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In “Isotropic Sequence Order Learning” (pp. 831–864 in this issue), we
introduced a novel algorithm for temporal sequence learning (ISO learn-
ing). Here, we embed this algorithm into a formal nonevaluating (teacher
free) environment, which establishes a sensor-motor feedback. The sys-
tem is initially guided by a �xed re�ex reaction, which has the objec-
tive disadvantage that it can react only after a disturbance has occurred.
ISO learning eliminates this disadvantage by replacing the re�ex-loop
reactions with earlier anticipatory actions. In this article, we analytically
demonstrate that this process can be understood in terms of control the-
ory, showing that the system learns the inverse controller of its own re�ex.
Thereby, this system is able to learn a simple form of feedforward motor
control.

1 Introduction

In our companion article in this issue, “Isotropic Sequence Order Learning,”
we introduced a novel, linear, and unsupervised algorithm for temporal se-
quence learning, which we called ISO learning. ISO learning has the special
feature that all sensor inputs are completely isotropic, which means that
any input can drive the learning behavior. We used the algorithm to gen-
erate robot behavior by means of sensor inputs and motor actions. While
the organism transforms sensor events into motor actions, the environment
passively performs the opposite and forms together with the organism a
closed sensor-motor feedback loop system. Here, we explain the system-
theoretical consequences of this.
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ISO learning is completely unsupervised, and the output is self-organ-
ized. Unsupervised temporal sequence learning, however, usually leads—
without additional measures taken—to rather undesired situations for the
organism since it can learn arbitrary behavioral patterns. A �xed re�ex
loop prevents arbitrariness by de�ning an initial behavioral goal (Verschure
& Voegtlin, 1998). A re�ex, however, is a typical reaction, which will al-
ways occur only after its eliciting sensor event (Wolpert & Ghahramani,
2000). ISO learning leads to the functional elimination of the re�ex loop
in using predictive sensorial cues and generating appropriate anticipa-
tory actions to prevent the triggering of the re�ex. We will see that these
qualitative observations can be embedded in a control theoretical
framework.

In the �eld of control theory, a re�ex loop is represented by a �xed feed-
back loop (McGillem & Cooper, 1984; D’Azzo, 1988; Nise, 1992; Palm, 2000).
Feedback loops try to maintain a desired state by comparing the actual input
values with a prede�ned state and adjusting the output so that the desired
state is optimally maintained. The main advantage of a feedback loop is
that the controller needs only very limited knowledge about the relation
between input and output (the environment). Consider the typical exam-
ple of a thermostat-controlled central heating system. There, it is necessary
only to measure the temperature at the thermostat and use this to control
the furnace; it is not necessary to know how much fuel needs to be burned
to get a certain temperature increase. Even this is not enough to control
the heating, because the temperature increase also depends on the exist-
ing inside-outside temperature gradient and maybe on more elusive pa-
rameters. In general, only in idealized situations does there exist suf�cient
prior knowledge to control a system without feedback, thus, by means of
pure feedforward control. The central advantage of such an (ideal) feedfor-
ward controller, however, is that it acts without the feedback-induced delay.
The sometimes fatally damaging sluggishness of feedback systems makes
this a highly desirable feature. As a consequence, engineers try to replace
feedback controllers with their equivalent feedforward controllers wher-
ever possible, thereby trying to solve the famous inverse controller problem
(Nise, 1992).

In this study, we analytically prove that ISO learning approximates the
inverse controller of a re�ex when embedded in a behavioral situation where
the re�ex represents the reference for self-organized predictive learning.

