
Abstract. In a stereoscopic system, both eyes or cam-
eras have a slightly di�erent view. As a consequence,
small variations between the projected images exist
(`disparities') which are spatially evaluated in order to
retrieve depth information (Sanger 1988; Fleet et al.
1991). A strong similarity exists between the analysis of
visual disparities and the determination of the azimuth
of a sound source (Wagner and Frost 1993). The
direction of the sound is thereby determined from the
temporal delay between the left and right ear signals
(Konishi and Sullivan 1986). Similarly, here we trans-
pose the spatially de®ned problem of disparity analysis
into the temporal domain and utilize two resonators
implemented in the form of causal (electronic) ®lters to
determine the disparity as local temporal phase di�er-
ences between the left and right ®lter responses. This
approach permits real-time analysis and can be solved
analytically for a step function contrast change, which is
an important case in all real-world applications. The
proposed theoretical framework for spatial depth re-
trieval directly utilizes a temporal algorithm borrowed
from auditory signal analysis. Thus, the suggested
similarity between the visual and the auditory system
in the brain (Wagner and Frost 1993) ®nds its analogy
here at the algorithmical level. We will compare the
results from the temporal resonance algorithm with
those obtained from several other techniques like cross-
correlation or spatial phase-based disparity estimation
showing that the novel algorithm achieves performances
similar to the `classical' approaches using much lower
computational resources.

1 Introduction

The ®eld of biological cybernetics and neural modeling
has undergone several transitions over the last decades.
Classical `cybernetical' approaches which dominated
before 1970 (often involving linear systems theory) were
soon followed by neuronal network models with di�er-
ent degrees of biological realism. The domain of
arti®cial neural networks (ANN) began to exert its
massive in¯uence in the last 10 years or so. The strongest
driving force behind ANN research was probably the
attempt to transfer ideas taken from biology to a more
technological domain. Thus, this aspect of neuronal
modeling (in its widest sense) was especially attractive to
engineers and other application-oriented researchers. As
a consequence, at about this time neural modeling
`became useful' also outside the ®eld of brain science.
The transfer of biological ideas to technology, however,
is not necessarily restricted to ANNs, and this may be a
sensible consideration given the intrinsic disadvantages
of ANNs (e.g., slow relaxation behavior). Instead,
sometimes it is possible to design an application-
oriented algorithm in a rather direct way from a
biologically inspired model.

Thus, the goal of this article is twofold: we will try to
show that (1) an algorithm stolen from the auditory
system can be applied to a visual problem, and (2) that it
is possible to transfer this algorithm directly to a chain
of electronic ®lters which operate in real-time. To this
end, we will concentrate on the problem of stereo-image
analysis.

In any vision-based system the 3-dimensional world is
projected onto 2-dimensional receptor surfaces. These
could be the two retinas of a binocularly viewing animal
or the cameras of an arti®cial system. During that
process, depth information is lost but can be recovered
from the disparities between matching image parts. In
technical systems, vertical disparities are often neglected
by assuming a strictly frontoparallel camera geometry.
In this case, it is su�cient to analyze corresponding
cross-sections of both images line by line because the
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epipolar lines are now horizontal. Thus, stereoscopic
depth estimation is reduced to a 1-dimensional spatial
problem, and common methods use acausal spatial ®l-
ters to retrieve the disparity as a convolution result
(Sanger 1988; Fleet et al. 1991). The inherently present
restriction to one dimension, however, makes it also
possible to interpret each line from the left and right
image as a temporal signal x�t�, which could, for
example, be imagined as scan-line from a CCD camera
arriving pixel after pixel. With the help of this
interpretation, a causal ®lter approach can now be de-
®ned such that the disparity is detected continuously
with the incoming data.

2 Causal ®ltering of the stereo-images

2.1 General description

The system we present is very simple: It takes the
luminance signal of the image scan-lines from the left
and the right image and pipes it through a left and a
right band-pass ®lter (a resonator). This way two signals
are generated which are quasi-oscillatory at the reso-
nance frequency. The (local) phase di�erence between
these two oscillations is directly equivalent to the
disparity. Thus, subsequently our system measures this
phase di�erence by two more simple electronic opera-
tions as shown in Fig. 1 and explained in the next
section.

