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Abstract

We develop a systems theoretical treatment of a behavioural system that
interacts with its environment in a closed loop situation such that its mo-
tor actions influence its sensor inputs. The simplest form of a feedback
is a reflex. Reflexes occur always “too late”; i.e., only after a (unpleas-
ant, painful, dangerous) reflex-eliciting sensor event has occurred. This
defines an objective problem which can be solved if another sensor input
exists which can predict the primary reflex and can generate an earlier
reaction. In contrast to previous approaches, our linear learning algo-
rithm allows for an analytical proof that this system learns to apply feed-
forward control with the result that slow feedback loops are replaced by
their equivalent feed-forward controller creating a forward model. In
other words, learning turns the reactive system into a pro-active system.
By means of a robot implementation we demonstrate the applicability of
the theoretical results which can be used in a variety of different areas in
physics and engineering.

1 Introduction

Feedback loops are prevalent in animal behaviour, where they are normally called a “re-
flex”. However, the reflex has the disadvantage of always being too late. Thus, an objective
goal is to avoid a reflex (feedback) reaction. This can be done by an anticipatory (feed-
forward) action; for example when retracting a limb in response to heat radiation without
actually having to touch the hot surface, which would elicit a pain-induced reflex. While
this has been interpreted as successful forward control [1] the question arises how such a
behavioural system can be robustly generated.

In this article we introduce a linear algorithm for temporal sequence learning between two
sensor events and provide an analytical proof that this process turns a pre-wired reflex loop
into its equivalent feed-forward controller. After learning the system will respond with an
anticipatory action thereby avoiding the reflex.



Figure 1: Diagram of the system in its environment (in Laplace-notation). The input signal
is D (“disturbance”) reaching both sensor inputs X0;1 at different times as indicated by the
temporal delay T . The environmental transfer functions are denoted as P . H are linear
transfer functions, U the filtered inputs which converge with weights � onto the output
neuron V .

2 The learning rule and its environment

Fig. 1 shows the general situation which arises when temporal sequence learning takes
place in a system which interacts with its environment [2]. We distinguish two loops:
The inner loop represents the reflex which has fixed unchanging properties. The outer
loop represents the to-be-learned anticipatory action. Sequence learning requires causally
related input events D at both sensors X0;1 (e.g. heat radiation and pain) where T denotes
the time delay between both inputs. The outer loop receives the earlier (anticipatory) input.
The delayed and un-delayed signalsX0;1 are processed by a linear transformH (e.g. a low-
or band-pass filter), subsequently their sum is taken with weights � on a single neuron. Note
that all input signals are filtered. The system is therefore completely isotropic. Line X 1

is fanned out in order to adjust to the a priori unknown delay T by the combination of
different transforms H

j
(see below). The output of the neuron is in the LAPLACE-domain

given by:

V (s) = �0U0(s) +

NX
j=1

�
j
U
j
(s); with U(s) = X(s)H(s) (1)

where �
j

are the synaptic weights. In the following we will drop the function argument s
for the sake of brevity wherever possible. The transfer functions P in Fig. 1 denote how
the environment influences the different signals. The goal of sequence learning is that the
outer loop should after learning functionally replace the inner loop such that the reflex will
cease to be triggered. In this case we receive X0 = 0 which we call the “desired state”
of the system. This allows calculating the general requirements for the outer loop without
having to specify the actual learning process. The reflex pathway is described by

X0 = P0[V +De�sT ] ; (2)

where e�sT represents the delay T in LAPLACE-notation. The signal on the anticipatory
(outer) pathway has the representation

X1 =
P1D + P1P01X0H0

1� P1P01Hv

(3)



where H
v
=
P

N

k=1 �kHk
is the learned transfer-function which generates the anticipatory

response triggered by the input x1. We want to express H
V

by the environmental transfer-
functions P0; P1 and P01. H

V
is solved for the condition X0 = 0 where the reflex is no

longer triggered. Eliminating X1 and V we get:

H
v
= �

P�1
1 e�sT

1� P01e�sT
(4)

Eq. 4 can be further simplified. Following standard control theory [3] we neglect the de-
nominator, because it does not add additional poles to the transfer functionH

v
. Such a pole

appears only for P01 = esT . A transfer function esT , however, is meaningless because it
violates temporal causality. Thus, the denominator can at most add phase-shifts to the sys-
tems behaviour. As a consequence, we may set P01 := 0 and the behaviour of H

v
(s) is

determined by:
H
v
(s) = �P�1

1 e�sT (5)

The interpretation of the last equation is straight-forward. The learning goal of X 0 = 0
requires compensating the disturbanceD. The disturbance, however, enters the system only
after having been filtered by the environmental transfer function P 1. Thus, compensation
of D requires to reverse this filtering by a term P �1

1 which is the inverse environmental
transfer function (hence “inverse controller”). The second term e�sT in Eq. 5 compensates
for the delay T between the two sensor signals originating from the disturbance D.