The article is organized in the following way. Very brie�y we summarize
the main equations from our other article in this issue. Then we introduce
the necessary terminology from control theory by means of discussing the
re�ex-loop situation. After that, we show which shape a transfer function
must take in order to approximate the inverse controller of the re�ex. In the
next step, we demonstrate that the set of functions used in ISO learning can
indeed approximate this transfer function. Finally, we show why the actual
learning process does converge into the correct solution.
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2 The ISO Learning Algorithm: A Brief Summary

The system consists of N C1 linear �lters h receiving inputs x and producing
outputs u. The �lters connect with corresponding weights ½ to one output
unit v (see Figure 1). The output v.t/ in the time domain and its transformed
equivalent V.s/ in the Laplace domain are given as

v.t/ D ½0u0 C
NX

kD1

½kuk $ V.s/ D ½0U0 C
NX

kD1

½kUk

| {z }
Hv

: (2.1)

The transfer functions h shall be those of bandpass �lters, which transform
a ±-pulse input into a damped oscillation. They are speci�ed in the time and
in the Laplace domain by

h.t/ D
1
b

eat sin.bt/ $ H.s/ D
1

.s C p/.s C p¤/
; (2.2)

where p¤ represents the complex conjugate of the pole p D a C ib, with

a :D Re.p/ D ¡¼ f=Q; b :D Im.p/ D
q

.2¼ f /2 ¡ a2: (2.3)

f is the frequency of the oscillation and Q the damping characteristic.
Learning takes place according to

d
dt

½j D ¹ujv
0 ¹ ¿ 1; (2.4)

Figure 1: The neuronal circuit in the Laplace domain. The shaded area marks
the connections of the weights ½k with k ¸ 1 onto the neuron. The overall
contribution from these input is called HV .
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where v0 is the temporal derivative of v. (For a comparison of ISO learning
with other models for temporal sequence learning, see appendix B in the
companion article in this issue.) Note that ¹ is very small. The integral form
of this learning rule is in the Laplace domain given by

1½j D ¹

2¼

Z 1

¡1
¡i!V.¡i!/Uj.i!/ d! with U D XH: (2.5)

Note that we use indices k to denote outputs (e.g., when associated with
v), while indices j denote inputs (e.g., associated with u). (See the compan-
ion article for a complete description of the ISO learning algorithm and its
properties.)

3 Analytical Treatment of the Closed-Loop Condition

3.1 Re�ex Loop Behavior. Every closed-loop control situation with neg-
ative feedback has a so-called desired state; the goal of the control mecha-
nism is to maintain (or reach) this state as best and fast as possible. In our
model, we assume that the desired state of the re�ex feedback loop is un-
changing and de�ned by the properties of the re�ex loop. We de�ne it as
X0 D 0. First, we discuss the system without learning. Figure 2a shows the
situation of a learner embedded into a very simple but generic (i.e., unspec-
i�ed) formal environment, which has a transfer function P0. This learner is
able to react to an input only by means of a re�ex.

A possible set of signals that can occur in such a system is shown in
Figure 2b. First, the disturbance signal d deviates from zero, then the input
x0 senses this change x0 6D 0, and �nally the motor output v can generate a
reaction in order to restore the desired state x0 D 0. Thus, there is always a
reaction delay in such a system.

3.2 Augmenting the Re�ex by Temporal Sequence Learning. In this
section, we show that the ISO learning algorithm can approximate the in-
verse controller of the re�ex. Figure 3 shows how the same disturbance D
elicits a sequence of sensor events: it enters the outer loop, arriving at X1 �l-
tered by the environment (P1), while it arrives at X0 only after a delay T. The
goal of learning is to generate a transfer function Hv, which compensates for
the disturbance. The inner structure of Hv given by the ISO learning setup
is depicted by Figure 1. The environmental transfer function P01 closes the
outer loop.

3.2.1 General Condition. The re�ex loop de�nes the goal of the feedfor-
ward controller: that there should always be zero input at X0. Thus, �rst
we must show what shape the transfer function of the predictive pathway
Hv (see Figures 1 and 3) takes when we assume that X0 D 0 holds. This
is the necessary condition, which needs to be obeyed in order to obtain an
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Figure 2: (a) Fixed re�ex loop. The organism transfers a sensor event X0 into a
motor response V with the help of the transfer function H0. The environment
turns the motor response V again into a sensor event X0 with the help of the
transfer function P0. In the environment, there exists the disturbance D, which
adds its signal at © to the re�ex loop. (b) Possible temporal signal shapes occur-
ring in the re�ex loop when a disturbance d 6D 0 happens. The desired state is
x0 :D 0. The disturbance d is �ltered by P0 and appears at x0 and is then trans-
ferred into a compensation signal at v, which eliminates the disturbance at ©.

