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Abstract

In this article, we present an isotropic algorithm for sequence order learning. Its
central goal is to learn the causal relation between two (or more) inputs in order to
react to the earliest incoming signal after successful learning (like in typical classical
conditioning situations). We implement this algorithm in a behaving system (a
robot) thereby creating a closed loop situation where the learner’s actions influence
its own sensor inputs to the end of creating an autonomous agent. Autonomous
behaviour implies that learning goals are internally defined within the organism’s
capabilities. Standard learning models for sequence learning (e.g., TD-learning) need
an externally defined reward. This, however, is in conflict with the requirement of an
implicitly defined internal goal in autonomous behaviour. Therefore, in this study
we present a system in which the external reward is replaced by a reflex loop.
This loop explicitly includes the environment. Every reflex loop has the inherent
disadvantage which is that its re-actions occur each time just after a reflex-eliciting
sensor event and thus 'too late’. However, a reflex can serve as the internal reference
for sequence order learning which has the task of eliminating this disadvantage by
creating earlier anticipatory actions. In our system learning is achieved by modifying
synaptic weights of a linear neuron with a correlation based learning rule which
involves the derivative of the neuron’s output. All input lines are entirely isotropic.
The synaptic weight change curve of this rule is strongly related to the temporal
Hebb learning rule which was found in spike timing experiments. We find that after
learning the reflex loop is replaced in functional terms with an earlier anticipatory
action (and pathway). In addition, we observed that the synaptic weights stabilise
as soon as the reflex remains silent.
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1 Introduction

The standard paradigm for temporal sequence learning in animals is classical
conditioning which dates back to Pawlow’s revolutionary work early last cen-
tury (Pavlov, 1927). His descriptive theory was later formalised by Rescorla
and Wagner (Rescorla and Wagner, 1972) and then further developed by Sut-
ton and Barto (1982) into their model of temporal difference (TD-) learning.
TD-learning allows the formulation of a sound mathematical theory and is an-
alytically treatable to a large extent. Although the mathematical framework
suggested an end point in this development Klopf (1988) rightfully pointed out
that the Sutton&Barto model is a typical supervised learning scheme arguing
that animals can not learn in a supervised mode because they are autonomous
agents.

The difference between supervised and unsupervised temporal sequence learn-
ing, to which our ISO-learning (Isotropic Sequence Order) scheme belongs,
is formally reflected by the definition of “the reward”: In the TD-model the
reward is (in Klopf’s words) an evaluative feedback which means that the
supervisor (the environment) gives the system a feedback whether learning
was successful or not. Learning in the sense of the TD-algorithm is, therefore,

strongly related to standard supervised learning schemes, especially learning
with the delta-rule (Widrow and Hoff, 1960).

In all of these algorithms, the reward serves as a reference signal for learning
success. Mathematically this is defined by means of an error signal between
learning-achievement and learning-goal. This error signal is then used to con-
trol the learning rate. Learning stops when a (close to) zero error is obtained.
For example, in temporal sequence learning, if an event is successfully pre-
dicted the error is zero and the learning has reached its externally pre-defined
goal.

Klopf’s main argument against such learning schemes is that organisms are au-
tonomous and that there is no external teacher. This requires a non-evaluative
feedback (Klopf, 1988) which operates in accordance to an intrinsically defined
learning goal.

In this study, this internally defined goal will be punishment avoidance. Ini-
tially this goal is achieved by means of a reflex loop, and the reflex-like avoid-
ance reaction serves as reference behaviour in our system. This reference be-
haviour is superseded by a learning algorithm which replaces the slow feed-
back loop with a fast feed-forward pathway. Learning is guided in our system
by non-evaluative feedback, which occurs simply as a consequence of having
placed the learner in its environment. This is due to the fact that the environ-
ment effectively connects the organism’s motor outputs to its sensor inputs in



a feedback-like manner, without explicit specification of a “teacher”. Further-
more we demonstrate that during learning synaptic weights will stabilise in
our system leading to an equilibrium between learner and environment.

2 The neuronal circuit
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Fig. 1. General form of the neural circuit. Inputs z; are filtered by resonators with
impulse response h; and summed at v with weights pg.