Having outlined the general setup in terms of our linear approach and system theoretic
notation we devote the remaining three sections to the following topics: 2.1. The learn-
ing rule and convergence to a given solution H

v
under this rule. 2.2. The construction

of (approximate) solutions H
v
. 3. Implementation of the system in a (real world) robot

experiment.

2.1 The learning rule and convergence.

Here, we assume that a set of functionsH exists (as will be be specified below) for which a
solution can be approximated byH

v
=
P

N

j=1 �jHj
. We will now specify the learning rule,

by which the development of the weight values is controlled and show that any deviation
from the given solution H

v
is eliminated due to learning. In terms of the time domain

functions u
j
,v corresponding to U

j
and V , our learning rule is given by:

d

dt
�
j
= �u

j
v0 �� 1 (6)

Thus, the weight change depends on the correlation between u
j

and the time derivative
of v. Since the structure of the system is completely isotropic (see Fig. 1) and learning
can take place at any synapse we shall call our learning algorithm isotropic sequence order
learning (“ISO-learning”). The positive constant � is taken small enough such that all
weight changes occur on a much longer time scale (i.e., very slowly) as compared to the
decay of the responses u. This rule is related to the one used in “temporal difference”
learning [4]. The total weight change can be calculated by [5]:

��
j
=

�

2�

Z 1

�1
�i!V (�i!)U

j
(i!)d! (7)

where �i!V (�i!) represents the derivative of v in the LAPLACE domain. We assume
that the reflex pathway is unchanging with a fixed weight �0 < 0 (negative feedback).
Note, that its open loop transfer characteristic given by �0H0P0 must carry a low-pass
component, otherwise the reflex loop would be unstable. We keep P 01 = 0 as before.
Furthermore we assume that for a given set of H

j
we have found a set of weights �

j
; 1 �

j � N which solves Eq. 5. We will show that a perturbation of the weights �
j

will be



compensated by applying the learning procedure. Since we do not make any assumption as
to the size of the perturbation this is indicative of convergence in general. To this end, we
substitute �

j
! �

j
+ Æ�

j
. Stability of the solution is expected if the weight change ��

j

opposes the perturbation, thus, if ��
j
� (�1)Æ�

j
. Here, we however assume an ’adiabatic’

environment in which the system internally relaxes on a time scale much shorter than the
time scale on which the disturbances occur. To be specific, a disturbance/perturbation may
occur near t = 0. In calculating the weight change (7) due to this disturbance signal we
disregard any subsequent disturbances as well as perturbations (Æ�

j
) following the steady

state condition. We use the relations for U and V and insert them into Eq. 7. For U we
have:

U
j
= X

j
H
j
=

�
X0H0 for j = 0
X1Hj

for j > 0
(8)

Inserting Eqs. 2 and 8 into Eq. 1 we get:

V =
�0P0H0De�sT +X1

P
N

j=1 �jHj

1� �0P0H0

(9)

Substituting �
j
! �

j
+ Æ�

j
this yields:

~V = V +
X1

P
N

j=1 Æ�jHj

1� �0P0H0

(10)

We use the superscript � and + to denote the arguments (�i!) and (i!) respectively and
calculate the weight change using Eq. 7 integrating between�1 and1:

��
j
=

�

2�

Z
�i![V � +

X�
1

P
N

k=1 Æ�kH
�
k

1� �0P
�
0 H

�
0

]X+
1 H

+
j

d! (11)

We realize that the first part of this integral describes the unperturbed equilibrium state and
can be dropped, thus, together with X+

1 X
�
1 = jX1j

2, which holds because X1 is a transfer
function, we get:

��
j
=

�

2�

NX
k=1

Æ�
k

Z
�i!

jX+
1 j

2H+
j
H�
k

1� �0P
�
0 H

�
0

d! (12)

Furthermore we assume orthogonality (see also below) given by:

0 =

Z
�i!

jX+
1 j

2H+
j
H�
k

1� �0P
�
0 H

�
0

d! for k 6= j (13)

and get accordingly:

��
j
= �

2�
Æ�

j

R
�i!

jX+

1
j2jH+

j
j2

1��0P�0 H

�

0

d! (14)

= �

2�
Æ�

j

R
jX+

1 H
+
j
j2(�i! 1

1��0P�0 H

�

0

) (15)

We now apply PLANCHEREL’S theorem [5] in order to transfer the integral into the time-
domain and prove that it is negative. This assures stability and, hence, convergence, be-
cause we know that � is small, preventing oscillatory behaviour. We have:

��
j
= �Æ�

j

Z 1

0

a
x�h(t)f

0(t)dt (16)

where we call a
x�h(t) the autocorrelation function of x1(t) � hj(t) which is the inverse

transform of jX+
1 H

+
j
j2 (� denotes a convolution) and f 0(t) is the temporal derivative of

the impulse response of the inverse transform of the remaining second term in Eq. 15.
Since we know that �0H0P0 must carry a low-pass component we can in general state that
the fraction 1

1��0P0H0
represents a (non-standard) high-pass. Its derivative has a very high

negative value for t = 0 (ideally = �1) and vanishes soon thereafter. The autocorrelation
a is positive around t = 0. Thus, the integral in question will remain negative for almost
all realistic choices of x1(t). As an important special case we find that this especially holds
if we assume delta-pulse disturbance at t = 0, corresponding to x1(t) = Æ(t).



2.2 Construction of solutions.

Here, we use a set of well-known functions H (band-pass filters) and show explicitly that
a solution which approximates the inverse controller (Eq. 5) can be constructed for N = 1
and discuss how the approximation is improved for higher values of N .

The transfer functions of the band-pass filters H , which we use, are specified in the
LAPLACE-domain: H(s) = 1

(s+p)(s+p�)
where p� represents the complex conjugate of

the pole p = a + ib. Real and imaginary parts of the poles are given by a = Re(p) =

��f=Q; b = Im(p) =
p
(2�f)2 � a2, where f is the frequency of the oscillation. The

damping characteristic of the resonator is reflected by Q > 0:5. Concerning convergence
one finds in Eq. 16 that with such a set of functions f 0(t) << 0 for t = 0 and that f 0

converges fast to zero for t > 0. Band-pass functions are not orthogonal to each other but
numerically we found that they can be approximately treated of being orthogonal. In fact
only a small drift of the weights is observed which could be compensated if required. In
practise, however, this becomes unimportant as discussed below. The use of resonators is
also motivated by biology [6] and band-pass filtered response characteristics are prevalent
in neuronal systems which also have been used in other neuro-theoretical approaches [7].

We return to Eq. 5. Let us first assume that the environment does not filter the disturbance,
thus P1 := 1. Then, for the case N = 1, an approximative solution of Eq. 5 can be easily
constructed by developing�e�sT into a Taylor series and obtaining the parameters through
comparing coefficients in:

1

esT
=

1

1 + sT + 1
2
s2T 2 + : : :

�
2T�2

2T�2 + 2sT�1 + s2

:=
��1

pp�|{z}
(2�f1)

2

+s (p+ p�)| {z }
� 2�f1

Q1

+s2
= ��1H1(s) (17)

Accordingly we get for the parameters of H1: �1 = �2 1
T
2 ; f1 = � 1

�

p
2

1
T

; Q1 =
q

1
2

.

For un-filtered throughput P1 = 1, this result shows that for all T there exists a resonator
H1 with a weight �1, which approximates�e�sT to the second order. The approximation
continues to improve for higher orders of N , which we pursued up to N = 2 (fourth order
Taylor), but the set of equations becomes rather cluttered. In general P 1 represents an en-
vironmental transfer function which is passive and “well-behaved”. Thus, in most cases it
can be represented by just another passive low- or band-pass filter (sum of complex con-
jugated poles). Under this assumption a solution can also be constructed for the complete
term �P�1

1 e�sT by a combination of N > 1 resonators.

As mentioned above, constructing solutions becomes impractical for N 6= 1 and it would
require to know T and P �1

1 a priori. Note, if you would know P �1
1 , you had already

reached your goal of designing the inverse controller and learning would be obsolete. Thus,
normally a set of resonators H must be predefined in a somewhat arbitrary way and their
weights � shall be learned. The uniqueness of the solution assured by orthogonality be-
comes secondary in practise, because – without prior knowledge of T and P �1

1 – one has
to use an over-complete set of H , in order to make sure that a solution can be found. In
practise, this means that a large enough set of filters must be used which normally leads to
a manifold of solutions. Now obviously the question arises if satisfactory solutions exist
under these relaxed conditions and if they remain stable.



Figure 2: Robot experiment: (a) The robot has 2 output neurons for speed (ds) and steering
angle (d�). The retraction mechanism is implemented by 3 resonators (Q = 0:6, f =
1Hz) which connect the collision sensors (CS) to the neurons ds (speed) and d� (steering
angle) with fixed weights (reflex). Each range finder (RF) is fed into a filter bank of 10
resonators H

k
with Q = 1:0; f

k
= 10=kHz where its output converges with variable

weights on both the ds and d�-neuron. A more detailed technical description together with
a set of movies can be found at: http://www.cn.stir.ac.uk/predictor/real
– movie 1. (b,d) Parts of the motion trajectory for one trial in an arena of 240x200 cm 2

with three obstacles (shaded). Circles denote collisions. (c) Development of the weights
from the left range finder sensor to the the neuron ds.

