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Abstract. The analysis of the depth coordinates of objects in a visual scene is of vital importance for animals
as well as in technological applications like autonomous robot navigation or product quality control. In this article
we describe a phase-based algorithm for stereoscopic depth analysis which utilizes IIR-filters.1 This algorithm
is especially well suited to be built into dedicated VLSI-hardware and can therefore, also be used as a fast real-
time front end in any more general image processing system. Example movies which demonstrate the real-time
capabilities of this algorithm can be found at: http://www.cn.stir.ac.uk/Real-Time-Stereo.
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1. Introduction

In general there are several strategies of how to re-
trieve depth information from a sequence of images,
like depth from motion (flow-field analysis), depth
from shading and depth from stereopsis, on which we
concentrate in this article. In a conventional stereo-
scopic approach usually two cameras are mounted with
a horizontal distance between them. As a consequence
objects displaced in depth from the fixation point are
projected onto image regions which are shifted with
respect to the image center. The horizontal (lateral)
component of this shift is called (lateral) disparity and
it can be used to determine the depth of the object. Due
to the geometry of the optic system it is thereby suffi-
cient to restrict disparity analysis to the projection of

corresponding linear segments (lines) in the left and
right eye (epipolar line constraint). As a direct conse-
quence of this epipolar line constraint, it is, therefore,
not necessary to try to solve the disparity estimation
problem in two dimensions (Faugeras, 1993), which
raises computational complexity. To do so, however,
can improve the results.

In the most straightforward approaches that address
the problem of depth from stereo, the disparity is
computed by searching the maximum of the cross-
correlation between image windows along the epipo-
lar lines of the left and right image (Haralick and
Shapiro, 1992). Similarly this can be done by trying to
match discernible image features (token-based match-
ing). Fourier techniques can also be used to calcu-
late the disparity. One of the first examples of such
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an approach is the Kuglin-Hines method (Kuglin and
Hines, 1975) which utilizes the phase shift theorem of
the Fourier transform. Really applicable became this
idea with the introduction of localized frequency filters
called gabor filters. This method computes the convo-
lution between Gabor kernels (Eq. (1)) and the left and
right image parts.

G(x − x0) = e

( −(x−x0)2

2σ2
x

)
· eiωG (x−x0) (1)

Each filter response is represented by its amplitude and
its phase value. The disparity is computed from the dif-
ference of the two phase values obtained from the left
and right images divided by the filter tuning frequency
ωG . The amplitude of the filter response can be used to
estimate the reliability of the obtained result: the bigger,
the more reliable is the phase difference (Sanger, 1988).
If the amplitude is zero, obviously, the phase is ill-
defined. Since this idea was introduced a large body of
literature has been devoted to these approaches (Sanger,
1988; Fleet et al., 1991a, 1991b; Langley et al., 1991),
which are commonly called phase-based stereo algo-
rithms. Fleet et al. (1991a, 1991b) have shown that
the results can be improved dividing by the local spa-
tial frequency of the response instead of the tuning
filter frequency. The same authors also provide a de-
tailed theoretical analysis of the phase based stereo ap-
proaches (Fleet and Jepson, 1993), which shall not be
discussed here. An error analysis considering real and
artificial images is given by Cozzi et al. (1997).

Correlation techniques and phase based stereo al-
gorithms are acausal in the sense that data acquisi-
tion of at least parts of the image needs to be com-
pleted before the computation of the disparity can start.
Thus, these approaches are—strictly speaking—never
real time techniques. In addition, the spatial convolu-
tion operations necessary in these algorithms require
considerable computational effort. Thus, despite of the
tremendous increase in computational power over the
last years, close to video real-time performance can
still only be achieved for a rather limited image resolu-
tion (Kanade et al., 1995, see also Internet Publication,
SVS).

Furthermore, the retrieval of disparity information
is usually a very early step in image analysis. It re-
quires stereotyped processing of dense input data (ev-
ery single pixel enters the computation) and only later
steps in image analysis start to make use of data reduc-
tion strategies by concentrating on higher level image
features (like junctions, surfaces, etc.) which are less

dense but require more complex algorithms. Therefore,
it seems advisable to consider the use of special hard-
ware for the calculation of the disparity or other such
early image descriptors (like edges, optic flow, color,
contrast, etc.). This way multi-level systems can be de-
signed with such hardware at the front-end followed
up by conventional processors which are then free to
be used for “more intelligent” image analysis tasks. A
similar strategy of task splitting and parallel processing
is also pursued in the brain and, therefore, such multi-
level systems are currently also of great interest to the
computer vision community.

For this reason, in this study we describe a novel
VLSI-compatible, phase-based algorithm to determine
the disparities in two stereo images which uses causal
filters and thereby operates in real-time regardless of
the image size. The central idea behind this approach
is to transpose the spatially-defined problem of dis-
parity estimation into the temporal domain and com-
pute the disparity simultaneously with the incoming
data flow. This can be achieved realizing that in a well-
calibrated fronto-parallel camera arrangement (no tor-
sion, same focal length, etc.) the epipolar lines are hor-
izontal and thereby identical to the camera scan-lines.
Alternatively horizontal epipolar-lines can be obtained
by image-rectification techniques (see Faugeras (1993)
for a textbook treatment of this) employed as a front-
end to our algorithm. This way both epipolar-lines can
be simultaneously fed into a chain of causal electronic
filters which compute the disparity. Hence, the struc-
ture of the algorithm is such that the elaborate and well-
consolidated theory of causal electronic filters can be
immediately applied and that it can be easily built in
silicon. We will show that our one-dimensional real-
time algorithm reaches a performance which is similar
to many two-dimensional approaches.

2. Description of the Algorithm

As mentioned, we assume an ideal fronto-parallel cam-
era arrangement. Let us first restrict ourselves to a set
of images which contain only a single contrast step
at the x-coordinates xl in the left image and xr in the
right image, xl < xr . These images shall be sampled
by two CCD cameras such that the contrast steps occur
at times tl and tr for each scan line, where t = 0 repre-
sents the start of the scan line. The difference between
the temporal coordinates tl and tr is, therefore, directly
equivalent to the difference in the spatial coordinates
which is identical to the disparity.
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Figure 1. Scheme of the basic algorithm and results obtained from
two step function inputs with a disparity of one pixel.

The two contrast step functions xl(t) ↔ Xl(s) and
xr (t) ↔ Xr (s) are defined in the Laplace domain by
(Fig. 1):

Xl(s) := 1

s
e−tl s, and Xr (s) := 1

s
e−tr s, (2)

These inputs are then fed into two resonator circuits
with transfer function:

H (s) = s

(s − s∞)(s − s∗∞)
(3)

where s∞ is a filter pole and specifies the filter char-
acteristic defined by f0 and the filter quality Q, which
determines the attenuation (see definition of the com-
ponents, Section 3). The “∗” denotes the complex
conjugate.

