
Interaction, self-reference and contingency in computational neuroscience

Interaction, self-reference and
contingency in computational neuroscience: analytical
descriptions and information theoretic consequences

Bernd Porr (bp1@cn.stir.ac.uk)
Florentin Wörgötter (faw1@cn.stir.ac.uk)
University of Stirling, 
Dept. of Psychology,
Computational Neuroscience (http://www.cn.stir.ac.uk)
FK9 4LR Stirling, Scotland

We will attempt to show that we can use self reference in conjunction with signal theory (vis. elec-
trical systems theory) to construct an artificial organism which complies with the demands of autopoi-
etic systems. The organism is able to develop autonomous behaviour due to sensor-motor learning
which is inspired by Piaget [Piaget (1971)]. Learning is achieved through the experience the organism
gets while interacting with its environment. This interaction is characterised by closed sensor-motor
loops and can not be reduced to a stimulus-response scheme moreover any interruption of the sensor-
motor loop makes the system dysfunctional. In this sense our model is non reductionistic. The results
of this investigation is expected to be useful for the understanding of social systems since in the organ-
ism's  environment  there  are  other  organisms  which  also  learn.  This  leads  to  mutual  interaction
between them. Thus, the environment is contingent to each individual organism since there are other
organisms in the environment which exhibit unpredictable behaviour. As a consequence this is directly
related to Luhmann's double contingency of the communication process.

The underlying information theory differs from the typical input/output paradigm and is a self-ref-
erential information theory or an information theory of the information which is gathered to improve
behaviour (in this case to build up predictive structures).

Introduction

The system theory of social systems has become a powerful tool in understanding
social interaction and communication [Luhmann (1995)]. It explains how and why so-
cial subsystems emerge, how communication can be interpreted and even how we can
generalise the communication medium. The underlying paradigm, the general system
theory of self-referential systems, has its origin in a variety of fields such as biology,
cybernetics and philosophy [Rogers (1994)]. One of the most important principles of
system theory is self reference [von Foerster (1985)]. This means that the elements of
a system are self compatible with each other which has the advantage that the quality
of the elements can be omitted (like temperature,  neuronal  activity or behaviour).
Thus, the relations between the elements do not need to be converted from one quality
to another: thus, neuronal activity follows neuronal activity and behaviour triggers be-
haviour.

Self-reference

The principle of self reference shall be the starting point of this work. Our task is
to identify self-reference and its consequences in the field of computational neuros-
cience and its related areas like signal theory.

Self reference is given when (in Luhmann's words) compatible elements generate
themselves again and again [Luhmann (1995): 33]. This is obviously only possible in
recursive structures. In the area of control theory (or electrical systems theory) recurs-
ive  structures  are  the  basic  tools  for  solving  control  problems  [Oppenheim  and
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Schäfer (1975)]. Thus, signal theory seems to be a good candidate for describing self
reference which will now be explored. The simplest form of recursive control is via
feedback loops which are commonly used in a variety of every day situations. A clas-
sical example is room-temperature control. When the room temperature decreases the
central heating is switched on and the room temperature will be increased in order to
re-establish a certain desired temperature. Self reference seems to be established, in

such a system, by the closed loop through the environment: every time the central
heating is  switched on the room temperature  increases  and the  sensor  senses  this
change.

The equivalent of a technical feedback loop in an organism is a simple reflex loop.
Simple animals rely on reflexes, for example for walking or for finding food but the
reflex is also a behaviour which is found in humans. For example, this behaviour can
be seen when somebody touches a hot  surface and then he/she pulls his/her hand
away.