appropriate Hv. It generally applies regardless of the learning algorithm
used.
In the following, we omit the function argument s where possible. Then we
can write

X0 D P0[V C De¡sT] (3.1)

as the re�ex pathway and

X1 D P1D C P1P01X0H0

1 ¡ P1P01HV
(3.2)

HV D
NX

kD1

½kHk (3.3)

as the predictive pathway (see Figure 3). Eliminating X1 and V, we get

X0 D e¡sTD C HV
P1D C P1P01X0H0

1 ¡ P1P01HV
: (3.4)
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Figure 3: Schematic diagram of the augmented closed-loop feedback mecha-
nism, which now contains a secondary loop representing ISO learning. (a) H0

and P0 form the inner feedback loop shown in Figure 2. The new aspect is the
input line X1 , which gets its signal via transfer function P1 from the disturbance
D. The inner feedback loop receives a delayed version (T) of the disturbance
D. The adaptive controller HV has the task to use the signal X1, which is earlier
than x0 , and thus “predicts,” the disturbance D at X0, to generate an appropriate
reaction at V to prevent a change at X0. (b) A schematic timing diagram for the
situation after successful learning when a disturbance has occurred. The output
v sharply coincides with the disturbance d and prevents a major change at the
input x0.

Solving for X0 D 0 leads to

HV D
NX

kD1

½kHk (3.5)

D ¡
P¡1

1 e¡sT

1 ¡ P01e¡sT : (3.6)

The transfer function HV is the overall transfer function of the predictive
pathway. Equation 3.5 demands that the weights ½k should be adjusted in
such a way that equation 3.6 is obtained at the end of learning.

Equation 3.6 requires interpreting. First, we consider the numerator and
remember that the learning goal is to achieve X0 D 0. This requires com-
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pensating the disturbance D. The disturbance, however, enters the organism
only after having been �ltered by the environmental transfer function P1.
Thus, compensation of D requires undoing this �ltering by the term P¡1

1 ,
which is the inverse transfer function of the environment (hence, “inverse
controller”). The second term e¡sT in equation 3.6 compensates the delay
between the signal in X1 and that at X0, when the disturbance actually enters
the inner feedback loop.

Now we discuss the relevance of the denominator, showing that it can
be generally neglected. Transfer functions are fully described by their poles
and zero crossings. Poles very strongly affect the behavior of a system, while
zero crossings are phase factors, which do not alter its general transfer char-
acteristic (Stewart, 1960; Blinchikoff, 1976; McGillem & Cooper, 1984; Ter-
rien, 1992; Palm, 2000). As a consequence, following methods from control
theory, any transfer function may be reduced to only those terms that con-
tain poles or zero crossing by neglecting all other components (Sollecito &
Reque, 1981; Nise, 1992).

Thus, we rewrite equation 3.6 as

HV D ¡P¡1
1 e¡sT 1

1 ¡ P01e¡sT
(3.7)

and analyze it to determine if the second term produces additional poles
for HV . This would happen if 1 ¡ P01e¡sT D 0 holds, which is equivalent
to P01 D esT. The term esT, however, is meaningless; it represents a time-
inverted delay, and thus an entity that violates causality.

As a result, there are no additional poles for HV , and in the following
we are allowed to set P01 :D 0 without loss of generality, thereby neglecting
only possible changes in phase relationships. Thus, the behavior of HV is
apart from phase terms entirely determined by1

HV D P¡1
1 e¡sT: (3.8)

Equation 3.8 represents the necessary condition for the learning, and we
ask in the next two sections if our speci�c algorithm is suf�cient to achieve
this.