We compute the convolution of signal and resonator
for the right image as:

Yr (s) = Xr (s)H (s) = s

(s − s∞)(s − s∗∞)

1

s
e−tr s (4)

A similar convolution is performed for the left image.
We define a := (s∞−s∗

∞)−1, then inverse Laplace trans-
formation of Yr (s) yields (Fig. 1, yr , yl):

yr (t) =
{

aes∞(t−tr ) + a∗es∗
∞(t−tr ) if t ≥ tr

0 if t < tr
(5)

The temporal resonator signal y(t) reflects an atten-
uated sine-wave with frequency f0 (Fig. 1, yl , yr ).
The number of full cycles until the signal fades is
roughly represented by the value of Q. Note that af-
ter the resonator the signal is DC clean. The DC usu-
ally poses an additional problem in all spatial filter
approaches (Cozzi et al., 1997).

Finally, disparity is determined from the phase dif-
ference between the resonator signals from both im-
ages. This is done in a very conventional way by mul-
tiplication of the two signals in the time domain and
subsequent low-pass filtering (Fig. 1, ×, LP).

Multiplication yields (Fig. 1, M):

M(t) = yl(t)yr (t) =
{

gC (t) + φC (t) if t ≥ tr
0 if t < tr

(6)

with:

gC (t) = a2es∞(2t−tl−tr ) + a∗2es∗
∞(2t−tl−tr )︸ ︷︷ ︸

double frequency term

(7)

and

φC (t)

= |a|2e−s∞tl−s∗
∞tr +(s∞+s∗

∞)t + |a|2e−s∗
∞tl−s∞tr +(s∗

∞+s∞)t︸ ︷︷ ︸
phase

= cos[(tr − tl)Im(s∞)]︸ ︷︷ ︸
K

· 2|a|2eRe(s∞)(2t−tr −tl ) (8)

Note, the subscript C denotes the central signal path-
way as opposed to the normalization pathways (sub-
script N , see below). The term gC (t) represents an os-
cillation with 2 f0. It will be eliminated by low-pass
filtering with low cut-off (Fig. 1, LP). In order to keep
the equations simple we will first assume that we have
an ideal low-pass filter with rectangular amplitude cut-
off and without any phase distortions. The much more
complicated correct solution for a realistic first order
low-pass is given in the Appendix.
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Applying an ideal low-pass filter to the signal from
Eq. (6) we get (Fig. 1, φC ):

�C (t) =
{
φC (t) if t ≥ tr
0 if t < tr

(9)

The function φC (t) represents the phase between the
two signals and contains an exponential relaxation
term, which will be eliminated through normalization
(see below), and a constant term K , which encodes the
true disparity.

K = cos[(tr − tl)Im(s∞)] (10)

The disparity which is the spatial equivalent of tr − tl
can be computed by inverting Eq. (10) and it is obtained
immediately at the second contrast step (i.e., for t = tr ),
after which the signal relaxes to zero. This relaxation
behavior which originates from the characteristic of
the resonator assures temporal (viz. spatial) locality.
Otherwise only the average phase (viz. disparity) of
each image line could be computed, which would be
meaningless in the context of local disparity analysis.

The disparity given by tr − tl could, in principle, be
read from the peak in Fig. 1, �C . So far, however, the
output signal is still ill-defined, because it is not nor-
malized with respect to the absolute gray levels within
the images. In order to solve this problem two addi-
tional filter chains are arranged in parallel to the main
signal pathway, which are used to normalize the signal
(shaded box in Fig. 1). Normalization is achieved by
first squaring each resonator signal. This is essentially
identical to computing the zero-disparity reference sig-
nal of each resonator. Thereby we re-obtain Eq. (6).
Then both normalization signals are low-pass filtered
using the same low-pass filter characteristic as in the
main signal pathway. Again we assume an ideal low-
pass and we get for the two normalization functions
after the low-pass:

Left path, let tr := tl (Fig. 1, �Nl ):

�Nl (t) =
{
φNl (t) = 2|a|2eRe(s∞)(2t−2tl ) if t ≥ tl
0 if t < tl

(11)

and similarly with tl := tr for the right path (Fig. 1,
�Nr ).

Two normalization functions must be used to ac-
count for the causal behavior of the system and also

to compensate for luminance differences between both
images. Normalization signals for the left and right path
are in general not identical which can be seen for in-
stance at the first moment when a true disparity value
can be read which is at t = tr . For this we get:

φNl (tr ) = 2|a|2eRe(s∞)(2tr −2tl ) and φNr (tr ) = 2|a|2
(12)

Because we have two normalization signals we need
to take the square root of both before we can perform
the normalization by dividing the main signal (Fig. 1,
�N ).

�N (t) = √
�Nl (t)�Nr (t) (13)

The final output signal is (Fig. 1, �):

�(t) =



0 if t < tr or �N (t) = 0
�C (t)

�N (t)
= φ(t) if t ≥ tr and �N (t) �= 0

(14)

where we call φ(t) the characteristic output function
of this filter module given by:

φ(t) = φC (t)√
φNl (t)φNr (t)

= 2K |a|2eRe(s∞)(2t−tr −tl )√
2|a|2eRe(s∞)(2t−2tl )2|a|2eRe(s∞)(2t−2tr )

= K

(15)

Thus, the characteristic output function φ(t) is—
as desired—now time independent and identical to
the disparity dependent but otherwise constant term
K .

The normalized disparity signal � for the two input
step functions is shown in Fig. 1 and the unwanted
curvy characteristic is replaced by a reasonably flat
step function.

In the computer implementation the condition
�N (t) �= 0 in Eq. (14) is modified to �N (t) > 	, where
	 is a threshold value (Fig. 1, Threshold). Thresholding
improves the reliability of the data, because all values
will be blanked out for which the resonator responses
are too small, but thereby the density of the disparity
map is also reduced.
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Figure 2. Theoretical and experimentally obtained curves for the characteristic function φ for f0 = 0.1 and Q = π for a first order low-pass
with ω0 = f0 = 0.1. (A) Theoretical curve φ obtained by plotting Eq. (38). (B, solid line) One-dimensional cut along the tr = d-axis through
the curve in (A), (B, dashed line) pure cosine function with the respective frequency Im s∞ ≈ 2π f0 (see Section 3). Dashed and solid curves
are very similar showing that the cosine in Eq. (10) is a good approximation of Eq. (38). (C) Time-dependent shape of the characteristic
function (compare (A) along the t-axis) determined by a computer implementation of the algorithm for different input disparities. Parameters:
f0 = 0.1, Q = 1, 	 = 0, n = 4, ω0 = f0. (D) Example of the input time-functions xl and xr . (E, solid line) Maxima of the curves in (C)
determined between d = 0 and d = 15. (E, dashed line) pure cosine function as in (B).

