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Abstract

Spike timing plasticity (STDP) is a special form of synaptic plasticity
where the relative timing of post- and presynaptic activity determines the
change of the synaptic weight. On the postsynaptic side, active back-
propagating spikes in dendrites seem to play a crucial role in the induc-
tion of spike timing dependent plasticity. We argue that postsynaptically
the temporal change (i.e. the derivative) of the membrane potential deter-
mines the weight change. On the presynaptic side induction of STDP is
closely related to the activation of NMDA channels. Therefore, we will
calculate analytically the change of the synaptic weight by correlating
the derivative of the membrane potential with the activity of the NMDA
channel. We utilise for this calculation biophysical variables of the phys-
iological cell. The final result shows a weight change curve which con-
forms with measurements from biology. In addition we predict that the
weight change curve should change its shape depending on the distance
from the soma of the postsynaptic cell. We find temporally asymmet-
ric weight change close to the soma and temporally symmetric weight
change in the distal dendrite.

1 Introduction

Donald Hebb [1] postulated half a century ago that the change of synaptic strength depends
on the correlation of pre- and postsynaptic activity: cells which fire together wire together.
Here we want to concentrate on a special form of correlation based learning, namely, spike
timing dependent plasticity (STDP, [2, 3]). STDP is asymmetrical in time: Weights grow
if the pre-synaptic event precedes the postsynaptic event. This phenomenon is called long-
term potentiation (LTP). Weights shrink when the temporal order is reversed. This is called
long-term depression (LTD).

Correlations between pre- and postsynaptic activity can take place at different locations
of the cell. Here we will focus on the dendrite of the cell (see Fig. 1). The dendrite has
attracted interest recently because of its ability to propagate spikes back from the soma
of the cell into its distal regions. Such spikes are called backpropagating spikes. The
transmission is active which guarantees that the spikes can reach even the distal regions of



the dendrite [4]. Backpropagating spikes have been suggested to be the driving force for
STDP in the dendrite [5]. On the presynaptic side the main contribution to STDP comes
from Ca2+ flow through the NMDA channels [6].

The goal of this study is to derive an analytical solution for STDP on the basis of the
biophysical properties of the NMDA channel and the cell membrane. We will show that
mainly the timing of the backpropagating spike determines the shape of the learning curve.
With fast decaying backpropagating spikes we obtain STDP while with slow decaying
backpropagating spikes we get temporally symmetric Hebbian learning.
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Figure 1: Schematic diagram of the model setup. The inset shows the time course of an
NMDA response as modelled by Eq. 2.

2 The Model

The goal is to define a weight change rule which correlates the dynamics of an NMDA
channel with a variable which is linked to the dynamics of a backpropagating spike. The
precise biophysical mechanisms of STDP are still to a large degree unresolved. It is, how-
ever, known that high levels of Ca2+ concentration resulting from Ca2+ influx mainly
through NMDA-channels will lead to LTP, while lower levels will lead to LTD. Several
biophysically more realistic models for STDP were recently designed which rely on this
mechanisms [7, 8, 9]. Recent physiological results (reviewed in detail in [10]), however
suggest that not only the Ca2+ concentration but maybe more importantly the change of
the Ca2+ concentration determines if LTP or LTD is observed. This clearly suggests that
a differential term should be included in the learning rule, when trying to model STDP. On
theoretical grounds such a suggestion has also been made by several authors [11, 12] who
discussed that the abstract STDP models [13] are related to the much older model class of
differential Hebbian learning rules [14]. In our model we assume that the Ca 2+ concen-
tration and the membrane potential are highly correlated. Consequently, our learning rule
utilises the derivative of the membrane potential for the postsynaptic activity.

After having identified the postsynaptic part of the weight change rule we have to define
the presynaptic part. This shall be the conductance function of the NMDA channel [6].