The expression "reflex" is to a certain extent misleading as it is tempting to see the
system as a stimulus-response or input-output system. However, a stimulus-response
system is an open loop system which does not correspond to the case of a reflex/feed-
back loop. From control theory it is well known that if we cut the feedback loop the
system's properties deteriorate. Thus, already the simple feedback loop can only be
explored as a whole and not if we cut the loop and turn it into an open loop system.
We go as far as stating that this typical reductionist approach of treating systems as
open loop I/O systems, used so often in the natural sciences can be very misleading
when it comes to more complex closed loop situations. Therefore we call  our ap-
proach non-reductionistic and we will only consider the organism's behaviour when it
is embedded in its environment. The reason why an organism is often seen as a stimu-
lus-response system is due to the fact that -naturally - an observer sees the organism
in that way. As for the organism itself it is only possible to "see" itself as a closed
loop system since the loop is essential in defining the properties of the whole system.

Self reference demands the compatibility of the self reproducing elements such as
neuronal signals which are expected to generate neuronal signals or behaviour which
also is expected to generate other behaviour. In the above examples this seems not to
be the case since neuronal activity is transformed into motor reactions (e.g. force) and
the motor reactions are transformed to sensor events (e.g. pressure, temperature, ...).
However, it is necessary to transform neuronal activity directly into other neuronal
activity. This problem can simply be solved if, in a radical approach, we take the or-
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ganism's  perspective.  Von Foerster  [von Foerster  (1985):  5-41]  argued that  at  the
sensor surfaces of the organism all sensorial qualities are eliminated and converted to
neuronal signals. The same applies to the motor output but only the other way round.
Since the motor output feeds back to the sensor surfaces every motor  signal leads
again to a sensor signal. The sensor-motor loop can now be completely closed when
we accept that, from the organism's point of view, only signals are of interest which
actually feed back from the motor output to the sensor input. The transfer from the
motor output  to the sensor inputs happens in the environment but is  expressed in
terms of the organism's signals. Thus, we will use the internal signals (elements) of

the  organism for  the description of  the  external environment.  Any motor  reaction
which "goes into the world and will never return" can not be of any interest to the or-
ganism. In terms of signal theory this means that the feedback loop determines for the
organism what is a signal (useful) and what is noise (useless): only motor reactions
which feed back to the sensor inputs are potential candidates for becoming a signal
(which is useful).  Otherwise they are noise. Noise is from the organism's point of
view the source of contingency.  Formally this  is  introduced by the disturbance D
(Fig.1) in the environment. This disturbance is again described from the organism's
point of view as there are an infinite number of disturbances in the world but only
those disturbances which disturb the feedback loop can be of any interest to the organ-
ism. Since the feedback loop is described in terms of neuronal signals the disturbance
can also be described by the organism's internal neuronal signals.

Self-referential temporal sequence learning

Any feedback loop has the inherent disadvantage that the organism can not predict
when the disturbance D will actually happen [Azzo (1988): 147]. It can only react
after  the disturbance has occurred which poses a problem for the organism which
should be solved. This can be achieved if the organism can turn the contingency of D
into certainty. Thus, if the organism would be able to predict the disturbance D. We
start again with the reflex example: the reflex itself can not prevent that the sensor
event "pain" will occur since it can react only after it has occurred. Only if the organ-
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ism is able to learn the relation between the pain and, for example, the heat radiation
(which foregoes it) it can avoid the painful stimulus by generating an anticipatory mo-
tor reaction. As heat radiation and pain follow in a sequence, learning has the task of
learning this temporal sequence in order to generate an early motor reaction. Thus, in
general, temporal sequence learning of sensor events enables the organism to generate
anticipatory behaviour in order to react faster than before.

How is temporal sequence learning achieved in our model? Fig.2 shows the exten-
ded circuit of the formal organism and the formal environment. Again we have the re-
flex pathway with transfer functions H0 and P0.  Additionally we added a pathway
from the disturbance D to the input S1 and a delay τ which triggers the reflex pathway
later than the predictive pathway via S1. Thus, the disturbance enters the organism
early via S1 and late via S0.  If the organism is able to learn the temporal relation
between S0 and S1 it should be able to generate an early motor reaction which elimin-
ates the disturbance before it reaches the input S0. Temporal sequence learning can be
used to eliminate this objective disadvantage of a reflex that is to say that it reacts al-
ways too late. Consequently learning takes place when the reflex is triggered and the
past is analysed if predicting signals exist which could used to generate a motor reac-
tion in order to prevent triggering of the reflex.