2.2 Equations for the generic case

We assume a frontoparallel camera arrangement, which
leads to horizontal epipolar lines. Disparity changes can
only be detected when they concur with a luminance
change. For digitized camera data, the smallest lumi-
nance change is a 1-bit step function. In addition,
stronger step-like luminance changes in general occur
rather often in images, for example, at the edges of a
protruding object. Thus, step functions are a very
generic case for which we will solve the `Ansatz'
analytically. Let xl�t�, xr�t� be the two corresponding
pixel lines of a stereo image pair in which a single
contrast step exists at di�erent disparities (viz. di�erent
times tl and tr). To obtain the disparity between the
images, each signal is used to excite a resonator with
characteristic frequency f0. We assume that the contrast
step in the left image occurs earlier than that of the right
image �tl < tr�, and thus that the resulting resonance
starts earlier for xl than for xr. This temporal phase
di�erence is directly equivalent to the spatial disparity
between the images and can be obtained from an
operator which compares the phases.

The two step functions xl�t� $ Xl�s� and xr�t� $ Xr�s�
are de®ned in the Laplace domain by (Fig. 1):

Xl�s� :� 1
s e
ÿtls and Xr�s� :� 1

s e
ÿtrs �1�

and the transfer function of the resonator is given as:

H�s� � s
�sÿ s1��sÿ s�1�

�2�

where s1 is a ®lter pole and speci®es the ®lter
characteristic de®ned by f0 and the ®lter quality Q,
which determines the damping; the asterisk denotes the
complex conjugate.

Re�s1� � ÿ2pf0=2Q; Im�s1� �
������������������������������������������
�2pf0�2 ÿ �Re�s1��2

q
�3�

Convolution of signal and ®lter yields for the right
image:

Yr�s� � Xr�s�H�s� � s
�sÿ s1��sÿ s�1�

1

s
eÿtrs �4�

A similar convolution is performed for the left image.
We de®ne a :� �s1 ÿ s�1�ÿ1, then the inverse Laplace

transformation of Yr�s� yields:

yr�t� � aes1�tÿtr� � a�es�1�tÿtr� if t � tr
0 if t < tr

�
�5�

The temporal resonator signal y�t� re¯ects a damped
sine-wave with frequency f0 (Fig. 1, yl, yr). The number

Fig. 1. Block diagram of the computational process and results of a
disparity estimation from the two input step functions xr and xl. The
initial disparity was 1 pixel, f0 was 0:1 pixelÿ1, and for graphical
reasons we have set Q to 2.0 such that two full oscillation cycles are
shown. yr; yl re¯ect the resonator responses (Eq. 5), U is the signal
from the phase comparison (Eq. 6) and / shows the disparity output
after low-pass ®ltering (Eq. 8). The scaling of / re¯ects the damped
cosine characteristic of Eq. (9). In this technical implementation, the
constant delay until read-out of the disparity was 10:0 pixels. For a
CCD camera-based system, we can assume a pixel input rate of
>10MHz. Thus, the ®nal output of this disparity processing system
would be available after a total delay of only 1:00ls. The measured
disparity after that delay, i.e., at the peak of /, is 0:97 pixels
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of full cycles until the signal fades is roughly equivalent
to the value of Q. Note that any DC component present
in the input signal is removed by the resonator. This is
an advantage of the new method because the DC usually
poses a severe problem in all spatial ®lter approaches
(Sanger 1988; Fleet et al. 1991).

Finally, disparity is determined from the phase dif-
ference between the resonator signals from both images.
Phase comparison is achieved by multiplication of the
two signals in the time domain and subsequent low-pass
®ltering (Fig. 1, U, LP).

Multiplication yields (Fig. 1, U):

U�t� � yl�t�yr�t� � g2f0�t� � /�t� if t � tr
0 if t < tr

�
�6�

with:

g2f0�t� � a2es1�2tÿtlÿtr� � a�2es�1�2tÿtlÿtr�|�������������������������{z�������������������������}
double frequency term

�7�

and

/�t� � jaj2eÿs1tlÿs�1tr��s1�s�1�t � jaj2eÿs�1tlÿs1tr��s�1�s1�t|������������������������������������������{z������������������������������������������}
phase

� 2jaj2 cos �tr ÿ tl�Im�s1�� �|���������������������{z���������������������}
K

eRe�s1��2tÿtrÿtl� �8�

The term g2f0�t� re¯ects an oscillation with 2f0. In an
implementation, it will be eliminated by low-pass
®ltering with low cut-o� (Fig. 1, LP). The second part
represents the phase /�t� between the two signals and
contains an exponential relaxation term and a constant
term K, which encodes the true disparity.