In all following sections we will give all values for
f0 in pixel−1. Equation (38) in the Appendix gives the
correct but rather complicated solution for the charac-
teristic output function by using the transfer function of
a first order low-pass filter in all pathways. Figure 2(A)
shows a 3-D plot of Eq. (38) as a function of time t and
disparity (viz. tr ). The function is zero for t < tr and
oscillates in tr thereafter but stays constant in t . This
means read-out of a disparity value obtained from a step
function input can in principle take place at any time
t ≥ tr . The oscillation is undamped in tr with a period
of about 10 pixel. This period is similar but not iden-
tical to the inverse of the characteristic frequency f0

for resonator and low-pass, which we had set to 0.1 in
this case (see Section 3 for the correct relation between
Im(s∞) and f0). The oscillation is similar to the pure co-
sine which we would have obtained from Eqs. (9) and
(10) in the case of an ideal low-pass filter (compare
curves in inset B). It should be noted that this simi-
larity becomes even more pronounced for higher filter
orders (e.g., n = 4, which we usually use), because a
higher order low pass filter is a better approximation
of an ideal low pass. Therefore, for all practical pur-
poses it is sufficient to assume a cosine characteristic
for φ.

The periodic behavior of the output is a direct re-
flection of the phase wrap-around problem which is

present in all phase-based stereo algorithms. Here this
problem is expressed by the fact that the characteristic
output function φ can be inverted without ambiguities
only between 0 and ≈5 pixels (≈ 1

2
1
f0

) disparity. In part
C of Fig. 2 the results from a computer implementation
of the algorithm are shown using simulated IIR-filters
for the different components with the same parameters
as for the theoretical curve. Noise free step functions
xl and xr with identical amplitude but different dis-
parities where presented to the system (inset D, top).
At the output also step functions are obtained but the
slope of the rising flank becomes increasingly shallow
for larger disparities. As predicted the output remains
stable for an extended duration after which it deterio-
rates due to the limited numerical accuracy (unsigned
integer) of the computer implementation. The maxima
of the output step functions were plotted against the
disparities in the bottom inset E . This small diagram
shows that the undamped oscillatory characteristic of φ

is also re-obtained in the simulation (compare to dashed
line which shows the theoretical curve). Numerical in-
accuracy, however, increases for large disparities and
the results cannot be trusted anymore beyond a certain
disparity value. Numeric and stochastic effects will be
treated in greater detail below also demonstrating the
limitations of the theoretical derivation within a more
practical context.
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3. Specification of the Components

In the following section all components are discussed
as analog circuitry. The computer implementation used
to obtain the results in Section 2 relied on IIR-filter
design which is essentially equivalent to analog cir-
cuitry. Implementation of the circuitry in FIR2-design
leads to a problem at the low pass filter, which will
be briefly discussed below. For the following it may
help to disregard all implementation details at first
and think of all filters as classical analog electronic
filters.

3.1. Resonator

The two resonators are realized by basic band-pass fil-
ters. Resonance frequency is adjusted to f0 and the
quality is given by Q. These values are related to the
transfer function of the resonator given in Eq. (3) by:

Re(s∞) = −π f0/Q (16)

Im(s∞) =
√

(2π f0)2 − (Re(s∞))2

= π f0

√
4 − 1

Q2
(17)

The value of Q determines the approximate number
of oscillation cycles until the resonance has faded. The
total duration T until the oscillation has faded is thus
approximately:

T ≈ Q/ f0 (18)

To assure temporal (viz. spatial) locality Q should be
set to low values with a hard limit of Q > 1/2.

The resonance frequency f0 determines the range of
disparities d = tr − tl which can be measured by:

0 ≤ f0 <
1

d
√

4 − 1
Q2

(19)

above the upper limit phase wrap-around occurs. For
Q > 1 this can be approximated by the limit of Q →
∞ and relation 19 turns into:

0 ≤ f0 <
1

2d
←→ 0 ≤ d <

1

2 f0
(20)

which is now exactly half the resolution which can
be attained with regular acausal Gabor filters (Cozzi

et al., 1997). This is due to the fact that our algorithm
cannot detect negative disparities. This shall be mended
in Section 5.

In the Fourier domain the bandwidth of the resonator
 f is roughly:

 f ≈ f0/Q (21)

In analog circuitry this Q and f0 are given as:

Q = R

√
C

L
, f0 = 1√

LC
(22)

3.2. Low-Pass Filter

Intriguingly the design of the low-pass filter is much
more critical than that of the resonator. Several require-
ments have to be fulfilled without which a good per-
formance of the algorithm cannot be assured.

1. The filter order n should be set to a high-enough
value in order to eliminate the non-constant compo-
nents as well as possible.

2. The filter characteristic must assure that the phase
relation within the signal will not be distorted. Thus,
a highly linear phase-characteristic is required. Oth-
erwise the disparity values would be smeared out
and the output would be garbled.

3. The impulse response must be strictly positive
which prevents the usage of FIR-filters.

The second requirement restricts the choice for pos-
sible low-pass filters to the group of Bessel filters de-
fined by:

H (s) = ε
1

Bn
(

s
ω0

) (23)

where Bn is a Bessel polynom of order n, ω0 is the
cut-off frequency and ε a scaling factor. Furthermore,
the impulse response of a Bessel filter is indeed strictly
positive which is required for the square-root operation
in the normalization pathway. In principle it would also
be possible to implement the low-pass filter as an FIR-
filter, because FIR-filters can be custom designed to
obtain a linear phase relationship. FIR-filters, however,
always produce a negative undershoot in the impulse
response which is not tolerable because of the square-
root operation in the normalization pathway. In FIR-
chip-design complicated workarounds exist to avoid



P1: GXD

International Journal of Computer Vision KL1624-03 July 13, 2002 15:2

A VLSI-Compatible Computer Vision Algorithm 45

this problem but it is more straight-forward to directly
use IIR-filters.

The requirements for the low-pass filter also explain
the apparently awkward way of normalizing the signal
by a ( )2 → LP → √ chain (Fig. 1, light shading) in-
stead of using a rectifier on the front-end of this chain.
The reason for this is that rectification leads to a dis-
tortion of the phase relations between main signal flow
and the normalization pathways. Squaring the signal,
on the other hand, is equivalent to the multiplication
operation performed in the main path. Thus, main- and
normalization signals are treated identically keeping
their intrinsic phase relations the same.

4. Quantification of the Performance

In this section we will derive empirically based limits
for the different adjustable parameters and the applica-
ble ranges of the algorithm. Results are obtained using
the algorithmic framework as described above. Thus,
the measurement of negative disparities is currently
excluded. We will, however, extend the algorithm in
Section 5 in order to also measure negative disparities
and to be able to combine several stereo modules in or-
der to improve the results. All simulation results were
obtained from a digital implementation of the algorithm
as described above using a unsigned integer precision
IIR filter implementation for all filters on a Pentium PC,
which has also been used for the chip implementation
(FPGA) of our algorithm. This implementation can be
ported 1:1 to a hardware system based on digital sig-
nal processors (e.g., Texas Instruments DSP TMS320
C80).