At this stage it is necessary to concentrate on the different learning paradigms of
sequence learning which are offered in computational neuroscience and to decide if
one can develop autonomous behaviour. Learning of sequences has a long tradition in
Psychology which began with Pawlow's classical conditioning and has been mathem-
atically formalised by Sutton and Barto in the form of Temporal  Difference (TD)
learning [Sutton and Barto (1982)]. The learning scheme by Suttor and Barto is a su-
pervised  learning scheme which  needs  an  external  teacher (in  the  environment).
Since  we want  to  describe autonomous behaviour  we can not  use a  learning rule
which  relies  on  teacher-like  evaluation  arising  from the  environment.  We need  a
learning rule which is non-evaluative and self-organising. This leads to another class
of learning rules which are called unsupervised learning rules. Amongst these unsu-
pervised learning rules there is one learning rule which is of special interest in this
context since it learns temporal sequences and is biologically inspired. New results
from neurophysiological experiments suggest that the temporal  timing of neuronal
signals is crucial to synaptic learning and therefore to synaptic weight change: if the
presynaptic activity precedes the postsynaptic activity then the synaptic weight is in-
creased and if the timing is reversed it is decreased [Zhang et al. (1998)]. This rule is
called spike timing dependent synaptic plasticity (STDP) or simply "Temporal Hebb"
since it  is a special form of classical associative Hebbian learning: while standard
Hebbian learning only develops associations between events which occur around the
same time temporal Hebb learns associations between sequences of events. The learn-
ing rule operates unsupervised which seems to be good for explaining autonomous
behaviour of an organism since this is  self-organising.  The rule develops by itself
freely and is guided only by using a general paradigm, in our case the learning of tem-
poral sequences. The unsupervised learning rule seems to have direct links to con-
structivism (and post-modernism), as it claims that all constructions are freely self
constructed by the organism. This is the outstanding feature but also the curse of such
learning: Self-organisation has always the inherent danger that the results become ar-
bitrary and therefore useless to the organism. Many have criticised the constructivists
precisely for that reason: anything goes, the results of the "constructions" (or unsuper-
vised learning) are completely arbitrary [Hachmeister (1992)]. The standard solution
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of the theory of neural networks is that so called "boundary conditions" are introduced
which reduce the degrees of freedom (thus limiting the manifold for possible con-
structions),  so  that  the  network  becomes  constricted  within  sensible  boundaries.
However, these boundary conditions really only camouflage the experimenter outside
the organism who actively interferes preventing the network from becoming arbitrary.
Thus, it seems to be that purely unsupervised learning is not applicable and it is clear
that some form of reference must exist. In our autonomous organism the solution is
again the reflex pathway which can be seen as a "genetic" basis: the reference we
have demanded is given by the pre-wired fixed reflex pathway. The reflex pathway
defines what is zero in time and therefore what is earlier and what is later. Every
sensor signal which arrives earlier than the reflex signal is beneficial to the organism
in the sense of predicting the unwanted reflex and every sensor signal which comes
later is useless. However, the reflex is only the starting point for the development of
more complex sensor-motor loops which can be build up by recursively predicting
each other. But it is the reflex which kick-starts learning and prevents the organism
from developing arbitrary behaviour. Thus, in this sense we can say that temporal
Hebb in  conjunction with feedback loops  is  self  referenced unsupervised learning
with the objective to improve the organism's feedback loops.  For that purpose we
have modified the pure unsupervised temporal Hebb learning rule and developed a
special learning rule which incorporates both properties: it is unsupervised but it has
its initial reference in the form of the reflex loop. Learning starts with the reflex loop
and then develops more complex behaviour in superseding the reflex loop with more
complex sensor-motor loops.

