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Abstract

Donald Hebb postulated that if neurons fire together they wire together. However, Hebbian learning is inherently unstable because

synaptic weights will self-amplify themselves: the more a synapse drives a postsynaptic cell the more the synaptic weight will grow. We

present a new biologically realistic way of showing how to stabilise synaptic weights by introducing a third factor which switches learning

on or off so that self-amplification is minimised. The third factor can be identified by the activity of dopaminergic neurons in ventral

tegmental area which leads to a new interpretation of the dopamine signal which goes beyond the classical prediction error hypothesis.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Hebbian learning [2] is the most prominent paradigm in
correlation based learning. However, Hebbian learning is
inherently unstable because of its autocorrelation term:
Briefly, a changing weight will alter the output which will
lead to further weight change, and so on. In this study we
present a novel learning rule which is an extension of our
differential Hebbian learning rule (isotropic-sequence-
order or ISO-learning [4]) which minimises the destabilising
autocorrelation term by switching learning on when the
autocorrelation term is minimal and which is performed by
a third factor which acts like a neuromodulator [1].
Therefore, we call this learning rule ISO3 learning. We
will demonstrate the applicability of the rule with a
simulated robot that learns to retrieve food disks.
2. Three factor learning

We are going to demonstrate using the open loop case
how to minimise the destabilising autocorrelation term of
e front matter r 2006 Elsevier B.V. All rights reserved.
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Hebbian learning. Fig. 1A shows the basic components of
the neural circuit. The learner consists of three inputs x0, x1

and r which are filtered by low pass filters: u0 ¼ x0 � h0,
u1 ¼ x1 � h1 and ur ¼ Yððr � hrÞ

0
Þ where Y is a threshold

40 as depicted in Fig. 1. The circuit can easily be extended
to a bank of filters with different resonators hj ; j40 and
individual weights rj ; j40 to generate complex shaped
responses. The learning rule for the weight change rj is:
r0j ¼ murujv

0; j40 where we have added a third factor ur to
the classical differential Hebbian learning [3,4].
The input signals x0;x1; r to our open loop circuit are

delta pulses which trigger damped filter responses (see Fig.
1B). Weight change is driven by two factors: the cross-
correlation between u1 with the derivative u00 and the
autocorrelation of u1 with its own derivative u01. However,
auto- and the cross-correlations happen at different
moments in time. Consequently we can switch on learning
when the autocorrelation is minimal and the cross-correla-
tion is maximal. This can be achieved by switching on the
third factor ur at the same time as the signal x0 is triggered.
Fig. 1C shows the behaviour of ISO3 learning as compared
to ISO-learning for a relatively high learning rate. To test
the effect of the autocorrelation we switched off the signal x0

after step 4000. As shown in [4], ideally the weight should
stabilise after x0 has been switched off. Instead, one can see
clearly that ISO-learning contains an exponential instability,
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Fig. 1. (A) General form of the neural circuit. The inputs x0; x1; r are filtered by standard resonators (h0; h1; hr which have frequency f and quality Q as

parameters). u0 and u1 are summed at v with weights r0 and r1. The number of filters in the x1 pathway can be extended to a filterbank with different

resonators hk and corresponding weights rk which is indicated by the dotted lines. From the output of the filter hr the derivative d=dt is taken and then

rectified ð40Þ. The symbol � is a correlator and
P

is a summation node. (B) Signals u0; u1 and their derivatives illustrate how learning works (see text for

explanation). (C) Comparing ISO and ISO3 learning rules. System parameters: f h0 ;h1 ;hr
¼ 0:1 and damping parameter Q ¼ 0:51 were used to filter inputs

x0, x1 and relevance signal r. Learning rate was m ¼ 0:005 for ISO learning rule and m ¼ 0:07 for ISO-3 rule. Time difference between x1 and x0 was T ¼ 10

(x1 always precedes x0).
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which leads to an upward bend. This is different for ISO3
learning which does not contain this instability. ISO3
learning is also stable when there is a bank of filters in the
x1 pathway and/or when the filter functions are not
orthogonal to each other (data not shown).

In summary ISO3 learning uses the fact that auto- and
cross-correlation happen at different moments in time.
Consequently, we can stabilise differential Hebbian learn-
ing by switching learning on at the moment when the
autocorrelation term is minimal.