A quantification of the performance will be given us-
ing the Pentagon test-image (see Fig. 11) or R. Henkel’s
“2” (Henkel, 1994) (Fig. 3).

Figure 3. Test images and ground-truth disparity map.

4.1. Measuring the Average Characteristic
Output Function φ̄

In order to measure the accuracy of the algorithm we
have determined the average characteristic output func-
tion φ̄ as a function of the input disparity much in the
same way as for the step functions in Fig. 2(C). To
this end a certain rightward shift by d pixels was intro-
duced to all (!) pixels of the left Pentagon image. Then
we used the un-shifted image as the left and the shifted
image as the right image of the stereo pair. All pixels
of the image were analyzed with the exception of a left
margin of 50 pixels in order to avoid border effects. In
Fig. 4(A) we plotted the measured value of φ̄ as a func-
tion of the input disparity (i.e., the shift) for f0 = 0.1
and Q = 1, 3, 10 as well as for f0 = 0.2 and Q = 3. As
expected oscillatory curves obtain which start at 1.0.
However, quite opposite to the theoretical curves for the
(un-averaged) characteristic function φ, the diagrams
for φ̄ display a strongly attenuated characteristic. For
large input disparities the curve approaches zero and
the average measured output disparity is, thus, roughly
equal to d = 1

4 f0
, which is half of the resolution limit

for this filter.3 Attenuation is less pronounced for larger
values of Q. In the limit case of Q → ∞ an undamped
oscillation would be obtained. The standard deviation
for zero input disparity is zero, thus at zero disparity
the algorithm works error-free. For larger disparities
the standard deviation increases continuously.

Intriguingly the simulated noise-free step functions
(Fig. 2(C)) did not produce an attenuated characteris-
tic, whereas artificial disparity steps introduced in a real
image lead to this rather strong effect. This indicates
that the attenuation must be an inherent feature of the
real images. Similar to Fig. 2(C) in Fig. 4(B) we show
the response for a pair of input step functions with
different disparities when introducing a small signal
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Figure 4. Empirically determined characteristic functions φ for different settings of f0 and Q using a fourth order low pass with ω0 = f0 and
	 = 0. (A) The left Pentagon image was shifted by d pixels and used as the right image of the stereo pair. The input disparity d was varied
between 0 and 15 in steps of 0.1 pixels. Fractional disparities were obtained by linear interpolation of the gray levels between adjacent pixels. A
total of 52736 pixels (2562 minus a border of 50 × 256 pixels) was analyzed for each disparity step. The period of φ is approximately 10 pixels
for f0 = 0.1 and 5 pixels for f0 = 0.2 and phase-wrap around occurs above ≈5 (≈2.5) pixels. Error bars are only plotted for some data points.
(B) Response of the system to a noise distorted step function shown in (C). Parameters: f0 = 0.1, Q = 1, 	 = 0, n = 4, ω0 = f0. As opposed
to Fig. 2(C) the responses are now attenuated and not anymore symmetrical with respect to the x-axis. (C) The input to the system consisted of
two step functions with different disparities between them. An additional small secondary pulse was added to the left step function at disparity 4.

distortion in the left signal (C). Now the responses are
not symmetrical anymore (compare to Fig. 2(C)) and
an attenuated characteristic results. Obviously an aver-
aging effect occurs between the primary step and the
secondary pulse leading to a wrong disparity estimate at
the output. This effect becomes more pronounced for
larger input disparities because the distance between
primary step and secondary pulse increases and, thus,
the pulse occurs at a location where the left resonator
oscillation is already rather small. This problem has an
immediate practical consequence: Ideally, only small
disparities should be measured because only their er-
ror is small. This aspect will be taken into account in
Section 5.

It is tempting to use the invertible part of the average
characteristic function φ̄ in order to try to correct the ac-
tually measured values of φ back to their theoretically
expected value. Such a procedure, however, is only ap-
plicable if the underlying probability distribution of φ

were Gaussian. Figure 5 shows that this is not the case.
The actual distributions of the measured values of φ

for artificial image shifts of 1–5 pixels are shown. Zero
shift would lead to a needle-shaped distribution with all
values found at φ = 1.0. For larger shifts the peak of
the distributions are still at their theoretically expected
cosine-value until the distribution becomes almost flat
for a shift of 5 pixels. A flat distribution bounded be-
tween −1 and 1 is the limit case. This demonstrates
that the expectation value φ̄ is in general not identical
to the peak of the distribution and prevents the use of
the average characteristic function for value correction.
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Figure 5. Distributions of the φ for different shifts d. As before,
the left Pentagon image was shifted by d pixels and used as the right
image of the stereo pair. Parameters: f0 = 0.1, Q = 1, 	 = 0, n =
4, ω0 = f0. The same number of pixels was analyzed as in Fig. 4.
Bounded distributions with a strong skewness are observed, but the
peaks are at the expected cosine-values.

4.2. Error Analysis

In order to judge the quality of the algorithm several as-
pects have to be considered. Accuracy of the obtained
disparity estimates is one of them, but also the Spa-
tial Localization, which means how accurately these
disparity estimates are associated to the actual pixels
from which they originate. This tradeoff between the
spatial localization and the accuracy of the disparity
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Figure 6. Estimating the algorithmic performance for different parameters. For all diagrams f0 was set to 0.1 and we shifted the left Pentagon
image by 1 pixel in order to use it as the right image of the stereo pair. (A) The relative error was determined for different values of ω0 and the
filter order n. Q was set to 1.0 and 	 to 16. (B) Relative error and relative density as a parametric function of the threshold 	. Curves start at the
top and the threshold was increased between 1 and 216 as indicated by the arrow. Filter order was 4 and ω0 = f0. (C) Relative error as a function
of the input noise. White noise was added according to: hl/r (t) = R

100 hNoise(t) + 100−R
100 hImage(t), R ∈ {0, . . . , 100} where hImage represents

the pixel values of the image, hNoise white noise of the same total amplitude. Thus, the relative ratio of signal to noise is adjusted by varying R.
Filter order was 4, ω0 = f0 and 	 was 128.

estimates is related to the Gabor uncertainty relation
(Gabor, 1946) and cannot be avoided. Additional as-
pects which need to be considered in order to judge the
algorithmic performance are the sensitivity to phase
wrap-around, the sensitivity to noise and the density of
the disparity map.

As before numerical quantification of the algorith-
mic performance are based on the left Pentagon-image
in which artificial disparity steps were introduced.
For visualization, however, we used the “2” of R.
Henkel (Henkel, 1994) (Fig. 3), because a well-defined
ground truth map exists for this image. Note, the “2”
contains negative disparities which will be rectified by
the current version of the algorithm (but see below).