3.2.2 Solutions in the Steady-State Case X0 D 0. Here we show by con-
struction that for one resonator, there already exists a solution that approx-

1 Readers who are less familiar with control theory may �nd it useful to think about
P01 in a different way. P01 represents how the environmental transfer of the reaction of
the system will in�uence the sensor X1 . Many times this in�uence is plainly zero from the
beginning (or the connecting path can be decoupled by an appropriate system design).
For example, for a predictively acting external temperature sensor X1 , the change of the
temperature of the environment due to the heating of a room is totally insigni�cant.
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imates equation 3.8 to the second order. Results for a fourth-order approx-
imation have been numerically obtained, showing that the approximation
continues to improve.

Thus, �rst we limit the discussion to the case of only two resonators, H0
and H1 (i.e., N D 1). The case with more resonators will be reintroduced at
the end of this section. We specify which parameters the resonator H1 in the
outer loop has in order to satisfy the learning goal. At �rst, we set P1 D 1,
looking at the case when the environment does not alter the shape of the
disturbance (but see below).

Considering equation 3.8, we have to solve

¡e¡sT D ½1H1: (3.9)

The resonator H1 has two parameters, f1 D 1=T1 and Q1, and together
with its weight ½1, we are looking for three parameters to solve this equation.

The left-hand side of equation 3.9 can now be developed into a Taylor
series,

¡ 1
esT

D ¡1

1 C sT C 1
2s2T2 C ¢ ¢ ¢

¼ ¡2T¡2

2T¡2 C 2sT¡1 C s2
; (3.10)

and the right-hand side of equation 3.9 has to be explicitly written out
according to equations 2.2 and 2.3:

½1H1.s/ D ½1

.s C p/.s C p¤/
D ½1

pp¤
|{z}

.2¼ f1/2

Cs .p C p¤/| {z }
¡2¼ f
Q1

Cs2 : (3.11)

We can now compare the coef�cients of equation 3.10 with equation 3.11
and get for the parameters,

½1 D ¡
2

T2 ; f1 D §
1

¼T
p

2
; Q1 D

r
1
2

: (3.12)

This result shows that for all T, there exists a resonator H1 with a weight
½1, which approximates e¡sT to the second order.

The result for f can be interpreted in the context of the companion article
in this issue. We remember that X0 D 0 and hence V D X1H1. If we consider
pure ±-pulse input at X1, as in the simulations in the companion article, we
receive the impulse response of the resonator h1.t/ at the output; thus:

v.t/ D ½1
1
b1

sin.b1t/e¡a1t (3.13)

D ½1Tsin
³

t
T

´
e¡ t

T (3.14)

D ¡
2
T

sin
³

t
T

´
e¡ t

T : (3.15)
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This function has its maximum at t.2/
max D Tatan.1/. We can assume that

this is approximatelyequal to t.2/
max ¼ T.2 This, however, would be indicative

of a response maximum that occurs exactly at the moment where the input
x0 is to be expected. We refer readers to Figure 5 in the companion article,
where this type of behavior has been observed in the simulations. We found
that during learning, the output always has its �rst maximum at the location
where x0 occurs (or would have occurred). The strength of the resonator
response, equation 3.14, is determined by the weight ½1, which is adjusted
in a way that the resulting integral (see equation 3.15) becomes

R 1
0 v.t/ dt D

¡1 so that it has the same energy as the ±-pulse of the disturbance D and
therefore optimally counteracts it. The shape of the disturbance in the form
of the ±-pulse obviously cannot be achieved by a single or two resonators,
but the energy (or the effect) is preserved.

The �nal stable value for ½1 is the main difference between the open-
loop case and the closed-loop case. While in the open-loop case, the weight
½1 grows endlessly due to the lack of feedback (see the simulations in the
companion article), in the closed-loop condition, the weight ½1 converges
to a speci�c value at the moment when x0 D 0 has been achieved. As a
consequence, the experimentally observed behavior of the algorithms leads
to a function Hv with similar properties as that obtained from the second-
order Taylor approximation.

For all practical purposes, N needs to be found in trying to resolve the
trade-off between the actually needed precision for t.1/

max ! T and hardware
and software engineering constraints (costs). The robot experiment in the
companionarticle in this issue demonstrates that ina real-world application,
few resonators (N D 10) suf�ce to obtain the desired obstacle avoidance
behavior after learning.