K � Q2

2p2f 2
0 �4Q2 ÿ 1� cos��tr ÿ tl�Im�s1�� �9�

The disparity, which is the spatial equivalent of tr ÿ tl,
can be computed by inverting (9) and is obtained
immediately at the second contrast step (i.e., for t � tr),
after which the signal relaxes to zero. This relaxation
behavior originating from the characteristic of the
resonator assures temporal (viz. spatial) locality. Other-
wise, only the average phase (viz. disparity) of each
image line could be computed.

Like all other phase-based approaches, our algo-
rithm is also subject to the so-called phase wrap-
around problem. The periodic characteristic of the
resonators limits the resolution of the system. This
generic problem is re¯ected at the output of the system
in (9) by the periodic behavior of the cosine. To avoid
such ambivalencies, we restrict the argument of the
cosine to: 0 < �tr ÿ tl�Im�s1� < p. From this we get:
0 < f0 < 1

2 �tr ÿ tl�ÿ1; a constraint which is similar to
that observed in the spatial ®lter (Gabor ®lter) ap-
proaches. The phase wrap-around problem disappears
for f0 ! 0 at the cost of low spatial resolution and an
increasing noise susceptibility because of the shallow
®lter characteristic. As in the other spatial phase-based

stereo-algorithms, our approach could also be used in a
cascaded way, utilizing several ®lter-modules with dif-
ferent frequencies in order to address the phase wrap-
around problem.

We obtain for the damping coe�cient Q > 1=2, which
means that the whole resonance may be restricted to
about one half-cycle of the sine-wave. Given that dis-
parity changes rarely exceed 5±10 pixels (empirical ob-
servation from publicly available stereo-image data),
this restriction drastically limits the necessary compu-
tational e�ort in any implementation.

An analytical solution can also be obtained for other
simple functional descriptions of disparity changes. In
general, however, all disparity changes can be detected
by such a system regardless of their shape as long as the
frequency content of the change contains enough power
at the resonance frequency.

The block diagram in Fig. 1 shows that this system
can be easily implemented in analog or digital hardware.
In particular, a few modern digital signal processors can
be used to implement the individual ®lters, which are
then coupled to a rather simple nearly-real-time pro-
cessing system such as the one used to generate the data
in the ®gure. In such a system, the disparity is deter-
mined continuously from the incoming data and the
computational delay observed in the implementation
(Fig. 1, /) is constant. Its duration is mainly determined
by the low-pass ®lter (Fig. 1, LP), and it is independent
of the input image. In order to make this algorithm
applicable, the output signal needs to be normalized to
be independent of overall luminance variations. Such a
normalization has been performed to obtain the results
shown in Fig. 4 and 6.

Figure 2 shows what the signal originating from a
single scan-line looks like at the di�erent stages of the
®ltering process. The aperiodic brightness signal be-
comes transformed into a quasi-periodic signal at the
resonator, where only a single frequency dominates (see
spectra). The phase comparison (by multiplication)
produces a signal with a DC and a `double-frequency'
component. Only the DC-component survives the low-
pass ®ltering, and ± as explained above ± this DC signal
represents the phase and, hence, the disparity.

3 Results

In the following, we shall compare our approach with
several existing techniques. The next section gives some
basic background about the algorithms used for com-
parison.

3.1 Other methods for disparity estimation

Several techniques have been proposed to recover depth
information from epipolar line pairs. The classical
approach uses a measure of similarity, cross-correlation
for example, to ®nd matching points in the two images
composing the stereo pair. This technique selects one
image of the stereo pair, for example the left one, as the
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reference image. For each point of the reference image,
the corresponding point is sought in the other image by
searching for a maximum in the similarity measure along
the corresponding epipolar line. To this end, the algo-
rithm selects a rectangular window around a point in the
reference image and computes its similarity measure with
all the rectangular windows surrounding every point on
the corresponding line in the second image. The point in
the second image where the similarity measure has its
maximum is considered the correct match.

This scheme, called `area-based matching' (Haralick
and Shapiro 1992) can be implemented in quite di�erent
ways, depending on the chosen similarity measure, on the
algorithmic solution, and on the complexity of the model
assumed for the disparity ®eld. The similarity measures
frequently used are sum of products, covariances, sum of
squared di�erences, sum of absolute di�erences, and
cross-correlation. The algorithmic solutions range from
complete search to iterative least squares, simplex algo-
rithms, and dynamic programming, highly depending on
the a priori knowledge about the scene, the similarity
measure, and the model of the disparity ®eld. The model
of the disparity ®eld varies from simple translation (hor-
izontal plane) to a�nity (locally planar surface) to
smooth (smooth surfaceswithout occlusions) or piecewise
smooth (piecewise smooth, possibly with occlusions).