Fig. 1a shows the basic components of the neuronal circuit. The learning

system consists of multiple inputs x; which are first band-pass filtered by
means of linear transfer functions (in the time- and Laplace-domain)

h(t) = %e“t sin(bt) (1)

1
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with a := Re(p) = —7f/Q and b := Im(p) = /(27 f)? — a?, where f is the
frequency of the oscillation and @) the quality. This operation is commonly
observed at sensorial inputs and/or in real neuronal circuits (Shepherd, 1990).
The transformed inputs u; converge onto a single learning unit with weights
pr and its output is given by:

N
v = Z Pk Uk (3)
k=0

Note that all weights are allowed to change, which makes this setup isotropic.
Since we are dealing with a behavioural paradigm this unit has the task to
transform a sensor input into a motor reaction. The weight p, of the input



xo is set initially to a large value! and this pathway can be interpreted as
the input to an unconditioned reflex loop. All other weights are associated
with the conditioned stimuli. Weights change by a learning rule which uses
the temporal derivative of the output:
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Fig. 2. a Response curves. Curves for u show band-pass filtered responses to §-pulse
inputs (Q = 1.0, f = 0.01). At ¢ = 0 (first pairing of pulses) we get uy = v. Note
that v’ has an approximately 90° phase-lead with respect to v. This arises from
the band-pass filter characteristic of the system and is the basis for the predictive
properties of the learning rule used. b) Weight change curve: same input signals as
in a) but now the dependence of the weight change Ap from the temporal difference
T is plotted.

In order to clarify the basic idea behind this algorithm we have chosen a
classical conditioning paradigm reducing the number of inputs to two: the
unconditioned input xy with large initial weight and the conditioned stimulus
x1. Characteristic waveforms of the system in response to d-pulse inputs are
shown in Fig. 2a. Fig. 2b shows how the synaptic weight p; of the conditioned
input changes assuming identical band-pass filters for two inputs which occur
with a time difference of T" between them. The weight change Ap; is the
result of the correlation of the two resonator responses ug and u; shown in a).
Weights increase for 7' > 0 (which means that a sequence of events z; — xg
leads to weight increase at p;, whereas the reverse sequence (zo — 1) leads
to a decrease.
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Fig. 3. a) Unconditioned reflex loop: the organism transfers a sensor event Xy into a
motor response V with the help of the transfer function Hy. The environment turns
the motor response V' again into a sensor event X with the help of the transfer
function Py. In the environment there exists the disturbance D which adds its signal
at @ to the reflex loop. b) Signals of the reflex loop in the time domain when a
disturbance d # 0 occurs. The desired state is zy := 0. The disturbance d is filtered
by P, and appears at zg and is then transferred into a compensation signal at v
which eliminates the disturbance at the summation point .

3 Behavioural feedback

Now we define a behavioural feedback reflex loop first in an abstract way and
below in a real robot experiment. The generic goal of a (behavioural feedback)
control-loop is to attain a desired state as good and fast as possible in this case
xo = 0 (Palm, 2000). Fig. 3 shows the situation of a naive learner, who is only
able to react to an unconditioned stimulus by means of a (pre-wired) reflex. In
the context of control theory such a system is described by the transfer function
of the system Hj, here given by the properties of sensor-motor coupling and
that of the environment F,, which is usually unknown.

Predictive learning changes this situation. The goal of predictive learning is to
generate an appropriate reaction already in response to the conditioned signal
which provides the disturbance D filtered by P; (see Fig. 4) and thereby never
having to perform the reflex. When the learning goal is optimally achieved the
dashed reflex pathway can be treated as functionally not anymore existent. As
central observation at this stage we note that from the perspective of the inner
reflex loop the system has now a pure feed-forward structure, because the sig-
nals do not anymore re-enter the system at the environment summation node

1 In earlier experiments we have kept it constant, but this is not really necessary
as we found out later.
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Fig. 4. Conditioned reflex loop. a) The circuit from Fig. 3 is extended by a second
feedback loop via Py, P; and X,. The organism is now identical to the circuit in
Fig. 1 where the input X, is connected to all Xj; k > 1. Due to the delay T the
disturbance D reaches the organism first via X, and later via Xy. b) Time course
of the signals after learning: at the moment the disturbance d has been triggered, a
compensation reaction at v is elicited and the disturbance is eliminated at @ before
it can enter the input xzg.