Now we have to consider more complex transfer functions for P1. Up to
this point, we have set P1 D 1, which means that the disturbance basically
reaches the input X1 un�ltered, which is in general not the case. Due to
speci�c sensor properties and due to properties in the environment, the
disturbance reaches the input X1 in a �ltered form. All of these changes can
be subsumed from the organism’s point of view by the function P1 (and the

2 The relation t.2/
max ¼ T could be con�rmed because we performed the same Taylor

approximation with N D 2 (leading to a fourth-order Taylor approximation):

¡e¡sT D ¡1

1 ¡ sT C 1
2 s2T2 ¡ 1

6 s3T3 C 1
24 s4T4

(3.16)

½1H1.s/ C ½2H2.s/ D ½1

.s C p1/.s C p¤
1/

½2

.s C p2/.s C p¤
2/

(3.17)

The resulting set of equations (from comparing the coef�cients) has been solved numeri-
cally, and we received a solution that leads to t.4/

max D 0:978T. This suggests that t.1/
max D T

is correct in the limit of N ! 1.
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same applies to P0). We recall that we have used a Taylor approximation
of equation 3.9 and matched it with the sum of resonators to obtain the
coef�cients. This, however, allows concluding that any transfer function P1
of the shape

P1 D
.s C z0/.s C z¤

0/ ¢ ¢ ¢ .s C zn/.s C z¤
n/

.s C p0/.s C p¤
0/ ¢ ¢ ¢ .s C pm/.s C p¤

m/
(3.18)

can still (together with the delay term ¡e¡sT) be approximated by a sum
of resonators, because this sum continues to take the shape of a broken
rationale function similar to that in equation 3.18.3 Such a shape of P1,
however, covers all generic combinations of high- and low-pass character-
istics. Hence, it represents a standard passive transfer function. In addition,
we can normally assume that the environment does not actively interfere
with signal transmission in such a system and can therefore—with great
likelihood—be represented by equation 3.18. Thus, we can argue that an
appropriate approximation of the complete equation 3.8 will be found in
almost all natural situations. The robot application shown in the companion
article in this issue supports this notion experimentally.

3.2.3 Convergence Properties. The previous section has shown that it is
possible to construct approximative solutions of equation 3.8 using res-
onators so that X0.s/ ! 0. Here, we address the problem of whether the
learning rule will actually converge onto such a solution.

Conventional techniques used to derive a learning rule by calculating the
partial derivatives of the weights and �nding the minimum fail in our case
because ISO learning is linear. As a consequence, the derivatives are con-
stant, and a minimum cannot be found. An approach that leads to success,
however, is to apply perturbation theory instead.

Let us �rst treat the system very generally without making a priori as-
sumptions as to the characteristics of the Hk . In so doing, we can employ
perturbation analysis with the nice aspect that we will not make any as-
sumption as to the size of the perturbation. Thus, proof of stability against
such a perturbation is equivalent to a proof of convergence. For real res-
onators, this will be a little bit different, though, as we will see.

Let us assume that we have found a set of weights ½k; k > 0 that solves
equation 3.8, and we know that the development of the weights follows
equation 2.5. Now we perturb the system, substituting ½j in equation 2.5
with ½j C ±½j D Q½j. In order to ensure stability, we must prove that the

3 Note that we are even able to approximate zero crossings of equation 3.18 since we
have a sum of resonator responses. If we calculate the overall transfer function of a sum of
resonators (H1 C H2 C ¢ ¢ ¢), we automatically also get zero crossings, which can be used to
identify them with the zero crossings in equation 3.18.Thus, the approximation, including
the phase terms, is correct.
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perturbation is counteracted by the weight change; thus, we must solve
equation 3.8 hoping to �nd

1½j » ¡±½j: (3.19)

Note that this would guarantee convergence because we know that ¹ is
small, which prevents oscillations.