Information theory

Information theoretic issues are usually performance measures and we want to ex-
plore if the existing measures are useful to our model. In classical information theory
[Shannon and Weaver (1976)] the performance is usually measured by the effective-
ness of how a signal is transmitted. In our theory this does not make sense since the
information measure has to measure the organism's performance from the organism's
point of view and not its input-output properties. Again we start with the reflex loop.
Ashby's measure of the requisite variety can be taken to describe the performance of
the feedback loop when there is no predictive learning involved [Ashby (1972)]. The
requisite  variety measures whether the organism can cope with disturbances at  its
feedback loop. Only if the requisite variety is high enough can the disturbances be
fully compensated otherwise compensation is incomplete. But even if the requisite
variety is high enough the inherent problem of the sluggishness of feedback loops can
not be eliminated. Only predictions of the looming feedback reaction can improve the
organism's behaviour as stated above. Thus, when learning is involved we need a
measure which accounts for learning of the temporal patterns which are used to im-
prove the feedback behaviour. Consequently the reference is again the reflex loop: as
long as no predictions have been learned the information measure can be assumed to
be zero. From the moment the disturbances can be anticipated by other sensorial in-
puts and can be eliminated by the motor reaction the measure should increase. This
information measure must take explicitly into account that not all information in the
world is useful to the organism. Information is only useful when perturbations/dis-
turbances in the feedback loop can be reduced with other sensor inputs which form
new sensor-motor loops. In the worst case it could happen that none of the sensors
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can predict a disturbance, even if there are signals which are highly temporally correl-
ated.  This view opposes the standard info-max principle  of computational  neuros-
cience where any information is integrated [Linsker (1988)], regardless of what use it
serves to the organism. This principle is called info-max and is the result of com-
pletely  unsupervised  Hebbian  learning.  As  stated  before  completely  unsupervised
learning is often useless and therefore there have been extensions of the Linsker mod-
el which integrate these constraints. Such constraints are often called "contextual in-
formation" [Smyth (1996)] where this information in these models is supplied by ad-
ditional inputs. However, these models remain typical input/output models whereas
our model is strictly self referential in using a loop as a reference and not a signal. An
information measure of an organism must take into account the fact that  feedback
loops are closed entities. The organism measures its performance in relation to its past
performance which is in the first instance the performance of the feedback reflex loop.
Additional loops again build up on the former loops so that an information measure
should measure all accumulated improvements. From our knowledge there is no such
measure available in the field of computational neuroscience and signal theory. Below
we will suggest a measure for our robot application.

Social implications

After having explored the neuronal level of a single organism we have to explore
the interaction between organisms. Maturana [Maturana (1991)], Luhmann [Luhmann
(1995): 103] and others have stated that out of the self referent neuronal system other
self referential systems emerge like the behavioural system or more abstract: our com-
munication system. These systems describing the interaction between organisms have
no access to the organism's internal structure (neuronal signals) but exist in a causal
relationship with the neuronal level. Self reference in a system which emerges out of
neuronal systems, can be identified by elements of behaviour (behaviour follows be-
haviour) [Parsons (1951)] or by the elements of communication (utterance/informa-
tion) [Luhmann (1995): 137]. Problems arise when the different levels are mixed. On
the level of behaviour (especially language) we have the problem that we don't have
access to the neuronal level. Thus, we need metaphors on the level of behaviour to ex-
plain the neuronal level. A good example is "free will". On the level of neurons this
concept does not make sense since the neuronal system works in a deterministic way.
We follow Maturana's view here that every organism can be described by its neuronal
signals, chemical potentials, etc [Maturana (1991)]. With regard to  behaviour this
makes sense since we do not have complete knowledge about the neuronal structures
and we don't have access to them. We can not explain behaviour in looking at neuron-
al  activity.  We  can  only  explain  behaviour  with  behaviour  (as  often  done  by
language). Thus, we have to compensate for the lack of knowledge which arises from
the fact that we are not able to look into the brain. Another example for the crossing
of system levels comes from neurophysiology and is the construct of the "grandmoth-
er cell". The assumption is, that since we label a person "grandmother", we have cells
which fire when we see the grandmother. Neurophysiologists have been searching for
decades for these neurons but eventually gave up (similar examples exist in the field
of emotions and motivations). There is always the danger that we will run into prob-
lems when we use descriptions of the behavioural level to explain the neuronal level
which only consists of neuronal signals. Self reference separates the different system
layers and points out the problems that we get when we mix different levels.
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Autonomy