All following results were obtained with unsigned
integer precision. The motivation behind this is the
chip implementation which has been performed with a
XLINX FPGA.

4.2.1. Threshold Θ. Increasing the threshold 	 up
to a certain point improves the total accuracy of the

disparity map for small values of Q (Fig. 6(B)). For
even higher thresholds the error increases again. This
unexpected effect is a direct consequence of the lim-
ited accuracy of the spatial localization of each re-
sponse. The responses of the resonators do not imme-
diately fade. Thus, usually several subsequent pixels
elicit super-threshold responses but only the first pixel
carries a correct disparity value. The following pixels
represent the fading resonator response and their dis-
parity values can be incorrect. For high thresholds the
resulting disparity map consists mainly of such pixel
clusters and the relative number of wrong disparity es-
timates increases continuously. This effect of smearing
(compare also Fig. 7(C)) is dominant for Q = 10 and
the corresponding curve does not anymore have a min-
imum (Fig. 6(B)). Most of the disparity maps in this
study have been computed using f0 ≈ 0.1 and Q = 1.
For this curve (thick dashed) the optimum is an error of
0.004 at a density of 0.83 for a threshold of 	 = 128
at a total numerical range of 65536 (unsigned integer).
Empirically we found the observation confirmed that
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Figure 7. Analysis of Henkel’s “2” by the algorithm outlined in Fig. 1, which rectifies the results. Different settings of f0 and Q are used as
indicated. The threshold was fixed at 	 = 128, filter order was 4 and ω0 = f0. Disparities are color coded, black is used for pixels which were
sub-threshold. In the top two rows (A–F) the parameters were adjusted such that T = Q/ f0 is the same for (A, E) and (B, F). In the third
row (G–I) f0 represents a limit case, because the characteristic functions contain too high standard deviations for values bigger than 0.2. The
little insets at the bottom left corner of each diagram represent the average of 20 image lines at the base of the “2”. Insets were scaled between
disparities 0 ≤ d ≤ 3.

a threshold of about 100 would yield the best results
in almost all cases. Note, however, that in a double-
precision implementation the threshold can be set to
almost zero (e.g. 10−20) for optimal performance.

4.2.2. Low-Pass Filter Order n and Cut-Off ω0. The
curve in Fig. 6(A) shows that the relative error has a
minimum with value 0.0144 for a filter order of n = 4
when setting the cut-off frequency ω0 at the same time

Figure 9. Analysis of Henkel’s “2” by the complete algorithm out-
lined in Fig. 8. Nine detectors were used, thus τ = 1 pixel. Other
parameters: f0 = 0.1, 	 = 128, n = 4, ω0 = f0.

equal to f0 (see Eq. (23)). It is obvious that low filter
orders and/or high cut-off frequencies result in a less
accurate behavior of the system. It is, however, not nec-
essarily clear why these two parameters should lead to

Figure 11. Two examples of industrially relevant applications
and the pentagon test image. Parameters: f0 = 0.1, Q = 1, 	 = 128,

n = 4, ω0 = f0. Wheel: M = 11, Wafer: M = 3, Pentagon: M = 11.
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an optimum curve such that filter orders above 4 and
cut-off frequencies below f0 will be suboptimal. This,
however, can be explained by the limited amplitude of
the signals. As soon as the filter order n is increased
and/or the cut-off decreased the signal amplitude after
the low-pass will become increasingly smaller. Due to
the limited numerical accuracy of the computer imple-
mentation the relative error will increase in these cases
leading to an optimum curve in Fig. 6(A). Note, in or-
der to make this minimum clearly visible the threshold
	 was set to 16. For visualization zero threshold would
even be better, but noise effects become too strong.

4.2.3. The Resonator Parameters f0 and Q

4.2.3.1. Accuracy. The average accuracy of the dis-
parity estimates can immediately be judged from the
average characteristic functions φ̄ plotted in Fig. 4(A).
The actual deviation from the expected cosine shape to-
gether with the standard deviations directly reflect the
different accuracy for the different parameter settings.
We expect that the accuracy of the algorithm should
improve by using large values of Q and small values
of f0 and this is confirmed by the curves. In the case of
f0 = 0.2, Q = 3 the cosine shape is better preserved
than for f0 = 0.1, Q = 3 but the standard deviations
are by far larger for f0 = 0.2. Taken together the ac-
curacy for f0 = 0.2, Q = 3 is much worse than for
f0 = 0.1, Q = 3, as expected.

4.2.3.2. Spatial Localization and Phase Wrap-Around.
In Fig. 7 we show the results obtained for the “2” for
different settings of f0 and Q at a fixed threshold of
	 = 128. The quality of spatial localization can be
judged from these diagrams. It follows roughly but not
entirely the theoretically predicted relation of T ≈
Q/ f (Eqs. (18) and (21)). Consider the two diagonal
pairs (A, E) and (B, F). Their values ofT are identical.
Visual inspection, however, shows that E and F are
slightly more in focus than A, B. Thus, f0 has a stronger
effect on the accuracy of spatial localization than Q,
but both influence the result significantly. The value of
f0 = 0.2 represents a limit case. The exceedingly high
variance of the average characteristic function explains
the bad performance in this case. Values higher that
f0 = 0.2 up to the theoretical Nyquist limit cannot be
used at all. Figure 7(G) shows that the resonators are
much stronger driven by the more dominant contrast
changes inside of the “A” than outside. Most responses
outside remain sub-threshold and the outline of the “A”

becomes visible. Phase-wrap around occurs for d >

1/(2 f0) and it is faintly visible in (H) and (I). The other
parameters do not affect the phase-wrap around.

4.2.3.3. Sensitivity to Noise. Figure 6(C) shows that,
similar to the findings for acausal Gabor filters (Cozzi
et al., 1997), the relative error abruptly and strongly in-
creases above a certain noise level of roughly 7% and
it becomes unacceptably high above this value. Below
7% the relative error is relatively constant and indepen-
dent of the noise. This is the acceptable working range
and we find that Q and the filter order n have a slight
influence on the noise susceptibility while the influ-
ence of f0 is negligible. As expected a strong influence
is observed for the threshold 	 and a high threshold
suppresses the noise efficiently (not shown).

4.2.4. Summary of the Results from the Error Anal-
ysis. The results for unsigned integer precision show
that all algorithmic parameters can be fixed at a sin-
gle given value while still (almost) optimal perfor-
mance is obtained in most cases. This is a major ad-
vantage concerning an electronic implementation. In
most cases Accuracy and Quality of Spatial Localiza-
tion are the two sine-qua-non conditions for the analysis
of stereo images. Thus, good performance is achieved
by f0 = 0.1 and Q = 1. The filter order n should be
4 and the cut-off frequency to ω0 = f0. A threshold of
around 100 should also almost always suffice.