For comparison purposes, we implemented an area-
based stereo algorithm that uses extensive search to
identify the minimum at integer position, then the sub-
pixel value of the minimum is computed via cubic
interpolation of the similarity function. We produced
disparity maps of a test scene with di�erent similarity

measures. The assumed model of the disparity ®eld is
that of a locally constant disparity. We denote the signal
of each corresponding pair of scan lines as fR�x; y� and
fL�x; y�, where the subscript indicates that the scan-line
comes from the right or the left image of the stereo pair.
Wx and Wy de®ne the size of the window in the x and y
coordinates, respectively. Using this notation, the cross-
correlation of point �x; y� with the disparity value d is
de®ned as:

CC�x; y; d� �
XWx

i�ÿWx

XWy

j�ÿWy

fL�x� i; y � j�

� fR�x� i� d; y � j�
�10�

Plain cross-correlation is too sensitive to the local
characteristics of the signal to be used in real applica-
tions. A better alternative is to use the zero-mean cross-
correlation:

ZCC�x;y;d� �
XWx

i�ÿWx

XWy

j�ÿWy

�fL�x� i; y � j� ÿ fL�

� �fR�x� i� d; y � j� ÿ fR� �11�
where fR=L are the means of the signals in the windows.
An even better alternative is the normalized cross-
correlation:

NCC�x; y; d�

�
XWx

i�ÿWx

XWy

j�ÿWy

fL�x� i; y � j�fR�x� i� d; y � j�
rfLrfR

�12�

Fig. 2. Shape of the signals from a complete scan-line at di�erent ®ltering stages and the power-spectra from these signals
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where rfR=L are the standard deviations of the signals in
the windows. Another approach is to search the
minimum of the sum of squared di�erences between
the two signals:

SSD�x; y; d� �
XWx

i�ÿWx

XWy

j�ÿWy

�fL�x� i; y � j�

ÿ fR�x� i� d;y � j��2 �13�
As an alternative to correlation-based techniques, San-
ger (1988) proposed the use of the phase di�erence
between two local ®lter responses to compute the
disparities of the di�erent objects in the two stereo
images. To achieve this, Gabor ®lters are commonly
used. In the phase di�erence method (Sanger 1988; Fleet
et al. 1991), disparity is computed from the phase
di�erence between the convolutions of the two stereo
images with local bandpass ®lters. Since the two signals,
fR�x� and fL�x�, are locally related by a shift d�x0�, i.e., in
the vicinity of each point x0

fL�x� d�x0�=2� � fR�xÿ d�x0�=2� �14�
the local k0 Fourier components of fL�x� and fR�x�:

f̂L=R�k0� �
Z

exp�ÿik0x�fL=R�x�dx

� q�x�L=R exp�ÿi/�x�L=R�
are related by a phase di�erence equal to D/�x� �
/L�x� ÿ /R�x� � k0d.
We can extract the local Fourier components by
convolving the images with a Gabor ®lter:

FL=R�x; k0� �
Z

G�xÿ y� exp�ik0�xÿ y��fL=R�y�dy

� qL=R�x� exp�iwL=R�x�� �15�
where G�xÿ y� is the Gaussian function and k0 is the
tuning frequency of the ®lter:

G�x� � 1������
2p
p

r
exp

�
ÿ x2

2r2

�
As a function of the spatial position, the phase of the
®lter response, w�x�, has a quasi-linear behavior dictated
by the center k0:
w�x� � w0�x0��xÿ x0� � k0�xÿ x0� �16�
The local frequency, i.e., the derivative of the phase
w�x�, is generally close to the value of the center
frequency k0. In fact, the Gabor ®lter is a bandpass
®lter around k0.