The conventional membrane equation reads:

C
dv(t)

dt
= � g(t)[E � v(t)] + iBP (t) +

Vrest � v(t)

R
; (1)



where v is the membrane potential, � the synaptic weight of the NMDA-channel and g, E
are its conductance and equilibrium potential, respectively. The current, which a BP-spike
elicits, is given by iBP and the last term represents the passive repolarisation property
of the membrane towards its resting potential Vrest = �70 mV . We set the membrane
capacitance C = 50 pF and the membrane resistance to R = 100M
. E is set to zero.
The NMDA channel has the following equation:

g(t) = �g
e�b1t � e�a1t

[a1 � b1][1 + �e�V (t)]
(2)

For simpler notation, in general we use inverse time-constants a1 = ��1a , b1 = ��1b , etc. In
addition, the term a1 � b1 in the denominator is required for later easier integration in the
Laplace domain. Thus, we adjust for this by defining �g = 12mS=ms which represents the
peak conductance (4 nS) multiplied by b1�a1. The other parameters were: a1 = 3:0=ms,
b1 = 0:025=ms,  = 0:06=mV . Since we will not vary the Mg2+ concentration we have
already abbreviated: � = �[Mg2+], � = 0:33=mM , [Mg2+] = 1mM [15].

The synaptic weight of the NMDA channel is changed by correlating the conductance of
this NMDA channel with the change (derivative) of the membrane potential:

d

dt
� = g(t)v0(t) (3)

To describe the weight change, we wish to solve:

��(T ) =

Z
1

0

g(T + �)v0(�)d�; (4)

where T is the temporal shift between the presynaptic activity and the postsynaptic activ-
ity. The shift T > 0 means that the backpropagating spike follows after the trigger of
the NMDA channel. The shift T < 0 means that the temporal sequence of the pre- and
postsynaptic events is reversed.

To solve Eq. 4 we have to simplify it, however, without loosing biophysical realism. In
this paper we are interested in different shapes of backpropagating spikes. The underly-
ing mechanisms which establish backpropagating spikes will not be addressed here. The
backpropagating spike shall be simply modelled as a potential change in the dendrite and
its shape is determined by its amplitude, its rise time and its decay time.

First we observe that the influence of a single (or even a few) NMDA-channels on the
membrane potential can be neglected in comparison to a BP-spike, which, due to active
processes, leads to a depolarisation of often more than 50 mV even at distal dendrites
because of active processes [16]. Thus, we can assume that the dynamics of the membrane
potential is established by the backpropagating spike and the resting potential V rest:

C
dv(t)

dt
= iBP (t) +

Vrest � v(t)

R
(5)

This equation can be further simplified. Next we assume that the second passive repolari-
sation term can also be absorbed into iBP . it = iBP (t)+

Vrest�v(t)

R
. To this end we model

it as a band-pass filter function:

it(t) = �it
a2e

�a2t � b2e
�b2t

a2 � b2
; (6)

where �it is the current amplitude. This filter function causes first an influx of charges into
the dendrite and then again an outflux of charges. The time constants a 2 and b2 determine
the timing of the current flow and therefore the rise and decay time. The total charge flux
is zero so that the resting potential is reestablished after a backpropagating spike.



In this way the active de- and repolarising properties of a BP-spike can be combined with
the passive properties of the membrane, in practise by a curve fitting procedure which yields
a2; b2. As a result we find that the membrane equation in our case reduces to:

C
dv(t)

dt
= it(t) (7)

We receive the resulting membrane potential simply by integrating Eq. 6:

v(t) =
�it

C

e�b2t � e�a2t

a2 � b2
(8)

Note the sign inversion between v (Eq. 8) and i (Eq. 6, the one being the derivative of the
other.

The NMDA conductance g is more complex, because here we observe that the membrane
potential enters the denominator in Eq. 2. To simplify we perform a Taylor expansion:

1

1 + �e�v(t)
�

1

�+ 1
+

�v(t)

(�+ 1)2
+ : : : (9)

The NMDA conductance can now be written as:

g(t) = �g
e�b1t � e�a1t

a1 � b1
� (

1

�+ 1
+

�v(t)

(�+ 1)2
+ : : :) (10)

and finally the potential v(t) (Eq. 8) can be inserted:

g(t) = �g
e�b1t � e�a1t

a1 � b1
� (11)

�
1

�+ 1
+

�it�e
�b2t

C(�+ 1)2(a2 � b2)
�

�it�e
�a2t

C(�+ 1)2(a2 � b2)
+ : : :

