered when the robot is approaching a
wall.

signals from the range finders and the collision sensors and thereby to generate the
earlier avoidance reaction. However, the temporal delay between the range-finder
signal and the collision signal is not known a priori and depends on the actual
motion trajectory of the robot. To cope with such a wide range of temporal delays,
filter banks are used in the signal pathways. Filter banks consist of 10 resonators
covering a temporal interval between ca. 50 ms and 500 ms. These resonator signals
converge onto both the speed and the steering neuron. Weight change is performed
by the learning-rule equation (2.3).

Figure 7 shows the results from one robot experiment. Initially the robot reacts
only in an unconditioned reflex-like manner with a retraction movement whenever
it touches an obstacle (figure 7c). The range-finder signals are rather noisy (fig-
ure 7a, b) and, because of curvature of the motion patterns, the temporal intervals
between range-finder and collision-sensor signals vary over a wide range. Despite the
poor quality of the input signals and the widely varying time-intervals, this system
learns to correlate perfectly both sensor modalities and the robot stops colliding after
ca. 100 s (cf. figure 7c, d).
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Figure 7. Trajectories (c) and (d) and the corresponding signals (a) and (b) of the robot. The
films can be viewed at http://www.cn.stir.ac.uk/predictor/real, movie 2. Trace (a) shows the
robot’s trajectory before learning and (b) shows the trajectory after having successfully avoided
the obstacles. The numbers in (a) and (b) label the events in (c) and (d), respectively.

The development of the synaptic weights differs from trial to trial, because they
develop in accordance with the sequence of sensor events, which vary for different
initial situations. As a consequence, different behavioural strategies are observed, for
example, different relations between braking and steering.

As expected from the theoretical considerations, we find that the synaptic weights
become essentially stable after the bumps have been avoided (figure 8a, b). The small
remaining changes in the weights indicate that predictive learning continues: after
the bump (x0) has been avoided, learning still takes place between different range-
finder inputs (x1, . . . , xN ). Learning continues until the earliest range-finder input is
detected and it is able to control solely the avoidance reaction.

Figure 8c shows a statistical analysis of the average number of bumps which
occur during a 30 000-step simulated robot run. Each curve represents the average
of 400 runs with different initial conditions. The three different curves were obtained
with 0, 10 or 20 obstacles, placed randomly for each individual run. Bumps were
accumulated over time-intervals of 500 steps each. The 100% value represents the
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Figure 8. Development of the weights (real robot) and behavioural statistics (simulation). Part
(a) shows the weights from the right range finder onto the neuron ds and (b) those onto dφ.
The dotted vertical line marks the moment when the bumps have been avoided. (c) Shows the
convergence statistics for three types of runs with n = 0, 10 and 20 obstacles. Runs were repeated
400 times with differently placed robots and obstacles. The learning rate was µ = 0.000 0075
(for all other parameters see figure 6). The 100% value represents the average number of bumps
obtained without learning.

average number of bumps obtained in 500 time-steps without learning (µ := 0). This
represents on average 0.85 bumps per 500 time-steps and single run. The diagram
shows that all curves fall on top of each other. This is because there is on aver-
age no correlation between consecutive bumps. All curves reach baseline after about
a quarter of the total simulation time. The baseline represents approximately one
bump occurring every 20 runs in each time-interval of 500 steps. Thus, individual
runs will then have reached zero bumps most of the time. The few still-occurring
bumps are induced by small numerical inaccuracies in the simulation (e.g. aliasing
and correlation errors) and they also result from minor weight drifts which occur as
a consequence of learning between the range finders as discussed above. Even in an
empty playground, this leads to a few bumps after convergence. These occasional
bumps are uncorrelated across runs, which leads after averaging to the observed
positive baseline shift in figure 8c.

(b) Attraction by reflex avoidance

The robot experiment of § 4 a showed only an avoidance reaction. In this sub-
section, we will show as a computer simulation that it is also possible to add an
attraction reaction to the existing avoidance reaction. A real-world application with
the robot has not been made because it would require relatively elaborate peripheral
hardware to simulate removable food sources. The computer simulation presented
here adds an attraction reaction to the already existing avoidance reaction. Thus,
both tasks are learned in conjunction.