After some calculations (see the appendix), we arrive at

1½j D ¹

2¼

NX

kD1

±½k

Z 1

¡1
¡i!

jX1j2H¡
k

1 ¡ ½0P¡
0 H¡

0
HC

j d!; (3.20)

where we use the superscripts C and ¡ for the function arguments Ci!
and ¡i!. This result is still general in the sense that we are not necessar-
ily dealing with resonator functions, so at the moment we are still free to
make some reasonable assumptions about the set of Hk. Let us thus assume
orthogonality given by

0 D
Z 1

¡1
¡i!

jX1j2HC
j H¡

k

1 ¡ ½0P¡
0 H¡

0
d! for k 6D j; (3.21)

and we get

1½j D ¹

2¼
±½j

Z 1

¡1
jXC

1 j2jHC
j j2

¡i!
1 ¡ ½0P¡

0 H¡
0

d!: (3.22)

In order to prove that the integral in equation 3.22 will be negative (en-
suring convergence), the inner (re�ex) loop, which is determined by ½0H0P0,
needs to be considered. Note that this loop must at least be stable; otherwise,
the system would not be functional to begin with. A theoretical result from
the literature (Sollecito & Reque, 1981) supports the notion that the integral
in question is negative as long as the stability of ½0H0P0 is guaranteed. Let
us try to spell this rather general argument out more concretely. (In the ap-
pendix, we rigorously prove convergence for the important case of unity
feedback.)

By the use of Plancherel’s theorem (Stewart, 1960), we transfer the integral
in equation 3.22 into the time domain and get

1½j D ¹±½j

Z 1

0
ax¤h.t/ f 0.t/ dt; (3.23)

where we call ax¤h.t/ the autocorrelation function of x1.t/¤hj.t/, which is the
inverse transform of jXC

1 HC
j j2 (the asterisk denotes a convolution). We note
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that the remaining term in equation 3.22, ¡i!
1¡½0P¡

0 H¡
0

, contains the derivative

operator ¡i! in the numerator. Thus, f 0.t/ in equation 3.23 is the temporal
derivative of the impulse response of the inverse transform of 1

1¡½0P¡
0 H¡

0
.

Now we must ask what the most general condition for the re�ex loop is
(de�ned by ½0H0P0) to be stable. For a concrete stability analysis, knowledge
of P0 would be required, which normally cannot be obtained. We can, how-
ever, in general assume that P0, being an environmental transfer function,
should again behave passively and follow equation 3.18. Furthermore, we
know that the environment delays the transmission from the motor output
to the sensor input. Thus, P0 must be dominated by a low-pass character-
istic, without which it would be unstable.4 As a consequence, we can in
general state that the fraction 1

1¡½0P0H0
is dominated by the characteristic

of a (nonstandard) high pass. It follows that its derivative has a very high
negative value for t D 0 (ideally D ¡1) and vanishes soon after. The au-
tocorrelation a is positive around t D 0. Thus, the integral in question will
remain negative as long as the duration of the disturbance D remains short.
As an important special case, we �nd that this especially holds if we assume
delta-pulse disturbance at t D 0, corresponding to x1.t/ D ±.t/.

Thus, for an orthogonal set of Hk, we have found that ISO learning will
converge if P0 is dominated by a low-pass characteristic and if we use a
disturbance D with a short duration.

Finally, we have to prove that equation 3.22 is zero in the equilibrium
state case where the feedback loop is no longer needed. Thus, we have
0 D X0 D ½0H0P0, and the denominator becomes one. We get

1½j D ¹

2¼
±½j

Z 1

¡1
¡i!jXC

1 j2jHC
j j2 d!: (3.24)

This integral is antisymmetrical, and thus zero as required. In the companion
article in this issue, we discussed that the synaptic weights in the open-loop
condition stabilize as soon as we explicitly set X0 D 0, arriving at the same
equation (compare equation 2.21 in the companion article). In the closed-
loop condition used here, this is obtained in a natural way, as the result of
implicitly eliminating the re�ex during the learning process.

3.2.4 Matching the Theoretical Convergence Properties to the Practical Ap-
proach. In this section, we now use real resonator functions for Hk and
Hj (see equations 2.2 and 2.3). Normally, the transfer functions of the res-
onators are not orthogonal, but we will show by numerical integration that
the system still behaves properly.