�
(12)

terminating the Taylor series after the second term this leads to three contributions to the
conductance:

g(t) =
�g

�+ 1

e�b1t � e�a1t

a1 � b1| {z }
g(0)

(13)

�
�g�it�

(�+ 1)2C

e�(b1+a2)t � e�(a1+a2)t

(a1 � b1)(a2 � b2)| {z }
g(1a)

(14)

+
�g�it�

(�+ 1)2C

e�(b1+b2)t � e�(a1+b2)t

(a1 � b1)(a2 � b2)| {z }
g(1b)

(15)

To perform the correlation in Eq. 4 we transform the required terms into the Laplace domain
getting:

g(0;1a;1b)(t) = k
e��t � e��t

�� �
$ G(0;1a;1b)(s) = k

1

(s+ �)(s+ �)
(16)

it(t) = �it
ae�at � be�bt

a� b
$ It(s) = �it

s

(s+ a2)(s+ b2)
(17)

where � and � take the coefficient values from the exponential terms in g (0); g(1a); g(1b),
respectively and K are the corresponding fore-factors 1.

1We use lower-case letters for functions in the time-domain and upper-case letters for their equiv-
alent in the Laplace domain.



A correlation in the Laplace domain is expressed by Plancherel’s theorem [17]:

�� =
1

2�

�Z +1

�1

G(0)(�{!)e�{!T It({!)d! (18)

�

Z +1

�1

G(1a)(�{!)e�{!T It({!)d! (19)

+

Z +1

�1

G(1b)(�{!)e�{!T It({!)d!

�
(20)

The solution is calculated with the method of residuals which leads to a split of the result
into T � 0 and T < 0 and we get:

For T � 0:

�� =
�git

(�+ 1)C

�
b1e

�b1t

B
(0)

+

� a1e
�a1t

A
(0)

+

(21)

� ��it
(�+1)(a2�b2)C

�
(b1+a2)e

�(b1+a2)t

B
(1)

+

� (a1+a2)e
�(a1+a2)t

A
(1)

+

�
(22)

+ ��it
(�+1)(a2�b2)C

�
(b1+b2)e

�(b1+b2)t

B
(1)

+

� (a1+b2)e
�(a1+b2)t

A
(1)

+

��
(23)

withA(0)
+ = (a1�b1)(a1+a2)(a1+b2); A

(1)
+ = (a1�b1)(a1+2a2)(a1+a2+b2); B

(0)
+ =

(a1 � b1)(b1 + b2)(a2 + b1); B
(1)
+ = (a1 � b1)(2a2 + b1)(a2 + b1 + b2).

For T < 0:

�� =
�git

(�+ 1)C

�
a2e

a2t

A
(0)

�

� b2e
b2t

B
(0)

�

(24)

� ��it
(�+1)(a2�b2)C

�
a2e

a2t

A
(1a)

�

� b2e
b2t

B
(1a)

�

�
(25)

+ ��it
(�+1)(a2�b2)C

�
a2e

a2t

A
(1b)

�

� b2e
b2t

B
(1b)

�

��
(26)

with A(0)
�

= (a2� b2)(a1+a2)(a2+ b1); A
(1a)
�

= (a2� b2)(a1+2a2)(2a2+ b1); A
(1b)
�

=

(a2 � b2)(a1 + b2 + a2)(a2 + b1 + b2); B
(0)
�

= (a2 � b2)(a1 + b2)(b1 + b2); B
(1a)
�

=

(a2 � b2)(a1 + a2 + b2)(b1 + a2 + b2); B
(1b)
�

= (a2 � b2)(a1 + 2b2)(b1 + 2b2).

The resulting equations contain interesting symmetries which makes the interpretation easy.
We observe that they split into three terms. For T > 0 the first term captures the NMDA
influence only, while for T < 0 it captures the influence of only the BP-spike (apart from
scaling factors). Mixed influences arise from the second and third terms which scale with
the peak current amplitude �it of the BP-spike.