As in the avoidance learning discussed above, the design of the reflex reaction is
the crucial task as it is in the attraction-reaction presented here. While in avoid-
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Figure 9. (a) Illustration of the attraction reflex and the learned behaviour. The robot is addi-
tionally equipped with two light-dependent resistors (LDRs) for light coming from above, and
with two sound detectors (SDs). When one of the LDRs enters the disc, the robot turns to its
centre, which causes the disc to vanish. (b) The two SDs enable the robot to locate an object
from a distance. Additional circuitry for the computer simulation of the attraction case. The
attraction task only adds a circuit for dφ. The light detectors (LDRs, signal-range: [0, . . . , 1])
establish together with the resonator H0(f = 0.01, Q = 0.51) the attraction reflex. The weight
for the reflex is set to ρ0 = 0.005. The two SDs provide a signal which is inversely proportional
to the distance to a sound source. The difference of the signals from both SDs is fed into a
filter-bank with fi = 0.1/i, i ∈ [1, . . . , 5] and Q = 0.51. The learning rate was set to µ = 0.0002.

ance learning the reflex represents the avoidance of an object, in attraction learning
the reflex is simply the attraction behaviour towards an object. Specifically in this
work, the reflex has the task of driving the robot towards the centre of a constantly
illuminated area (see figure 9a). At the moment the robot enters the centre, the illu-
mination vanishes and a new illuminated area appears somewhere else. Otherwise
the robot might stay there forever. This process could be interpreted as targeting
and eating of food.

To establish an additional reflex, the robot has been equipped with two light-
dependent resistors (LDRs). The difference of these two signals drives a resonator
which establishes a fixed turning reaction (see figure 9) towards the activated LDR.
If both LDRs are activated identically, there will be no turning reaction (as the
difference is zero).

The predictive signal for the robot is provided by a sound signal which is emitted
by the centre of the illuminated area. The sound signal is detected by two sound
detectors (SDs) attached to the robot. The difference of the microphone signals pro-
vides an azimuthal information for the robot about the origin of the sound source.
This azimuthal information is already available from a distance and allows the robot
to predict the final turning reflex. Therefore, predictive learning takes place between
the sound signals and the turning reflex. Learning stops as soon as the final turn-
ing reflex is no longer triggered. This is the case when both LDRs are stimulated
simultaneously, which means that the robot is heading straight for the centre of the
illuminated area.

Figure 10a, b shows the trajectories before and after learning, respectively. Before
learning, the robot hits the illuminated areas (marked by black discs) by chance.
Entering an illuminated area (figure 10a) causes a reflex-like reaction and the robot
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Figure 10. Trajectories of the attraction task together with the development of the weights before
(t = 0) and after learning (t = 21 000, . . . , 24 000). Circular fields indicate the sound field, black
discs the illuminated areas marking ‘food sources’. (a) Before learning the robot randomly finds
black discs and bumps into walls (e.g. devil’s arrow). Both, the black discs (1) and the walls (2)
cause reflex reactions. (b) After learning the reflex reactions have been replaced by an avoidance
reaction on the one hand (plain arrows) and by an attraction reaction on the other hand. Note
that the robot’s trajectory now aims directly at the centre of the black discs. Therefore, the
robot enters the discs in such a way that both LDRs are triggered at the same time (reflex is
no longer triggered).

does a sharp turn into the area. After such a turn, the area vanishes and a new one
appears at another position. At the location marked with the devil’s arrow, the robot
shows the reflex reaction after a bump. From time-step 24 500 onwards, no more illu-
minated areas are created, so that their number decreases. After step 29 000, the
playground is empty. After learning (figure 10b), it can be seen that the robot is
directly targeting the illuminated areas and that it now hits the areas centrally. This
leads to the effect that no reflex reaction (dφ) is caused when the robot enters the illu-
minated areas. Note that dφ itself can be non-zero. However, in all cases dφ remains
constant and therefore the derivative of dφ is zero. A zero derivative means that
there is no learning and the weights stabilize. This can be seen in figure 10c, where
the weights stabilize after approximately step 25 000. At that point the playground
is in the condition shown in figure 10b, where the robot enters the illuminated areas
centrally. That the weights turn out to be negative is due to the set-up of the LDRs
and the SDs. For example, when the left LDR is triggered (which leads to dφ > 0)
the input to the filter bank is negative (the left microphone is closer to the sound
source than the right one). The plain arrows in figure 10b mark locations where the
robot has learned to avoid walls.