3. Closed loop

The behavioural experiment of this section has two
purposes: it will give the signals x0;x1 and r a behavioural
meaning and it will demonstrate the superiority of ISO3
compared to ISO learning. Fig. 2A,B presents the task
whereby a simulated robot has to learn to retrieve ‘‘food
disks’’. The reflex x0 is established by two light detectors
(LD) which draw the robot into the centre of the white
disks (Fig. 2A1). Learning uses the sound detectors (SD,
Fig. 2A2) which feed into x1 to generate an anticipatory
reaction towards the ‘‘food disk’’ [7]. The reflex reaction is
established by the difference of two light dependent
resistors which causes a steering reaction towards the
white disk (Fig. 2B). Hence x0 is equal to zero if both LDs
are not stimulated or when they are stimulated at the same

time which happens during a straight encounter with a
disk. The latter situation occurs after successful learning.
The reflex has a constant weight r0 which always
guarantees a stable reaction. The predictive signal x1 is
generated by using two signals coming from the SD. The
difference in the signals from the left and the right
microphone is a measure of the azimuth of the sound
source to the robot.

We quantify successful and unsuccessful learning for
increasing learning rates m. The learning rates have been
Please cite this article as: B. Porr, et al., Improved stability and converg
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chosen in a way that ensures in both cases that the contacts
for successful learning are the same to make the failures
comparable. Learning was considered successful when we
received a sequence of five contacts with the disk at a sub-
threshold value of j x0 jo1:1 (which means that an alias of
one pixel between robot and food disk is allowed). We
recorded the actual number of contacts until this criterion
was reached. The log–log plots of the number of contacts in
Fig. 2C,D show that both rules follow a power law. The
simulations demonstrate clearly that ISO3 learning is much
more stable than the Hebbian ISO learning. ISO3 learning
can therefore operate at more than 10 times higher learning
rates than ISO learning. In addition this experiment also
shows how to connect the learner from Fig. 1 with a behaving
agent: the sensor signals feed into x0 and x1 and generate the
steering angle v of the robot. While the sensor signals x0;x1

and v will change substantially during learning, the r-signal,
however, is always triggered when the robot enters the food
disk and stabilises learning by its correct timing but not by its
amplitude which always remains the same.

4. Discussion

The third factor of our work can be related to the
dopaminergic neurons in the ventral tegmental area (VTA)
which respond strongly to primary rewards [5]. The VTA
in turn is driven by the lateral hypothalamus (LH) which
is the primary nucleus which becomes active while
eating food. The VTA could have the task to switch
on learning in a number of brain areas like the prefrontal
cortex, the hippocampus, the nucleus accumbens and
the striatum which could act as a global switch for
learning. This means that the dopamine signal tells the
target areas when to learn but not what to learn which is left
to local processing in the target area. It is known that
dopaminergic activity decreases at the primary reward and
builds up at the location of the conditioned stimulus [5].
ence with three factor learning, Neurocomputing (2006), doi:10.1016/
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Fig. 2. The robot simulation. (A) The robot has two pairs of sensors: it has two light sensors which detect the food blob only in their direct proximity. In

addition it has two sound detectors which are able to ‘‘hear’’ the food source from a distance. (B) The output v is the steering angle of the robot. The two

light detectors (LD) establish the reflex reaction ðx0Þ. The sound detectors (SD) establish the predictive loop ðx1Þ. The weights r1 . . .rN are variable and are

changed either by ISO or ISO3 learning. The signal r is generated by a third light sensor and is triggered as soon as the robot enters the food blob. The

robot also has a simple retraction mechanism when it collides with a wall (‘‘retraction’’) which is not used for learning. The output v is the steering angle of

the robot. Filters are set to f 0 ¼ 0:01 for the reflex, f j ¼ 0:1=j; j ¼ 1 . . . 5 for the filter bank where Q ¼ 0:51. Reflex gain was r0 ¼ 0:005. (C) and (D) plot

the number of contacts for both learning rules needed for successful learning against the learning rate. In addition the number of failures against the

learning rate are plotted.
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This behaviour can be re-interpreted: it helps to stabilise
behaviour associated with the primary reward because
learning is happening then at the moment of the secondary
reward.

Reinforcement learning is usually implemented as an
actor/critic architecture where the actor has the task of
manoeuvring the agent to the reward while the critic is
trying to predict the reward [6]. If the critic has been able to
anticipate the reward the critic issues an error signal which
in turn then modifies the actor which then eventually leads
to goal directed behaviour towards the reward. In other
words: the error signal actively decides which actions will
be chosen. However, in ISO3 the signal ur does not choose
actions. ISO3 rather switches learning of an ISO-learner [4]
on or off but does not force ISO learning towards a certain
behaviour. Instead ISO learning decides by itself which
behaviour will be learned.
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