3 Implementation in a robot experiment.

In this section, we show a robot experiment where we apply a conventional filter bank
approach using rather few filters with constant Q and logarithmically spaced frequencies
f
k

and demonstrate that the algorithms still produces the desired behaviour.

The task in this robot experiment is collision avoidance [8]. The built-in reflex-behaviour
is a retraction reaction after the robot has hit an obstacle which represents the inner loop
feedback mechanism1. The robot has three collision sensors (X0) and two range finders
(X1), which produce the predictive signals. When driving around there is always a causal
relation between the earlier occurring range finder signals and the later occurring collision,
which drives the learning process. Fig. 2b shows that early during learning many collisions
(circles) occur. After a collision a fast reflex-like retraction&turning reaction is elicited. On
the other hand, the robot movement trace is now free of collisions after successful learning
of the temporal correlation between range finder and collision signals (Fig. 2d) and the

1In fact it is also possible to construct an attraction-case if the reflex performs an initial attraction-
reaction.



trajectory is maximally smooth. The robot always found a stable solution, but those were -
as expected - not unique. This is partly due to the different initial conditions but also due
to the over-complete set of H . Possible solutions, which we have observed, are that the
robot after learning simply stops in front of an obstacle and that it slightly oscillates back
and forth. The more common solution of the robot is that it continuously drives around
and uses mainly his steering to avoid obstacles. Note that this rather complex behaviour is
established by only two neurons. Fig. 2c shows that the weight change slows down after the
last collision has happened (dotted line in c). The still existing smaller weight change is due
to the fact that after functional silencing of X0 (no more collisions) temporally correlated
inputs still exist namely between the left and right range finders. Thus, learning is now
governed by these correlations instead and is driven by the earliest response of one of them
which finally leads to the desired stabilisation.

4 Discussion

Replacing a feedback loop with its equivalent feed-forward controller is of central relevance
for efficient control particularly in slow feedback systems, where long loop-delays exist. So
far, feed-forward control is in general model-based and, thus, often not robust [9]. On the
other hand, it has been suggested earlier by studies of limb movement control that temporal
sequence learning could be used to solve the inverse controller problem [1].

Figure 3: Differences between the Sutton and Barto models (a,c) and ISO-learning (b) in
the case of N = 1. a) shows the drive reinforcement-model by Sutton and Barto [4] and
c) the temporal difference (TD) learning by Sutton and Barto [10]. Note that the obsolete
summation-point

L
in a) allows to add the reward-signal in c). b) shows ISO-learning

like in Fig. 1 with N = 1. Additionally the circuit for the weight change (learning) is
shown. The input-filters E1 in the Sutton and Barto-models (a,c) are first order low-pass
filters (eligibility trace).

L
and � represent addition and multiplication, respectively. s is

the derivative.

Widely used models of derivative based temporal sequence learning are those by Sutton
and Barto which have the aim to model experiments of classical conditioning [4, 11, 10].
Fig. 3 shows their models in comparison to ISO-learning. All models strengthen the weight
�1 if x1 precedes x0 (or r, respectively). All models use filters at the inputs. However, in
the Sutton and Barto-models these filtered input signals are only used as an input for the
learning circuit (Fig. 3a,c) whereas the output is a superposition of the original input sig-
nals. Learning is therefore achieved by correlating the filtered input with the derivative of
the (un-filtered) output-signal. Thus, filtered signals are correlated with un-filtered signals.
In contrast to the Sutton and Barto-models, our model is completely isotropic and uses
the filtered signals for both, the learning circuit and the output since the filtered signals
are also responsible for an appropriate behaviour of the organism. These different wirings
reflect the different learning goals: in our model the weight � 1 stabilises when the input
x0 has become silent (the reflex has been avoided). In the Sutton and Barto-models the



weight stabilises if the output has reached a specific condition. In the drive-reinforcement
model this is the case if the output-signal v caused by x1 has a similar strength than the
output v triggered by x0. This reflects the Rescorla/Wagner rule [12]. In the case of TD-
learning learning stops if the prediction error between reward and the output v is zero, thus
if v optimally predicts r. In general our model is closely related to any correlation-based
sequence-learning [4, 13] and is not related to any form of reinforcement-learning [10, 14]
as it does not need a special reward- or punishment-signal.

The current study demonstrates analytically the convergence of ISO-learning in a closed
loop paradigm in conjunction with some rather general assumptions concerning the struc-
ture of such a system. Thus, this type of learning is able to generate a model-free in-
verse controller of a reflex, which improves the performance of conventional feedback-
control, while the feedback still serves as a fall-back. Apart from biological implications
this promises a broad field of applications in physics and engineering.
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