Thus, it is also possible to construct an attraction behaviour by ISO learning. As
in the avoidance case, the initial reflex defines the attraction reaction. Learning the
predictive attraction behaviour again leads to the situation that the initial reflex
reaction will be ‘avoided’ (in spite of the fact that we are in this case dealing with
an attraction behaviour).
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Figure 11. Differences between different models of differential Hebbian learning for N = 1.
(a) Drive-reinforcement model by Sutton & Barto (1981); (d) temporal difference (TD) learning
by Sutton (1988). The input filter E1 is a first-order low-pass filter (eligibility trace) and τ1

represents a delay-line. Part (b) shows further development of the Sutton & Barto model in (a),
by Klopf (1986). In this model, K1 is a tapped delay line where the coefficients are fitted to
behavioural data. (c) ISO learning as in figure 1 with N = 1 together with the learning circuit
to make it comparable with the other circuits. s+ is an acausal derivative which calculates the
difference between a value in the future and a value in the present.

5. Discussion

The introduction of a novel learning rule for continuous-time signals in a polysynaptic
system with inputs from different sensor modalities was instrumental to the design
of a generic feedback-loop arrangement which is able to treat long temporal intervals
between the different signals. Weight stabilization occurs in this case as a consequence
of the learner’s own reactions, by which it implicitly controls the sequence of its own
input events.

The robot example demonstrates that stabilization of the weights is due to the
sensor–motor feedback in the environment. In other words, the weights stabilize
if a specific input condition has been reached. Such a condition only makes sense
in a closed-loop set-up when the motor reactions feed back to the sensor inputs
(von Glasersfeld 1996, p. 151). This is an important difference from other mod-
els, which usually stabilize their weights when a specific output condition has been
reached. Therefore, such models are designed for open-loop situations, in contrast to
ISO learning, which is designed for situations with feedback.

The most popular models of derivative-based temporal-sequence learning (‘differ-
ential Hebb’, Roberts 1999) are those by Sutton (1988) and Sutton & Barto (1981,
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1982). Figure 11 shows their models and our ISO learning. All models strengthen the
weight ρ1 if x1 precedes x0. All models use filters at the inputs. However, our model
uses filtered signals for both, the learning circuit and the output, since the filtered
signals are also responsible for an appropriate behaviour of the organism. In the
Sutton & Barto models, the filtering affects only the learning circuitry. The central
difference between these models and our approach is that the older studies aim to
model experiments of classical conditioning which is an open-loop paradigm (Sutton
& Barto 1987, 1990), whereas ISO learning was designed to address the closed-
loop case. This is reflected in the different learning goals: in our model, the weight
ρ1 stabilizes when the input x0 has become silent. To our knowledge, in all other
temporal-sequence learning approaches, weights stabilize if the output has reached a
specific condition. In the drive-reinforcement models by Sutton & Barto (1981) and
Klopf (1986), this is the case if the signal at v caused by x1 has a similar strength
to that of x0. This reflects the Rescorla–Wagner rule (Rescorla & Wagner 1972). In
the case of TD learning (Sutton 1988) (or time-continuous TD (Doya 2000)), learn-
ing stops if the prediction error between reward and the output v is zero, thus if v
maximally predicts r. Note that input control and output control are fundamentally
different: input control can be performed strictly by the agent itself; output control
requires an external observer who provides evaluations in the form of rewards and
punishments. This leads to the situation that even the apparently simple problem of
obstacle avoidance requires a very sophisticated treatment of the evaluative structure
of the (time- and space-continuous) input space when trying to learn this task by
means of traditional reinforcement control methods, like TD(λ)-control in Q-learning
as discussed by Santos & Touzet (1999) and Millán et al. (2002).