In the Fleet et al. (1991) algorithm, the disparity is
extracted from the phase di�erence, Dw�x� � wL�x�ÿwR�x�, by expanding Dw�x� to the second order in d:

d�x� � 2
Dw�x�� �2p

w
0
L�x� � w0R�x�

�17�

The phase is not de®ned when the amplitude vanishes,
i.e., when q�x� � 0 (singularity). Around these singular
points, the phase is very sensitive to spatial or scale

variations. As a consequence, the approximation of (17)
fails, and the calculation of disparity in the neighbor-
hood of a singularity is unreliable. The neighborhoods
of singular points can be detected by means of Fleet
et al. (1991):

S�x� � r

�������������������������������������
w0 ÿ k0� �2� q0

q

� �2
s

� T1 �18�
q�x�=q� > T2 �19�
where T1 and T2 are opportunely chosen constants, and
q� denotes the maximum value of the amplitude. The
®rst term of (18) measures the di�erence between the
peak frequency, k0, and the local frequency, w0�x�, in
relation to the width of the ®lter 1=r. The second term of
(18) measures local amplitude variations with respect to
the spatial width r. The relation in (19) measures the
`energy' of the response. The result at point x is accepted
only if the above relations are satis®ed. Usually, T2 is set
to � 5%, and T1 � 1:25.

3.2 Comparison of the results

In Figs. 3 and 4, we show the disparity maps produced
by six di�erent techniques for disparity estimation. The
temporal resonance (TR) technique used parameters
Q � 1:5 and f0 � 0:08. For the phase-based di�erence
technique of Fleet and Jepson, we used two di�erent
Gabor ®lters: the ®rst with a modulation period of 10
pixels and half-octave bandwidth (FJ10-0.5) and the
second with a modulation period of 20 pixels and one-
octave bandwidth (FJ20-1). All the correlation-based
techniques, normalized cross-correlation (NCC), zero-
mean cross-correlation (ZCC), and sum of squared
di�erences (SSD), used a window size of 7� 3 pixels
with a disparity limit of �20 pixels.

The temporal resonance technique produces inter-
mediate results compared with the other techniques,
except on the uniform part of the source image. In these
area there is no way to measure disparity, and the res-
onator response slowly fades. The ®lter-based tech-
niques produce results in characteristic `bands' centered

Fig. 3. The `corridor' synthetic stereo-pair and its disparity map
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on the original image's edges. These bands are induced
as a consequence of the spatial extent of the Gabor ®lter
and have approximately the size of the ®lter's modula-
tion period. The correlation-based techniques produce
widely di�erent results. In the case of ZCC, the di�er-
ences in luminance cause the technique to ®nd incorrect
maxima in the correlation function, and thus most of the
disparities are discarded in the veri®cation phase. The
resulting e�ect is that the disparity map is almost black.
This problem is overcome by the normalization used by
the NCC, that produces much better maps, visually very
similar to the maps from the SSD.

In Fig. 5, we present a quantitative summary of the
results from the di�erent techniques. Two quantities are
preponderant in characterizing the performance of dis-
parity estimators: (1) density, i.e., the number of pixels

where the algorithm is able to measure a disparity value,
and (2) precision, i.e., the mean error that a�ects the
measurements. By varying the parameters in the di�erent
algorithms, it is usually possible to trade density against
precision or vice versa. Using as a test the synthetic image
`corridor' (Fig. 3), temporal resonance (TR) achieves the
best results in density (91%) with an intermediate score
in error (2.49 pixels). The comparison with NCC is in-
teresting, a much slower technique that is still not able to
beat it either in density or in precision. Fleet and Jepson's
algorithm is very sensitive to the choice of the Gabor
®lter parameters (Cozzi et al. 1997), achieving very good
precision (FJ20-1) or very poor precision (FJ10-.5) with
nearly constant density around 40%. The ZCC produced
the worse result in density (10%) with adequate precision
(1.1 pixels). A good tradeo� is achieved by SSD, which
gives the best precision (0.53 pixels) with a reasonable
density (52%). The group of T. Kanade at CMU (Ka-
nade et al. 1995) succeeded in producing a real-time
implementation of the SSD, but this implementation is
rather computationally expensive and, thus, requiring
extensive hardware support.

Figure 6 shows an example of the performance of our
algorithm tested with a real image pair. Disparity is re-
trieved with su�cient accuracy, but the map is more
blurred than that obtained from the arti®cial scene. A
comparison of this result with those obtained from the
other algorithms (not shown) demonstrates that the
performance of the temporal resonance algorithm falls
well within the range of the other approaches.