4 Note that the unity feedback condition, treated in the appendix, represents the sim-
plest possible stable re�ex loop. Its low-pass characteristic is reduced to being a mere
delay in this case.



ISO Learning Approximates an Inverse Controller 877

Here, we use the unity feedback condition de�ned in the appendix in
order to be able to work with a concrete example, which is initially stable,
and we get for equation 3.20

1½j D ¹

2¼

NX

kD1

±½k

Z 1

¡1

¡i!HC
j H¡

k

1 ¡ ½0ei!¿
d!; (3.25)

where we have set D D 1, which represents a ±-function as a disturbance.
Figure 4a shows the numerically obtained results for 1½j as de�ned in

equation 3.25 in the case of a perturbation.
We note that the resonators are not orthogonal since we have nonzero

contributions for nearly all j 6D k. The system, however, still compensates
for perturbations and thus converges, for the following reason. First, con-
sider Figure 4a, which represents the case of how the system reacts to a
perturbation, and look at the diagonal. We �nd that the values of the inte-
gral (see equation 3.25) are negative on the diagonal. This means that any
perturbation at ½j will lead to a counterforce onto itself and, consequently,
to a compensation of the perturbation.

However, the nondiagonal elements k 6D j are nonzero, so we have to
discuss them and argue why this does not interfere with the compensation
process. Thus, the question of stability must be rephrased into a question of
how a perturbation at one given weight ½k will in�uence the other weight(s).
Most important, we observe that the value of the integral (see Figure 4a)
is substantially smaller than one everywhere else. This, however, shows
that any perturbation at index k will reenter the system at index j only in
a strongly damped way. This process leads to a decay of any perturbation
through further iterations. This strictly holds for two paired indices j and k.
However, even for the complete sum in equation 3.25, which describes all
cross-interference terms, we can argue that perturbations will be eliminated.
This is true as long as the sum remains below one, which is realistic, given
the small and sign-alternating values of the integral surface.

From this, we realize that strict orthogonality as de�ned in equation 3.21
is not necessary to ensure convergence. This constraint can be relaxed to
the constraint that the absolute value of the sum in equation 3.25 (or equa-
tion 3.20, respectively) should remain below one. Thus, for all practical pur-
poses, we can concentrate on the behavior of the diagonal elements even
without having to employ an orthogonal set of H.

Figure 4b shows the equilibrium case with ½0X0P0 D 0. We note that in
this case, the integral is zero for k D j, which is in accordance with theory.
Since we are in the equilibrium, we do not expect any weight changes.

4 Discussion

In this article, we have focused on �nding a mathematically motivated in-
terpretation of the results from feedback loop (self-referential)–based ISO
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Figure 4: Numerical integration of equation 3.25. The disturbance D and the
re�ex loop delay ¿ were both set to one. The frequencies of the resonators Hk

and Hj were varied from 0:01 to 0:1 in steps of 0:001. The value of Q was set to
Q D 0:9 for both resonators. The weight of the re�ex loop was ½0 D ¡0:9.
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learning. We were able to show that such a system approximates the inverse
controller of the re�ex. The theoretical results are at some critical points
rather nicely linked to the experimental �ndings shown in the companion
article that support the validity of the theory.

Most of the technical aspects, like necessary assumptions (e.g., the or-
thogonality problem), have already been discussed in the previous sections.
Therefore, we restrict the discussion here to more general problems.

The inverse controller problem belongs to the most famous problems in
engineering. Typical solutions are always based on an intrinsic model (a
so-called forward model) of the to-be-controlled system. In contrast, our
approach is model free because it is based on learning. Furthermore, engi-
neered forward models have the central disadvantage that they will fail if
something unexpected happens. Thus, control engineers use their forward
controllers only in conjunction with the feedback-loop controller on which
the forward model was originally based. The same strategy is pursued in
a natural way in our setup. The double-loop structure of Figure 3 clearly
shows that the re�ex will again take over if the outer loop fails. In contrast
to engineered systems, however, this will lead to a continuation of the learn-
ing process such that the system will continue to improve throughout its
lifetime.