Based on the background of the two system levels (behaviour/communication and
neuronal signals) it now becomes possible to define autonomy. We define autonomy
from the observer's point of view (thus, from the behavioural level): an organism is
autonomous from the moment that the organism shows behaviour which is no longer
completely predictable from the observer's  point  of view. This is  always the case
when the organism has  more than one choice of what it could do but the observer
does not know what has been the reason for the organism's decision. The observer's
problem is due to the fact that the observer doesn't have access to the internal neuron-
al mechanisms and can only use the behavioural level to try to predict (explain) the
organism's behaviour. Thus, autonomy emerges from the moment the sensor-motor
reaction is no longer reflex-like or from the moment when it is no longer clear why
the robot has chosen a specific behaviour. Obviously this is the case  after learning
when the organism has eliminated its stereotype reflex behaviour and has generated
more sophisticated behavioural strategies by itself. This phenomenon is only a prob-
lem for the observer since the organism itself is still, in theory, completely describable
by its internal states (nervous signals, chemical potentials,...) but for us these are usu-
ally not accessible. This type of learning leads to the effect that an observer perceives
the organism's behaviour as more and more contingent.

The organism's perspective during learning is the opposite: when having to rely
only on the reflex behaviour the organism has least knowledge about the environment
and experiences highest contingency from the environment (here in form of the dis-
turbance D). After having successfully learned to avoid the reflex the organism has
learned to cope with the contingencies in the environment and thus, has gained secur-
ity.

With more than one organism in the world each experiences the others as addition-
al sources of disturbances and vice versa. Learning has still the task that one organism
has to learn predictions about its environment. However, now the environment con-
tains "the others" which also try to do the same in predicting "their others". This leads
to Luhmann's double contingency which is a basic property when two organisms try
to predict each other [Luhmann (1995): 103]. Thus, our organisms are able to gener-
ate a social system in the sense of double contingency.

Robot Application:

In this  section we will  show that  a  robot  can incorporate  important  aspects  of
autonomous behaviour which we find in "real" organisms. We follow Maturana's ar-
gumentation that a biological organism works deterministically. This means that all
processes in the organism can be explained by causal relations, in our case by signal
theory. 

Fig.3a shows the robot and the schematic drawing shows the the internal connec-
tions. The robot has two "neurons" which represent its speed (ds) and the steering
angle (dφ). The standard behaviour of the robot is to simply drive straight ahead. Two
different sensor types are installed on the robot: bump sensors and vision sensors. The
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bump sensors are connected with fixed synapses to the 2 neurons (thin lines). These
predefined and fixed connections establish the robot's  reflex: every time the robot
senses a bump it performs a stereotypical reflex like retraction reaction in order to
avoid the obstacle. The reflex enables the robot to continue with its journey. The con-
nections from the vision sensors are first set to zero strength so that the robot uses
only his reflex mechanism when a collision occurs (Fig.3b).

In this case the robot experiences its environment as maximally contingent but the
observer experiences the robot as completely predictable in its behaviour. Learning
has the task of  detecting the temporal  relation between the vision- and the bump
sensors. After having successfully learned the relationship between the vision sensors
and the bump sensors the robot is able to change its direction before it bumps into a
wall  (Fig.3c).  In  order  to  achieve this,  learning is  completely self  organising and
needs no external teacher: the reflex behaviour just drives the learning. The reflex de-
termines the reference in time and learning has the task of determining those sensor
events which are earlier than the reflex. The behaviour after or during learning (and
learning in our example never stops) is for an observer not completely predictable. It
is only obvious that the robot learns to avoid bumps after a while but how this is actu-
ally done is always different. In one experiment the robot simply waits in front of an
obstacle and rests there. In another experiment the robot develops more complex reac-
tions. But every experiment is unique and develops "another" robot.