(i.e., at the @ before F;). Predictive learning has effectively restructured the
(slow) feedback control loop into a fast feed-forward controller. The learner’s
transfer function

Hy(s) = kz_: prHy, (5)

now essentially approximates the inverse of the transfer function P; delayed by
T. At the moment the inner loop is superseded by the feed forward pathway
via P; a new feedback loop has been generated via Fy;. Note, however, that
this loop normally only adds phase-shifts to the behaviour of the system. This
will be mathematically clarified below. For now we can conclude that in most
cases we can, therefore, set Py, := 0 and neglect the secondary loop.

Let us try to gain a better mathematically understanding about what underlies
the situation after successful learning, i.e. when zy = 0 holds. Eq. 3 is in the
Laplace domain:

N
V(s) = poeXo+ Y peXpHy (6)
k=1



with

Xo(s) = Po[V + De™*T] (7)

as the reflex pathway and

PD + PPy XoHy
X = 8
P(S) 1— PlPOlHV ( )

as the predictive pathway (see figure 4). Inserting Eq. 6 and Eq. 8 into Eq. 7
and eliminating there the X,(s) and V (s) we finally get:

P,D+ PPy XoH,

Xo(s)=e* "D+ H 9
ols) =e v — PPy Hy ©)
Solving for Xy(s) = 0 we get:
N P*le—sT
Hy(s) = H,=—-——'"—+— 10
v(s) kglpk k 1= PyeT (10)

The numerator of this equation is the inverse transfer function of the environ-
ment together with a delay 7. The denominator can be neglected because it
does not provide any more poles to the transfer function Hy (s), thus it can
add only phase-factors. Therefore, we can (as claimed above) set Py; := 0. In
general it is possible to emulate the expression on the right of Eq. 10 by a
composition of appropriate transfer functions (Blinchikoff, 1976, pp.372). In
our case this is achieved with a combination of band-pass filters. A universal
solution, however, cannot be explicitly given because it depends on the actual
shape of the environment. We were, however, able to prove that the learn-
ing rule converges if 7" is known and some general assumptions about the set
of functions H are made (like a specific orthogonality constraint). When cho-
sen appropriately band-pass filters obey these assumptions demonstrating that
ISO-learning is convergent and that unique solutions can be found. The math-
ematics to prove this however, is quite intricate and cannot be included in this
short article (see Porr and Worgdtter (2002) instead). For practical purposes,
however, an over-complete set of band-pass filters must be used, because 7' is
normally not constant. This thwarts the uniqueness of the solution, which is,
however, of no practical consequence. Instead, the robot results shown below
demonstrate that the algorithm still converges to one of the possible solutions.

Using the same mathematical framework we can also prove for two inputs
(N = 1) that the obtained feed-forward solution leads to a stable fix-point
where the weights no longer change. Without loss of generality we define the



transfer functions in the environment as: Py(s) = 1 and P;(s) = 1 to establish
the simplest form of a feedback loop. As described earlier, the weight change
Apj is calculated as a correlation between the derivative of the output v and
the respective input wuy, but in this case in the Laplace domain with the help
of Plancherel’s theorem as:

+oo
1
Apj = Hy- / —iwV (—iw) U, (iw)dw (11)

—00

Inserting equations 6 and 8 into 11, taking into account that after successful
learning X, remains zero all the time and that |Y(s)|> = Y(s)Y(—s) the
weight change becomes:

pi(T) = % kzlpk
/ ] X, (i) | Hyy(—iw) H, (iw) dw (12)

With N =1 the sum consists of only one term and we get for p;:

pu(T) = o=pr [ —ieo] Xy i) 2 iy (i) Pl (13)