5. Algorithmic Extensions

5.1. Multi-Detector Coupling

The section on error analysis (Section 4.2) focused on
the adjustable algorithmic parameters. However, one
should keep in mind that the actual to-be-measured dis-
parity values introduce by far the largest error source,
as explained in the Section 4.1: Only small (zero) dis-
parities are measured with small (zero) error. In order
enforce this, in the next section we will introduce an
extension, which firstly allows us to measure negative
disparities (e.g., in the case of converging cameras) and
secondly assures that only small disparities are mea-
sured (adopted from Henkel (1994)). To this end we
extend the algorithm by creating several parallel oper-
ating detectors. Figure 8 shows the complete system.
It is built from 2m + 1 detectors each of which con-
sists of the algorithmic structure described in Fig. 1.
Both images are used as input to each detector, but the
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left image is shifted in steps of jτ , where τ usually
equals one pixel and −m ≤ j ≤ m (Fig. 8). Since
shifts in both directions are introduced, this algorith-
mic structure immediately allows to measure positive
and negative disparities. The reason for this is that the
problem of measuring negative disparities in princi-
ple roots back to the ambiguity of the cosine-shaped
characteristic function φ, which is symmetrical around
zero. Thus, within one cosine-period, every value of φ

can be attributed to one positive or symmetrically one
negative disparity value. In a system with more than
one detector this ambiguity can be resolved by looking
at the values of φ obtained from the neighbors of the
detector. Their values of φ will be different depend-
ing on the sign of the regarded disparity.4 In a system
based on acausal Gabor filters both neighbors could be
used. In our system only one neighbor can be used to
determine the sign, namely the one for which the im-
age was shifted “into the future”. The neighbor on the
other side which was shifted back in time has still not
“seen” the disparity of the currently regarded pixel.

Detector coupling furthermore assures that only
small disparities will have to be measured, because the
existing true disparities d are altered by shifting the
input images and (provided enough detectors exist) for
every pixel there will be one detector for which the re-
sulting disparity dres = d − jτ will fall in the range
−τ/2 < dres < τ/2. We will call this detector the min-
imal disparity detector. For all other detectors larger
absolute disparities occur at this particular moment.

Ideally all detectors would now be able to measure
these different disparity values (which of course rep-
resent the same initial disparity). The likelihood of a
correct measurement, however, will be highest only for
the minimal disparity detector, because its output value
of φ occurs close to the origin where the variances of
the average characteristic function φ̄ are small.

Initially it is unknown which of the shifted detectors
is actually the minimal disparity detector. The cosine
characteristic of the characteristic function φ, however,
immediately allows to detect the most likely detector
as the one which produces the largest positive output
value. This is depicted at the bottom of Fig. 8 where
for graphical reasons only four characteristic functions
are drawn for positive shifts jτ, j = 0, 1, 2, 3. The
four marked points on the functions shall represent the
output of these four detectors at a given moment. It can
be seen that φ1 yields the largest output value and at
the same time we find that φ1 also belongs to the min-
imal disparity detector with d1 = φ−1

1 = min j (φ
−1
j ).

The disparity dfinal is, thus, in this example computed
as dfinal = φ−1

1 + 1 τ = d1 + 1 τ . By adding differ-
ent delays jτ ideally the inverted output values of the
other characteristic functions φ−1

j should also lead to
the same disparity estimate dfinal. However, the output
values of their characteristic functions are found at lo-
cations distant from the origin where the variance is
large.

The image of the “2” contains disparities between
−4 and +4 and we used 9 detectors in Fig. 9 to cover
[−4.5, +4.5] in single disparity steps τ between detec-
tors. The results Q = 1 are excellent given that this is
a one-dimensional method. With larger Q more smear-
ing is observed but the results are still acceptable.

5.2. Reducing the Correspondence Problem
Through Correlations

The multi-modular arrangement has lead to a tremen-
dous improvement of our algorithm. Still, the corre-
spondence problem remains unresolved by this setup.
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There is, however, a simple way of how to utilize the
multi-modular arrangement in order to strongly reduce
the likelihood of a false match.

Let us introduce the problem by discussing 2-D
cross-correlation techniques. A correspondence prob-
lem occurs if two image windows are “matched” which
do not belong together. In real data, however, wrongly
matched windows are almost always not as accurately
fitting to each other than the one correct match. There-
fore, increasing the window size will efficiently reduce
the correspondence problem.

In our case, the minimal disparity detector gave us
the best estimate for the disparity of a given pixel. If
this estimate is correct then the detectors adjacent to
the selected detector will with a rather large probability
detect a very similar disparity value. In case of a false
match, however, the likelihood that the two adjacent
detectors will vote for the same disparity is much lower,
because the variability in the data at wrong matches is
larger than at the right match.

Thus, correlating three detectors reduces the corre-
spondence problem as efficiently as increasing the win-
dow size in cross-correlation techniques.

6. Comparison to Other Algorithms

In Fig. 10 is shown a quantitative summary of the com-
parison of different stereo techniques plotting density
against mean error. The synthetic stereo pair “2” of
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Figure 10. Error and density of different disparity estimation tech-
niques. Results for the Henkel’s “2” synthetic stereo pair. The labels
have the following meaning: TR is our algorithm (“Temporal Reso-
nance”), NCC is Normalized Cross-Correlation, ZCC is Zero-mean
Cross-Correlation, SSD is Sum of Squared Differences, FJ is the
Fleet and Jepson algorithm, with two different Gabor filter’s param-
eters: 10 and 20 pixels of tuning period, 1 and 2 octaves of bandwidth,
respectively.

R. Henkel (Fig. 3) is a good test for performances
of the algorithms in a nearly-optimal case: without
noise and smooth changes in depth. We have performed
these tests by setting all relevant parameters of the dif-
ferent techniques to standard values taken from the
literature.

From the plot can be seen that the algorithm pro-
posed in this study (dubbed Temporal Resonance, TR)
achieves a good trade-off between density (95.9%)
and mean error (0.277 pixels). Fleet and Jepson’s al-
gorithm is very sensitive to the choice of the Gabor
filter parameters (Cozzi et al., 1997), achieving the
worst results in precision; in both cases with a den-
sity of 100%, which is due to the fact that the test
image pair is fully textured. The correlation-based and
differential-based stereo techniques cluster near to each
other, with densities around 90% and a mean errors
of 0.15–0.20 pixels. It should be remembered that the
Temporal Resonance algorithm is line-oriented. De-
spite of this it produces results of a quality comparable
with that of more traditional approaches which operate
on 2-D windows or with 2-D Gabor filters. Thus, we
get good results with a much smaller computational
load and with an algorithm even suited for electronic
implementation.

