
Predictive Learning in Rate-Coded Neural

Networks: A theoretical approach towards

classical conditioning

Bernd Porr and Florentin W�org�otter

University of Stirling, Department of Psychology, Stirling FK9 4LA, Scotland

http://www.cn.stir.ac.uk

Abstract. A novel approach for learning of temporally extended, con-

tinuous signals in a neural network is developed. Input signals are band-

pass �ltered before being summed at an output unit and a new learning

rule is devised which utilizes the temporal derivative of the output to

modify the weights. The initial development of the weights is calculated

within the framework of signal theory and simulation results are shown to

demonstrate the performance of this approach. In addition we show that

few units suÆce to process multiple inputs with long temporal delays.

1 Introduction

Hebb like learning is one of the basic ideas of computational neuroscience. This

learning causes changes of the synaptic weights between (arti�cial) neurons ac-

cording to post- and presynaptic correlations. The strength is increased with

simultaneous activity and decreased with asynchronous activity. Important in

the context of this paper is that this learning rule is symmetric in time. The

learning rule doesn't discriminate which if the postsynaptic spike is earlier or

later than the presynaptic spike. In contrast to this the temporal Hebb rule is

asymmetric in time: A weight will be strengthened only if the input precedes

the output by a short interval. If the order of input and output is reversed the

weight will be decreased [1{3]. While the classical Hebb rule has it's applicatons

in the �eld of spatial pattern formation and detection [3] the temporal Hebb rule

is dealing with temporal patterns called time sequences (for a review see [4]).

Recent theoretical approaches towards temporal learning rest on on spiking

neurons [2]. These models are often highly realistic but usually elude from a

rigorous mathematical analysis. Also one �nds that long time scales are hard

to treat with these models, so that the resultig applications are limited to the

detection of small time di�erences [5].

On the other hand there exists a long tradition of models with linear or

so called rate coded neurons which allow an easier treatment [6]. Thus in our

approach we have chosen a rate code description as the level of abstraction

and present a theoretical framework for predictive (temporal) learning which is

able to handle time-continuous input signals (rate-functions) of arbitrary shape.

To this end our \neurons" will act as damped oscillator circuits and a new



learning rule is developed which utilizes the temporal change (the derivative) of

the output to modify the weights. This system has the feature, that very few

components are required to cover large time intervals and it allows to use multiple

inputs, which are the two critical prerequisites for "classical conditioning".

2 De�nition and function of the neuronal circuit
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Fig. 1. A) The basic circuit in the time domain. B) Input functions and the initial

weight change for t = 0 according to Eq. 19. A shows the inputs x, the impulse

responses u for a choice of two di�erent resonators h and the derivative of the output

v0. B shows the initial weight change �1(T )t=0. The delay between x0 and x1 is adjusted

to T = �

2b1
leading to �1(T ) = max. Thus, this setup represents the optimal solution,

T = Topt, for the given resonator h1.

We consider a system of N units h receiving a continuous input signal x and

producing an continous output u. The input units connect with weights � to one

output unit v (Fig. 1A). All input units are in principle equivalent but we will

use h0 to denote the one unit which transmits the unconditioned stimulus. The

output v is then given as:

v = �0u0 +

NX
i=1

�iui with (1)

ui(t) = xi(t) � hi(t) (2)

The transfer function h shall be that of a resonator which transforms a Æ-pulse

input into a damped oscillation. The response of such a resonator to a Æ-pulse

is given by (see Fig. 1B).

h(t) =
1

b
e�at sin(bt) (3)



Learning (viz. weight change) takes place according to a Hebb-like rule

(Eq. 5):

�i ! �i +��i i = 1; 2; 3::: (4)

��i = �uiv
0 �� 1 (5)

where the weight change depends on the correlation between ui and the deriva-

tive of v (see Fig. 1B). As usual we require that all weight changes occur on a

much longer time scale (i.e., very slowly) as compared to the decay of the oscilla-

tory responses u. This allows us to treat the system in a steady state condition,

thus, ��! 0 for �t! 0.

We state our goal as: After learning, the output unit shall produce a

well discernible signal v (e.g., of high amplitude and steeply rising) in

response to the earliest occurring conditioned stimulus xj ; j � 1.

3 Analytical solution of the initial weight change

Similar to other approaches [7] we compute the initial development of the weights

as soon as learning starts, because this is indicative of the continuation of the

learning process. In order to calculate this weight change we will now introduce

several restrictions:

1. The weight of the unconditioned stimulus is set to �0 = 1 and kept constant

throughout learning.