This integral is anti-symmetrical and thus zero (assuming that the transfer
function vanish for w — o0). In the general case with N > 1 the integral
becomes zero if the transfer functions are orthogonal to each other (Terrien,
1992). Eq. 12 can be used to construct these orthogonal functions. This result
can, thus, be embedded into the same analytical framework for convergence
& uniqueness as mentioned above, such that the assumed solution for Xy = 0
would be the only one possible. In praxis, we again refer to the robot appli-
cation which shows that the weights converge during learning, even with an
over-complete set of H. At this point we remark that the stabilisation strictly
only occurs in the case of p — 0. We find, however, that in a practical ap-
plication this still holds for values of p which still also guarantee fast enough
learning. Thus, with a reasonably low learning rate it is possible at the end to
achieve a stable equilibrium between learner and environment, which can only
be disturbed if new unconditioned stimuli arrive through the (anatomically
still existing) dashed connections (Fig. 4).
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Fig. 5. The robot ¢) has 2 output neurons for speed (ds) and steering angle (d¢).
Normal operation is straight forward motion (ds = const, d¢ = 0). The retraction
mechanism is implemented by 3 resonators (@ = 0.6, f = 1 Hz) which connect the
collision sensors (CS) to the neurons ds and d¢ with appropriately strong weights.
Each range finder (RF) is fed into a filter bank of 10 resonators hy with @ = 1.0
and fy = 10/k Hz. All outputs converge on the neurons ds and d¢ with weights
which are changed according the learning rule Eq. 4. A more detailed technical
description goes beyond the scope of this article but is found together with a set
of movies at: http://wuw.cn.stir.ac.uk/predictor/real — movie 2. d) Shows
the robot’s trajectory before learning and a) shows the corresponding signals of the
collision sensor (CS), range finder (RF) and output of the neuron for speed (ds).
The numbers correspond to the bumps in d). €) Shows the robot’s trajectory after
learning and b) the corresponding signals.

4 Robot experiment

Fig. 5 shows results from a robot experiment. Details of the robot are de-
scribed in the Appendix. Initially the robot reacts only in an unconditioned
reflex-like manner with a retraction movement whenever it touches an obsta-
cle (Fig. 5d). The nature of this behavioural paradigm, however, guarantees
that the range finders of the robot will respond to an obstacle earlier than
the collision sensors, which will only respond at direct contact. This temporal
sequence of events is learned at two analogue summing neurons; one whose
output controls the speed ds, the other the direction d¢ of robot motion. The
range finder signals are rather noisy (Fig. 5a,b) and, due to curvature of the
motion patterns, the temporal intervals between range finder and collision-
sensor signals vary within a wide range. In order to cover the large range of
temporal intervals between both types of sensor signals the range finder signals
were split up into ten parallel channels with different temporal transfer char-
acteristics (Grossberg (1995), see Appendix for details). As a consequence a
total of 20 learning synapses converges onto each neuron (see Fig. 5¢). Despite
of the poor quality of the input signals and the widely varying time intervals
this system learns to perfectly correlate both sensor modalities and the robot
stops colliding after about 100 seconds (compare Fig. 5d,e). The development
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Fig. 6. Development of the weights: a) Shows the weights from the right range finder
onto the neuron ds and b) onto d¢.

pattern of the synaptic weights differs from trial to trial, because they de-
velop in accordance to the sequence of sensor events, which is different for
different initial situations. As a consequence different behavioural strategies
are generated, for example different relations between breaking and steering.
However, as expected from the theoretical considerations, we find that synap-
tic weights always stabilise (at different values) as soon as no more collisions
occur (Fig. 6).

5 Discussion

The problem how synaptic weights stabilise during learning has puzzled biolo-
gists and theorists ever since the first correlative synaptic learning mechanisms
were discovered (Hebb, 1967; Bliss and Lomo, 1973). Biochemical saturation
dynamics and other mechanism have been suspected to be involved in this
process (Abraham and Tate, 1997). Our results show that, during temporal
sequence learning, weight stabilisation occurs in our system generically by
coupling the organism with its environment.