Engineering and biology

We have presented the robot experiment. Now, we shall attempt to demonstrate the
differences between our model and those of a typical engineering model. In engineer-
ing we have an external observer, the engineer, who wants the system (for example
the robot) to do precisely what he/she wants. This can be achieved by hard-wiring all
properties into the system or by "teaching" the system the desired response which is a
standard technique (and idea) in computational neuroscience. Before "learning" the
neural network does not behave in the desired manner, so the engineer "teaches" the
system with a special signal until it has reached the desired behaviour. Thus, first the
system exhibits unpredictable or undesired behaviour. Then later (after learning) it be-
comes completely predictable in the sense that it is now useful for the engineer (who
is part of the environment).

Our system behaves the other way round: for an observer, first the behaviour of the
robot is completely predictable due to its reflex. After learning the robot's behaviour
is no longer predictable for an observer since the robot has found one behavioural
solution out of many possible solutions. From experiment to experiment the robot de-
velops differently so that, in spite of the fact that the robot starts always from the
same "genetics" (reflex), the behaviour after learning is always different. Having two

Fig. 3
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robots developing in this playground would create different behaviour. Thus, the ro-
bot's behaviour is no longer completely predictable. This leads to a problem in the en-
vironment: the robot's environment has to cope with the robot's unpredictability or
autonomy. This is completely opposite to a technical solution: in a technical solution
the observer wants to have a predictable system. Thus, we can differentiate between
two different paradigms: the "Engineering paradigm" and the the "Biology paradigm".
The "Engineering Paradigm" is always interested in a particular desired behaviour
which is achieved by an external evaluation of the system's behaviour. In the "Biology
paradigm" the organism follows its internal objectives and there is no external evalu-
ation. 

Predictive value

We have developed an information measurement which measures the robot's in-
ternal ability of predicting the triggering of the reflex which we call predictive value.
It reflects the use of the vision sensors to prevent the trigger of the bump sensors.
Fig.4 shows the development of the predictive value for the 2 vision sensors in rela-
tion to the steering angle. In Fig.4a both sensors are intact and used for the prediction
of the bump events which occur (or would occur). In Fig.4b the left vision sensor is
partly blindfolded giving a very bad response. This leads to a low predictive value on
the left vision sensor. Thus, this information measurement can show how the robot in-
tegrates new environmental signals in order to reduce the uncertainty of the feedback
loop. 

Now we switch over to an external observer in the outside world who has no ac-
cess to the robot's  internal  structure.  For an observer the growth of the predictive
value can be interpreted (apparently paradoxical) as a growth in unpredictability. This
is due to the fact that the robot develops different strategies (namely more than one) to
avoid bumping into objects. As mentioned before Fig.3c show only the outcome of
one experiment. In other experiments the robot simply waits in front of a wall and
does nothing. Thus, the environment experiences the robot's behaviour as more and
more unpredictable. This rise in unpredictability poses an additional problem for an-
other robot which wants to predict its environment where other robots behave in a
quite unpredictable manner. This effect is described by Luhmann as the double con-
tingency and is in his theory the basis for communication. Both organisms try to re-
duce their internal uncertainty but at exactly the  same moment they generate uncer-
tainty in the environment. In our robot example it can be seen that due to learning a
new level of complexity arises from the moment when two organisms try to predict

Fig. 4
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each other. Further studies have to be done to explore this field of double contin-
gency. But already in the existing robot application we can show that double contin-
gency emerges which is a result of a reciprocal generation of uncertainty in the envir-
onment.

Conclusion

Applying self reference in conjunction with learning to a technical system (here: a
robot) leads inevitably to autonomous behaviour. Autonomy is defined internally to
the ends that the organism has to reduce the environment's contingency. For an ob-
server it is the other way round: while the organism is gaining certainty about the en-
vironment the observer (viz the environment) experiences the organism as more and
more unpredictable. To have other organisms in the environment poses the problem
that each organism becomes during learning a source of contingency for the other or-
ganisms. This is described by Luhmann as double contingency and is the basis for so-
cial systems.
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