2. We will consider only one unit that can learn, thus, N = 1.

3. Accordingly we have to deal with only two input functions x0; x1 and we

de�ne them as (delayed) Æ-pulses:

x0(t) = Æ(t+ T ); T � 0 (6)

x1(t) = Æ(t) (7)

These restrictions will allow us to develop the theory but can be waived in

the end without a�ecting our basic �ndings.

Because we assume steady-state, we can rewrite the product in the learning

rule (Eq. 5) as a correlation integral between input and output:

��1(T ) = �

Z
1

0

u1(T + �)v0(�)d� (8)

The value of T represents the delay between conditional and unconditional stim-

ulus. In order to assure optimal learning progress we must, therefore, determine

that particular value Topt for which a maximal weight change is observed. Be-

cause we are interersted in the initial weight change, we can assume:

�1(t) = 0 for t = 0 (9)



and Eq. 8 turns into:

��1(T )t=0 = �

Z
1

0

u1(T + �)u00(�)d� (10)

In simple cases (e.g., for h0 = h1) this integral can be solved directly. A gen-

eral solution, which can also be extended to cover more than two inputs, requires

to apply the Laplace transform using the notational convention: x(t)$ X(s),

for a transformation pair of functions in the time and the Laplace domain.

For the inputs we get:

x0(t) = Æ(t+ T )$ X0(s) = e�Ts (11)

x1(t) = Æ(t)$ X1(s) = 1 (12)

Then we specify the resonators in the usual way by:

h(t)$ H(s) =
1

(s� p)(s� p�)
(13)

where p� represents the complex conjugate of the pole p. It is important to note

that such a resonator is only stable if its pole-pair is located on the left complex

half-plane, otherwise an ampli�ed oscillation is obtained.

Real and imaginary parts of the poles are given by a := Re(p) = �f=Q and

b := Im(p) =
p
(2�f)2 � a2, where f is the frequency of the oscillation. The

damping characteristic of the resonator is re
ected by Q � 0:5. Small values of

Q lead to a strong damping.

In the general case we will have two di�erent resonatorsH0(s) andH1(s) with

di�erent conjugate pole pairs (p0; p
�

0) and (p1; p
�

1) and we get for the responses:

U0(s) = e�sTH0(s) (14)

U1(s) = H1(s) (15)

In the Laplace domain, the derivative of U0 is simply a multiplication with

s:

v0(t) = u00(t)$ sV (s) = sU0(s) = se�sTH0(s) (16)

In order to compute the weight change (Eq. 10) we use Plancherel's theorem

and get:

��1 = �
1

2�

Z +1

�1

H1(�i!)
�
i!e�Ti!H0(i!)

�
d! (17)

= �
1

2�

Z +1

�1

H1(i!)
�
�i!eTi!H0(�i!)

�
d! (18)

Note that symmetry of the Plancherel's theorem is broken due to the exponential

term. Equation 17 represents a Fourier transform and Eq. 18 its inverse. Both

integrals can be evaluated with the method of residuals. Eq. 18, however, o�ers

the advantage that we can neglect the right complex half plane, because it leads



to contributions for negative time (i.e. T < 0) only [8, 9]. Thus, of the four

residuals (poles) for H1 and H0 only those of H1 need to be considered because

those of H0 have 
ipped their sign to the right side in Eq. 18. We get as the �nal

result:

��1(T )t=0 =
1

4a1b1
sin(b1T )e

�a1T (19)

The initial weight change (viz. for t = 0) depends only on h1, which is a rea-

sonable result given that at t = 0 no in
uence of the unconditioned stimulus

can be felt (Fig. 1B). Before showing simulation results we note that the above

obtained analytical results can be extended to cover the most general system

structure as represented in Fig. 1A. Equation 1 turns into:

V (s) =

NX
j=0

�je
�sTjUj(s) for Tj � 0 (20)

keeping it in the Laplace domain, because then we can directly obtain:

��i(T ) = �
1

2�

Z +1

�1

�i!V (�i!)Ui(i!)d!; (21)

which is the general form of Eq. 18. It should be noted that for all ��i this

integral can still be evaluated analytically in the same way as in the special case

with two resonators discussed above.

4 Simulations

In order to validate the approach several simulations of increasing complexity

were performed. The analytical solution treats only the initial learning step, i.e.

t = 0. Thus, �rst we used the same setup as before and determined the learning

behavior for t >> 0. Fig. 2 A shows that at the initial learning step the output

function v still coincides with the unconditioned stimulus response u0. After

10 repetitions of the pulse-sequence (Fig. 2 B), the output function has shifted

forward to u1. This forward shift can be interpreted in the sense of classical

conditioning: after learning the output signal v predicts the occurrence of u0
having been conditioned by u1.