The introduction of a novel learning rule for time-continuous signals in a poly-
synaptic system with inputs from different sensor modalities was instrumental
to the design of a generic feedback loop situation which is able to treat long
temporal intervals between the different signals. Weight stabilisation occurs in
this case as a consequence of the learner’s own reactions by which it implicitly
controls the sequence of its own input events. The robot example demonstrates
that stabilisation of the weights is due to properties of a natural environment.
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There is no need to stabilise the weights within the learning algorithm or
within the organism. Since the algorithm is goal oriented the weights stabilise
when the goal has been reached. This is an important difference from other
models: in our case the prediction is used to reach the internally defined goal,
but in other models the goal is to calculate a successful prediction in relation
to an externally defined reward (Sutton and Barto, 1982; Abbott and Blum,
1996; Schultz et al., 1997).
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Fig. 7. Differences between a) TD-learning and b) ISO-learning.

The use of the derivative in our learning rule is related to the learning rule
in TD learning (Sutton and Barto, 1982; Haruno et al., 2001) which uses the
derivative as well. In the TD model the derivative is required to calculate
a prediction error (P,;; — P;) which is then used to change the weights. In
our model the derivative of the motor output is used to utilise the predictive
properties of low pass filtered signals (see the Kalman filter theory in Bozic
(1994)). The second difference between the two models shows that the reward
has been replaced by a feedback loop (see Fig. 7). Thus, our model needs only
one neuronal circuit whereas the TD model needs two: one for the prediction
and one for the error. Either models are supported by biology: for example the
TD model is supported by results from Schultz et al. (1997) and the model
presented here by Hauber et al. (2001). Another biological aspect is the weight
change curve in our model which is reminiscent of the spike-timing dependent
plasticity curves which show the change of synaptic potentials observed during
long-term potentiation or depression in physiological paired-pulse experiments
(Bi and Poo, 1998; Markram et al., 1997). However, further work has to be
done to explore the direct biological relevance of our model on a neuronal
level.

In control theory it is well known that a control loop can only exert its influence
after the desired state has already been disturbed. In this sense reflex-reactions
are slow and non-optimal. They could even lead to dangerous situations for
an animal: A reflex might come too late when the initial sensor signal was
generated by a life-threatening event. This represents the classical “inverse
controller problem” known from engineering. One of the central goals in these
disciplines is to solve this problem by replacing a (slow) feedback loop with its
equivalent (faster) feed-forward controller, which emulates the inverse transfer
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characteristic of the closed loop system (Palm, 2000). In this study we have
shown that predictive learning achieves this in our system in a natural way.
Related work in this field has been done by Haruno et al. (2001). They have
identified the feedback feed-forward problem in motor control and using TD
learning to improve arm movements in combining a feedback controller with a
feed-forward controller. The difference to our model is that it is not desirable
to gain autonomy in motor learning. In our model autonomy is an important
aspect: the robot is allowed to develop smart (in eluding objects) but also
trivial (in simply waiting in front of an object) solutions in order to solve his
feedback problem.

A Hard- and Software of the robot experiment

Hardware: A modified commercial robot (“rug warrior”, 16 c¢m diameter) was
used. T'wo active wheels are driven by DC motors, steering is achieved through dif-
ferent DC-levels. Average speed was adjusted to 0.45 m/s using a control parameter
¢ = 0.6. In order to detect mechanical contact the robot has three micro-switches
CS;,CS,,CSp in a triangular configuration (Fig.5c¢). Visual signals are generated
by two multiplexed, infrared emitting, active range finders RFj, RF, with an angle
of 70° between them. Infrared reflection is detected by an infrared sensor centred
between the emitters which operates in synchrony with them. The detection range
was adjusted to 0.5 — 15.0 ¢m. Unconditioned retraction reaction: The un-
conditioned retraction reaction uses only the collision sensor signals. These signals
drive the output neurons in such a way that an avoidance movement with a motion
vector pointing away from the site of stimulation is elicited. Neuronal OQutput:
The output of the neurons is defined as: ds = ¢ — pd*[h,(t) * (CS;+ CS, — CSp)] + 145
and d¢ = pg(b[hr(t) * (CS; — CS,)] + l4¢- The asterisk denotes a convolution oper-
ation. The variables l4, and [, , represent the total sum of all learned contributions
that converge onto the ds- and d¢-neuron respectively. The synaptic weights in
unconditioned reaction are initially set to pg* = 0.15 and pg¢ = —0.5.
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