In control theory, it is well known that a control loop can only exert its influence
after the desired state has already been disturbed. In this sense, reflex reactions are
slow and non-optimal. They could even lead to dangerous situations for an animal:
a reflex might come too late when the initial sensor signal is generated by a life-
threatening event. Our algorithm has replaced the primary reflex by a secondary
reflex which eliminates the disadvantage of the primary reflex, namely of being too
late. This process could, in principle, continue (using a nested architecture) in elim-
inating the secondary reflex, and so on. In particular, we also observe that conflict-
ing tasks are solved by ISO learning. In the mixed food-attraction-plus-obstacle-
avoidance task above, ISO learning creates a self-adjusting equilibrium between
the desire of the agent to stay away from obstacles and its simultaneous desire to
approach food sources. The agent itself balances these two desires during learning
and creates something like an implicit set-point which can change with changing
environment or task. This leads, for example, to an agent that makes sharp turns
when food sources only exist close to walls, whereas the same agent learns smooth
turns when the food sources are placed in the centre of its environment. McFarland
(1989) demanded that an agent should be able to resolve conflicting tasks but ques-
tioned if this could be achieved by feedback control which represents tasks explicitly
by desired states (goal-directed behaviour). It seems that ISO learning offers one pos-
sible solution to this problem, as ISO learning eliminates the primary feedback loops
and with them explicit representations of desired states. The secondary or higher
reflex loops are an emergent property of ISO learning, allowing it to find trade-offs
between conflicting primary desired states which can not be achieved at the same
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time. This means also that the states originally desired are no longer explicitly rep-
resented in the secondary and higher reflex loops (goal-seeking behaviour).

In addition, we have found that ISO learning generates the inverse controller of
the reflex, which represents a model-free solution to the classical inverse-controller
problem known from engineering. One of the central concerns in these disciplines
is to solve this problem by replacing a (slow) feedback loop with its equivalent
(faster) feed-forward controller, which emulates the inverse transfer characteristic
of the closed-loop system (Palm 2000). Related work in this field has been done
by Haruno et al. (2001). They have identified the feedback–feed-forward problem in
motor control, and use TD learning to improve arm movements in combining a feed-
back controller with a feed-forward controller. The difference between their model
and our model is the point of view. In their model, the goal is defined and evalu-
ated by an external observer. This usually requires a higher processing stage (or an
experimenter/teacher) which defines the target position of the arm (desired state)
and which evaluates if the target has been met or not. Therefore, in such systems
there exists a unique optimal solution which has to be achieved. In our model, no
higher level of processing exists which would evaluate the outcome of control. All
these evaluations are performed internally in relation to the initial feedback loop.
Success is achieved if the feedback loop has been superseded. This implies that there
could exist more that one solution. As a result, our system develops a certain kind of
basic and simple autonomy: the robot develops smart solutions (in eluding objects)
but also trivial solutions (in simply waiting in front of an object) in solving its
feedback problem.

The acquisition of additional useful sensorial information enables the organism to
predict unwanted changes in the environment. Thus, for the organism, predicting the
reflex leads to more behavioural security as compared to the situations when it had
to entirely rely on its reflex reaction. This aspect has been used by Ekdahl (2000)
to define autonomous behaviour. The recruitment of more sensorial information can
also be interpreted as gaining redundancy. This was pointed out by Pfeifer & Scheier
(1998, 1999). Redundancy expresses itself in the context of ISO learning by the
formation of nested loops. The inner reflex can always be used as a back-up if the
outer (more risky) reflex fails.

Finally, we stress that learning is an active process which incorporates the sensor–
motor loop as an essential part. The observed behaviour (e.g. avoiding obstacles) can
be interpreted as the recognition of obstacles (in the context of the reflex behaviour).
In our case, the robot only learns to identify obstacles. Scheier & Lambrosios (1996)
used such a form of sensor–motor learning to learn categorization between different
objects.
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