7. Applications

Currently the system has been tested and/or used in
several industrial applications, two of which are shown
Fig. 11. The left part shows a depth profile of an
aluminum wheel used to discriminate the burrs from
the true wheel structure (courtesy Fa. Seifert, Ahrens-
burg, Germany). The right part shows a depth profile
of a (dirty) silicon wafer recorded with a special 3-
D stereo-microscope (courtesy Zeiss, Jena, Germany).
The accuracy for maneuvering test needles to the test
points on the wafer could in principle be improved by
continuous depth monitoring. Currently this is done
“by hand” and often leads to an unrecoverable dam-
age of the wafer. The third example shows the re-
sults from the often used pentagon test image. Example
movies of the real-time operation of the software ver-
sion and of the FPGA implementation can be found at:
http://www.cn.stir.ac.uk/Real-Time-Stereo.

8. Discussion

In this study we have designed and analyzed a novel,
phase based algorithm, which uses causal electronic
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filters, for the measurement of disparities in stereo im-
age pairs. This approach relates to studies which utilize
such filters for the analysis of optical flow (Langley
and Fleet, 1992; Fleet and Langley, 1993, 1995). The
strength of using a similar approach for disparity anal-
ysis lies in its simplicity, that also allows for an elec-
tronic implementation as a relatively small ASIC. From
first estimates we expect real-time processing up to
more than CCD-camera frame rate from this chip. Cur-
rently a working FPGA implementation of this exists
already. The comparison of our approach with more
traditional methods showed that only advanced 2-D
cross-correlation techniques supersede our algorithm
in performance at the cost of a much higher computa-
tional load.

8.1. Theoretical Aspects

The algorithm described here is the causal version of
the classical phase-based approaches based on Gabor
filters (Sanger, 1988; Fleet et al., 1991a). Therefore,
our algorithm behaves in many ways similar to these
older approaches. For example, our algorithms is ro-
bust against luminance or contrast differences between
the two camera images, because the band-pass filter-
ing removes the DC component from the input signal.
Gabor filter based approaches obtain the same robust-
ness as soon as the filters are DC-corrected, which is a
simple procedure (Barron et al., 1994). The spatial res-
olution (Eqs. (19) and (20)) is half of that of a regular
acausal Gabor filter with the same bandwidth. This is to
be expected, because the causal filters cannot measure
negative values.

We have solved the equations of our system for a lu-
minance step function and a first order low-pass filter
(Appendix). For a higher order low pass the solution
can probably still be computed; However, it will cer-
tainly be overly complicated and not very illuminating.
A luminance step function is the most relevant case for
digitized camera images, because the smallest possi-
ble change is a one-bit step and all larger changes can
be decomposed into these single steps. The complete
solution (and also the approximate solution, Eqs. (9)
and (10)) for our system are much more complex than
the solutions described by Sanger (1988) using Gabor
filters, or even the more advanced versions of Fleet
et al. (1991a). The actual implementation of our al-
gorithm based in IIR-filters, however, remains simple.
Several well-known theoretical conjunctions and prob-
lems also hold for our algorithm.

(1) The correspondence problem remains unresolved
if only one stereo-detector is used. Correlation
of several detectors reduces this problem very
strongly but the disparity maps are also less dense.
The reason is that several correctly estimated dis-
parity values will also be rejected because the cor-
relation with the adjacent detectors failed. This is
due to the high variance of the average characteris-
tic function φ̄ at values larger than zero (Fig. 4(A)),
such that in many cases the vote of the adjacent de-
tectors cannot be trusted anymore. A vote shared
by all three adjacent detectors is, therefore, rela-
tively rare and, in practice, we had to restrict the
voting procedure to two out of three, otherwise the
maps would be too sparse.

(2) The steep drop of the average characteristic func-
tion is the reflection of another theoretically
grounded problem which unequivocally occurs for
all phase-based stereo-algorithms. Disparity is dif-
ferent from zero as soon as a spatial displacement
between two corresponding contrast steps occurs.
As a consequence the corresponding parts in both
images of the scene in a small region which sur-
rounds the regarded disparity change are not nec-
essarily identical. Thus, any convolution result of
a filter which covers this region will very likely
be different for both images. This problem de-
mands that only small disparities should be mea-
sured which can be achieved by vergence move-
ment of the cameras or in a mechanically more
robust way by shifting the images such as in our
multi-detector coupling approach.

(3) As a third problem we note that “phase wrap-
around” occurs like in all other phase-based
approaches. The multi-detector coupling proce-
dure, however, completely eliminated this prob-
lem because the operational range of every de-
tector is now far below the wrap-around disparity
limit.

8.2. Performance of a Single Stereo Detector

The performance of a single detector which imple-
ments our algorithm with any given parameter combi-
nation ( f0, Q, n, ω0, 	) remains rather limited. With
this respect our approach is also very similar to the
older approaches (Cozzi et al., 1997). These perfor-
mance limitations have so far prevented the use of
the class of phase-based algorithms in high precision
depth measurements (e.g. in industrial applications).
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The reason for these strong performance limitations are
the high susceptibility of all phase-based approaches
to noise (Cozzi et al., 1997) and the above discussed
unavoidable and tremendous performance decay when
trying to measure larger disparities.

8.3. Improving the Performance
by Multi-Detector Coupling

A central breakthrough for the performance of our al-
gorithm was the invention of the multi-detector cou-
pling (Henkel, 1994; Fleet, 1994), which we adopted
from Henkel (1994). Henkel’s main idea is the combi-
nation of several disparity-detectors. Each detector has
a range of disparity-values within which the detected
disparity results have low error. This range is called
the ‘working-range’ of a detector (Henkel, 1994). The
idea is to combine disparity detectors with overlapping
working-ranges. In order to find the detectors which
are within their working-ranges a coincidence detec-
tion was used in Henkel approach. Detectors within
the working-range should produce equal disparity-
values.

The cosine shape of the characteristic function
proved to be a very nice feature in our algorithm
by which the correct choice of the minimal dispar-
ity pair became automatically possible through max-
imum detection. This was a draw-back of Henkel’s
approach in which equal disparities (minimum dif-
ference) had to be found in a much more difficult
way.

The multi-detector coupling finally made the algo-
rithm also industrially applicable. The accuracy, how-
ever, is still slightly inferior to commonly used 2-D
stereo methods (Sanger, 1988; Fleet et al., 1991a;
Barnard and Fischler, 1982; Dhond and Aggarwal,
1989; Haralick and Shapiro, 1992; Faugeras, 1993)
but the speed—even on conventional computers—
is much higher such that a few industrially relevant
applications could already be approached with our
algorithm.

8.4. Practical Problems

Camera calibration is the most tedious practical prob-
lem. Our algorithm operates optimally with exactly
aligned, parallel cameras because only by such an
arrangement is assured that the epipolar lines are

horizontal and thus identical to the camera scan lines.
In practice, we found that the calibration procedure
required quite some effort. On the other hand, we ob-
served that in the central part of the images still rea-
sonable performance was obtained even for slightly
converging cameras, where the epipolar lines are not
anymore horizontal. The reason for this is, that the
line-by-line differences along the Y-axis of the im-
ages are, usually, not very large such that a slightly
distorted epipolar-line geometry is still tolerated. The
image of the car wheel (Fig. 11) was taken with con-
verging cameras. A general solution of the calibra-
tion problem would be image rectification (Faugeras,
1993), which would have to be performed by
a pixel-warping procedure as a front-end to our
algorithm.