A suÆciently strong correlation occurs in this setup only for small temporal

di�erence between the input pulses. To improve on this one can use several

resonators h1; :::; hn with di�erent frequencies which will all receive input from

the conditioning stimulus x1, de�ning: T0 = T ;xj = x1; Tj = 0 for j � 1 (Fig. 1A

and Eq. 20). In Fig. 2 C-E we use �ve resonators to represent x1 and show the

results after 10 learning steps for increasingly larger intervals T which separate

the input pulses. First we note that in all cases the output is a superposition of

the di�erent resonator outputs and that a well discernible early signal component

exists in response to the conditioning stimulus x1. This is due to the fact that in

this setup the learning process can be seen as a sequential improvement of the
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Fig. 2. Simulation results. Arbitrary time steps were used in the simulations. Pulse

sequences were repeated every 100 time-steps, the �rst starting at zero. Resonators were

implemented digitally as IIR-�lters, which leads to a small onset-delay of 2 time-steps.

They had always a value of Q = 1. A,B) are obtained with two identical resonators

h0; h1 with: f0;1 = 0:1. The other parameters were � = 0:01 and T = 2. A) Result for

t = 0, B) for t = 900. C-E) are calculated with six resonators, �ve (curves of u1; :::; u5)

receiving input from x1 and one (curve of u0) from x0. Resonator parameters are:

f0 = 0:1, fj =
f0
j
; j � 1, � was set to 0:11. Results are shown for t = 900. C) T = 5.

D) T = 15, E) T = 25. F) and G) have the same conditions like D) but for x1 a sine

burst is used.

rising edge at the onset of the conditioned stimulus. Schematically: Correlation

�rst takes place between v = u0 and u5. By this v (hence also v0) shifts forward

to some degree and in the next step the correlation can spread to the higher

frequency resonator response(s), and so on. Learning, however, needs more and

more steps when longer durations of T are used. This leads to a still rather feeble

early response component in E, which only improves after a few more iterations.

The use of multiple resonators at a �rst glance resembles the afore criticized,

commonly used strategy of designing multiple delay lines to treat long temporal

di�erence in sequence learning [4]. However, on theoretical grounds, two res-

onators will in principle always suÆce to cover arbitrarily long time intervals

T , when setting the wave-length of h1 to 4T and thus the imaginary part of p1
to b1 = �

2T
(see Eq. 19). The shape of the curve v will then at early learning

steps be similar to that in Fig 2 E. Using two resonators may, however, lead to

impracticable solutions (e.g., slow convergence of learning).

In Fig 2 E/F we replaced the square pulse of x1 by a sine burst in order to

get a more realistic situation and to show that the system is able to deal with

arbitrary input signals. Here the signal x0 (the unconditioned stimulus) could

be a light stimulus and the signal x1 (the conditioned stimulus) a sound event.

After learning the system is again able to detect the sine burst as a predictor of

square pulse in signal x0.



5 Discussion

From the above results it can be deduced that the system generalizes with-

out problems to more generic input combinations (e.g. more than two inputs).

In addition, we note that our approach, which has been developed within the

framework of the signal theory, allows to waive the restriction to Æ-function in-

puts, because of the sampling properties of time-continuous signals. An impor-

tant feature of other algorithms for sequence learning is that after convergence

the output function will approximate an \expectation potential", which is essen-

tially a rectangular function, starting at x1 and ending at x0 (see [4], chapter 10).

This is the reason, why our theory was developed using resonators (band-passes),

because they allow to compose arbitrary shapes of v, such as expectation poten-

tials. We realize, however, that a pure low-pass characteristic would also suÆce

to induce temporal learning. General signal composition, however, would then be

prevented. The inherently present low-pass component in every resonator relates

our approach to the theory of adaptive �lters [10]. This helps to understand the

predictive properties of our system, because from this context it is known that

the derivative of a low-pass �ltered signal acts as a predictor of the signal [11].

However, adaptive �lters rely on the (gradually shifting) self-similarity of a sin-

gle signal - hence on its auto-correlation properties. Whereas our approach gains

its predictive power from the cross-correlation properties between two (or more)

signals such as in biological classical conditioning. Therefore, we expect that this

approach will also prove useful in a more technologically oriented context.
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