4 Discussion

The theoretical framework presented here is based on
the combination of computational principles found in
the auditory and visual system of vertebrates. The
convolution of the stereo-images with oscillating local

Fig. 4. The disparity maps produced by the di�erent
disparity estimation techniques

Fig. 5. Error and density of di�erent disparity estimation techniques.
Results for the `corridor' synthetic test image. The labels have the
following meaning: TR temporal resonance, NCC normalized cross-
correlation, ZCC zero-mean cross-correlation, SSD sum of squared
di�erences, FJ Fleet and Jepson, with two parameters for the Gabor
®lter: 20 and 10 pixels of tuning period, 1 and 0.5 octaves of
bandwidth
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®lters (Eq. 4) is a step quite commonly performed in the
majority of technical approaches (Sanger 1988; Fleet
et al. 1991) and re¯ects the response of cortical simple
cells which have Gabor-like receptive ®elds (Daugman
1980; Marcelja 1980; Jones and Palmer 1987). It has
been suggested that the evaluation of spatial phase
di�erences from such receptive ®eld responses could
indeed be used to compute disparity in the brain (De
Angelis et al. 1991). The dense coverage of the visual
®eld by cells with many di�erent receptive ®eld sizes
necessary to produce reliable depth maps does not pose
a problem for the massive parallel architecture of the
visual cortex. Technical systems, however, soon reach
their limits with the tremendously high computational
e�ort of such an architecture.

The one-dimensional structure of an auditory signal,
on the other hand, allows us to determine the phase
di�erences of two incoming sound waves sequentially by
temporal correlation of both signals, and such a process
probably takes place in the auditory cortex (Konishi and
Sullivan 1986). The interpretation of image lines as se-
quential signals allows for a similar `temporal' process-
ing. The computational complexity of the temporal
correlation involved, however, is reduced to simple
multiplication and low-pass ®ltering as the consequence
of the previously applied resonance ®lter. The transfer
from the auditory to the visual domain worked well
concerning the design of the novel algorithm. It should
not be forgotten, however, that the algorithm shown
here is rather unlikely to play any role in the visual
system of the brain. After all, our visual cortex does not
perform scan-line analysis.

On the other hand, the system is ideally suited for
technical implementation in serial data acquisition sys-
tems, and it performs in nearly-real-time. More than
that, the combination of spatial and temporal compu-

tational principles similar to those in the visual and
auditory system generates a theoretical framework for
causal stereoscopic depth processing in which the com-
putational e�ort is strongly reduced. The comparison of
the novel algorithm with other well-known techniques
shows that intermediate results are obtained. Better re-
sults require rather complex algorithms, and real-time
performance is then mostly prevented. Thus, our novel
approach may be a good compromise in all those situ-
ations where real-time performance is necessary and a
limited accuracy is su�cient. It may be possible to im-
prove the performance of the temporal resonance algo-
rithm by wiring up several algorithmic modules with
di�erent parameters in parallel. Such an architecture
would still operate in real-time, and the results should be
more correct. In particular, the so-called stereo-corre-
spondence problem could also be addressed by com-
bining modules. The correspondence problem always
arises if the same features (here gray levels) occur more
than once on an image scan-line. In that case, the match
between left and right image becomes ambiguous. One
could use very wide ®lters to avoid this problem, but
these ®lters would almost always average over di�erent
disparity changes, leading to a wrong estimate. Thus,
commonly used spatial approaches implement ®lter
cascades of di�erent widths and combine their results in
order to achieve more accuracy and to reduce or elimi-
nate the correspondence problem. To this end, we are
currently investigating the theoretical background for
such a combination of temporal resonance modules. It
should be clear that the spatial resolution of all tech-
niques which use ®lter cascades is usually reduced due to
the limited spatial resolution of the ®lter with the lowest
frequency. For this reason, Henkel (1994) has designed a
more intelligent approach of combining di�erent ®lters
without changing their spatial frequency.

Fig. 6. Disparity map obtained by
the temporal resonance algorithm
from a stereo-image pair only the
left image of which is shown. The
disparity is coded with a gray
scale (bottom), parameters were:
f0 � 0:1443 pixelÿ1, Q � 1:0
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So far, our algorithm remains restricted to one di-
mension. Logically, an additional extension of the al-
gorithm would be to try to combine the results from
several scan-lines. Due to the continuity of objects,
many times similar or identical disparity changes can be
tracked over a certain vertical distance. Thus, it would
make sense to combine the results from di�erent scan-
lines obtained from our algorithm in order to exploit
vertical disparity continuities. Our algorithm in itself
ignores the second dimension, but this important source
of information could be re-introduced afterwards by
means of regularization techniques. Then, real-time
performance would depend on the speed of the regu-
larization method but seems still obtainable when using
fast and simple techniques (e.g., averaging).
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