8.5. Hardware Implementation

The central advantage of our algorithm is its simplic-
ity from the viewpoint of an electronics engineer. The
analytical equations are inelegantly complex, but the
actual wiring diagram is, on the other hand, exceed-
ingly simple. All components can be built as standard
digital circuitry (IIR-filters, multipliers, etc.). Prelim-
inary tests have shown that the necessary bit-depth
can probably be restricted to 8 bit with the exception
of the paths after the multiplication/squaring opera-
tion, where 16 bit are required. Most electronic opera-
tions remain restricted to adding or multiplying with a
constant (IIR-filters), very few true integer operations
exist (multiplication, division, squaring). The square
root operation and the inversion of the cosine can be
done by lookup tables. As a consequence this algo-
rithm has been successfully implemented on a XLINX
FPGA. An ASIC implementation is foreseen for the
future.

Appendix

Here we derive the correct solution (Eq. (38)) for the
characteristic function φ for the two input step func-
tions assuming a first order low-pass at all stages. We
start at Eq. (6):

M(t) = yl(t)yr (t) =
{

gC (t) + φC (t) if t ≥ tr
0 if t < tr
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which is spelled out as:

M(t)

=




(
e−s∞tl−s∗

∞tr +(s∞+s∗
∞)t + e−s∗

∞tl−s∞tr +(s∗
∞+s∞)t

− es∞(2t−tl−tr ) − es∗
∞(2t−tl−tr )

) 1

4Im2(s∞)

if t ≥ tr
0 if t < tr

(24)

In the following we will only consider the part for
t ≥ tr abbreviated (as before) as φC which will first
be Laplace-transformed to:

φC (s) = 1

4Im2(s∞)
[

e−(s∞ tl +s∗∞ tr )

s−s∞−s∗∞
+ e−(s∗∞ tl +s∞ tr )

s−s∞−s∗∞
− e−s∞ (tl +tr )

s−2s∞
− e−s∗∞ (tl +tr )

s−2s∗∞

] (25)

We use a first order low-pass with the following transfer
function:

H (s) = 1

1 + s
ω∞

(26)

where ω∞ is the pole of the low-pass. After the low-
pass we get:

φC (s) = ω∞
4Im2(s∞)

[
e−(s∞tl+s∗

∞tr ) + e−(s∗
∞tl+s∞tr )

(s − s∞ − s∗∞)(s − ω∞)

− e−s∞(tl+tr )

(s − 2s∞)(s − ω∞)

− e−s∗
∞(tl+tr )

(s − 2s∗∞)(s − ω∞)

]
(27)

To allow for inverse Laplace-transform this equation is
modified to:

φC (s) =
[

e−(s∞tl+s∗
∞tr ) + e−(s∗

∞tl+s∞tr )

s∞ + s∗∞ + ω∞

×
(

1

s − (s∞ + s∗∞)
− 1

s + ω∞

)

− e−s∞(tl+tr )

2s∞ + ω∞

(
1

s − 2s∞
− 1

s + ω∞

)

− e−s∗
∞(tl+tr )

2s∗∞ + ω∞

(
1

s − 2s∗∞
− 1

s + ω∞

)]

× ω∞
4Im2(s∞)

(28)

and inverse Laplace-transformation yields:

φC (t)

=
[(

e−(s∞tl+s∗
∞tr ) + e−(s∗

∞tl+s∞tr )
)(

e(s∞+s∗
∞)t − e−ω∞t

)
s∞ + s∗∞ + ω∞

− e−s∞tr (e2s∞t − e−ω∞t )

2s∞ + ω∞

− e−s∗
∞tr (e2s∗

∞t − e−ω∞t )

2s∗∞ + ω∞

]
ω∞

4Im2(s∞)
(29)

Let tl = 0:

φC (t)

= ω∞
4Im2(s∞)

[
(e−s∗

∞tr + e−s∞tr )
(
e(s∞+s∗

∞)t − e−ω∞t
)

s∞ + s∗∞ + ω∞

− e−s∞tr
e2s∞t − e−ω∞t

2s∞ + ω∞
− e−s∗

∞tr
e2s∗

∞t − e−ω∞t

2s∗∞ + ω∞

]
(30)

For the two normalization pathways we have accord-
ingly:

φNl (t) = ω∞
4Im2(s∞)

[
2

(
e(s∞+s∗

∞)t − e−ω∞t
)

s∞ + s∗∞ + ω∞

− e2s∞t − e−ω∞t

2s∞ + ω∞
− e2s∗

∞t − e−ω∞t

2s∗∞ + ω∞

]
(31)

and

φNr (t) = ω∞
4Im2(s∞)

[
2e−(s∞+s∗

∞)tr
(
e(s∞+s∗

∞)t − e−ω∞t
)

s∞ + s∗∞ + ω∞

− e−2s∞tr
e2s∞t − e−ω∞t

2s∞ + ω∞

− e−2s∗
∞tr

e2s∗
∞t − e−ω∞t

2s∗∞ + ω∞

]
(32)
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In order to make the final result look nicer we need to
define a few abbreviations:

be−ns∞tr + b∗e−ns∗
∞tr

= 2Re
(
be−ns∞tr

)
= 2e−nRe(s∞)tr [Re(b) cos (Im(s∞)ntr )

+ Im(b) sin (Im(s∞) ntr )]

= 2|b|e−nRe(s∞)tr sin(Im(s∞)ntr + � b) (33)

with b = e2s∞t − e−ω∞t

2s∞ + ω∞
(34)

and � b = arctan
Re(b)

Im(b)
(35)

Furthermore we set:

c = e2Re(s∞)t − e−ω∞t

2Re(s∞) + ω∞
(36)

The non-zero part of the characteristic function for
t ≥ tr which is φ is obtained as:

φ = φC√
φNl φNR

(37)

and we get Eq. (38):

φ(t) = cos(Im(s∞) tr ) − |b|
c sin(Im(s∞)tr + � b)√

1 − |b|
c (sin(2Im(s∞) tr + � b) + sin � b) + |b|2

c2 sin(2Im(s∞) tr + � b) sin � b
(38)

Notes

1. IIR = infinite impulse response.
2. FIR = finite-impulse-response, IIR = infinite-impulse-response.
3. To get this one has to solve Eq. (10) for φ = 0 assuming Q → ∞.
4. This procedure is similar to the evaluation of a sine-cosine quadra-

ture detector pair, only that we use cosine-cosine pairs.
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