3 Results

While the properties of mature NMDA channels are captured by the parameters given for
Eq. 2 and remain fairly constant, BP-spikes change their shapes along the dendrite. Thus,
we kept the NMDA properties unchanged and varied the time constants of the BP-spikes
as well as the current amplitude to simulate this effect. Fig. 2 shows STDP curves (solid
lines, A-F) and the corresponding BP-spikes (G-I). The contributions of the different terms
to the STDP curves are also shown (first term, dashed, as well as second and third term



Figure 2: (A-F) STDP-curves obtained from Eqs. 23, 26 and corresponding normalised BP-
spikes (G-I, �it = 1, left y-axis: current, right y-axis: integrated potential). Panels A-C were
obtained with different peak currents �i = 0:5 nA; 0:1nA and 25pA. These currents cause
peak voltages of 40mV; 50mV and 40mV respectively. Panels D-F were all simulated
with a peak current of �it = 5:0 nA. This current is unrealistic, however, it is chosen for
illustrative purposes to show the different contributions to the learning curve (the dashed
lines for G(0) and the dotted lines for G(1a;b) and the solid lines for the sum of the two
contributions). Time constants for the BP-spikes were: (A,D,G) a�12 = �a = 0:0095ms,
b�12 = �b = 0:01 ms (B,E,H) �a = 0:05 ms, �b = 0:1 ms (C,F,I) �a = 0:1 ms, �b =
1:0ms.

scaled with their fore-factor, dotted). All curves have arbitrary units. As expected we find
that the first term dominates for small (realistic) currents (top panels), while the second and
third terms dominate for higher currents (middle panels). Furthermore, we find that long
BP-spikes will lead to plain Hebbian learning, where only LTP but no LTD is observed
(B,C,E,F). This analytically obtained result was predicted from a similar set of computer
simulations performed independently [18]

4 Discussion

We believe that two of our findings could be of longer lasting relevance for the under-
standing of synaptic learning, provided they withstand physiological scrutinising: 1) The
shape of the weight change curves heavily relies on the shape of the backpropagating spike.
2) STDP can turn into plain Hebbian learning if the postsynaptic depolarisation (i.e., the
BP-spike) rises shallow.

Physiological studies suggest that weight change curves can indeed have a widely varying
shape (reviewed in [19]). In this study we argue that in particular the shape of the back-
propagating spike influences the shape of the weight change curve. In fact the dendrites
can be seen as active filters which change the shape of backpropagating spikes during their
journey to the distal parts of the dendrite [20]. In particular, the decay time of the BP spike



is increased in the distal parts of the dendrite [16]. The different decay times determine if
we get pure symmetric Hebbian learning or STDP (see Fig. 2). Thus, the theoretical result
would suggest temporal symmetric Hebbian learning in the distal dendrites and STDP in
the proximal dendrites. From a computational perspective this would mean that the distal
dendrites perform principle component analysis [21] and the proximal dendrites temporal
sequence learning [22].

Now, our model has to be compared to other models of STDP. We can count our model
to the “state variable models”. Such models can either adopt a rather descriptive approach
[23], where appropriate functions are being fit to the measured weight change curves. Oth-
ers are closer to the kinetic models in trying to fit phenomenological kinetic equations
[7, 24, 25, 9].

The approaches of [9] as well as of Karmarkar and co-workers [25] are closely related to
our model. Both models investigate the effects of different calcium concentration levels by
assuming certain (e.g. exponential) functional characteristics to govern its changes. This
allows them to address the question of how different calcium levels will lead to LTD or
LTP [26]. Both model-types [9, 25, 8] were designed to produce a zero-crossing (transition
between LTD and LTP) at T = 0. The differential Hebbian rule employed by us leads to the
observed results as the consequence of the fact that the derivative of any generic unimodal
signal will lead to a bimodal curve. We utilise the derivative of the unimodal membrane
potential to obtain a bimodal weight change curve. The derivative of the membrane po-
tential is proportional to the charge transfer dqt

dt
= it across the (post-synaptic) membrane

(see Eq. 7). There is wide ranging support that synaptic plasticity is strongly dominated by
calcium transfer through NMDA channels [27, 28, 6]. Thus it seems reasonable to assume
that a part of dQ

dt
represents calcium flow through the NMDA channel.
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