A frequently addressed problem in biology is the control of voluntary
limb movements, for example, in the arm movement models developed by
Haruno, Wolpert, and Kawato (2001) and others. These authors also employ
forward models (inverse controllers) to address problems of limb control in
a mixed-model approach (Wolpert & Ghahramani, 2000). The idea that for-
ward models are involved in motor control has been explored, for example,
by Grüsser (1986), who tried to explain the stability of the visual perceptdur-
ing voluntary eye movements by means of an internal representation of the
motor command, which is called “efferent copy” or “corollary discharge”
(von Uexküll, 1926). By now, clear evidence exists for such a general mech-
anism, the details of how it is implemented, however, are still under debate.
A discussion about this is beyond the scope of this article, but our theoretical
results suggest that sequence order learning can provide a method by which
forward models can be generically designed (i.e., learned). It is conceivable
that this observation is not restricted to our speci�c algorithm but also holds
for other temporal sequence learning algorithms like TD learning.

The models by Wolpert and Ghahramani (2000), Haruno et al. (2001), and
others have in common that they use supervised learning schemes, usually
TD learning, to learn the forward model. As we stated in section 1, the
goal of our two letters in this issue is to provide an unsupervised temporal
sequence learning algorithm for autonomous behavior. An organism that is
autonomous cannot rely on external rewards. Internal rewards are possible,
but if we treat autonomy seriously, then even an internal reward originates
in the last instance from a sensor input. Verschure and Voegtlin (1998) used
the same paradigm: a (Hebb-like) unsupervised learning algorithm together
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with a re�ex as a reference. A novel aspect of our work is that we have taken
the environment explicitly into account and introduced it as a nonevaluative
structure. Thereby, the organism reacts only to the relevant parts of the
environment’s structure, and in the theoretical treatment, only aspects of
the environment have to be taken into account that either establish the re�ex
loop or can be used to supersede it. In that sense, the organism acquires not
arbitrary sensorial information but useful information—useful in the sense
of helping it to supersede the re�ex (von Glasersfeld, 1996).

The de�nition of autonomy has been based on the aspect of (un-)predic-
tability of behavior (Ford & Hayes, 1995). It is interesting to consider how
our system �ts into this framework. The acquisition of additional useful
sensorial information enables the organism to predict unwanted changes in
the environment. Thus, for the organism, predicting the re�ex leads to more
behavioral security as compared to the situations when it had to entirely rely
on the re�ex reaction. However, the gain of security for the organism will
lead to an increase of uncertainty observed in the environment. What this
means can be understood by reconsidering the robot experiment shown
in the companion article. As long as the robot has only its re�ex behav-
ior, it is absolutely predictable for an observer. From the moment learning
eliminates the re�ex, the robot’s behavior becomes more and more unpre-
dictable. Although the robot solves its goal (obstacle avoidance), it cannot
be predicted how the robot actually achieves this. It is speci�cally this dual-
ity of certainty versus uncertainty (depending on the point of view of actor
versus observer) that is central to the de�nitions of autonomy. Such prin-
ciples are also identi�ed as the basis for the emergence of social behavior
(Luhmann, 1995).

Our two articles in this issue are meant to provide an alternative frame-
work for temporal sequence learning, which by its linear structure provides
better access to analytical treatment than do existing techniques. In addition,
we believe that the ISO learning algorithm could have signi�cant commer-
cial potential, because it can, in a model-free way, solve various inverse con-
troller problems, which should be of relevance for different applied control
situations.

Two questions immediately arise that should be addressed by future re-
search: Which modi�cations have to be done to implement an “attraction”
case opposed to the shown “avoidance” case? and Is there a way to imple-
ment ISO learning using spike trains and biophysically modeled neurons?
These issues extend the scope of this article and are topics for further inves-
tigation.

Appendix

In this appendix, we give the detailed equations for the convergence proof
and derive the proof in a rigorous way for the so-called unity feedback
condition.
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A.1 Detailed Equations. We continue after equation 3.19. We need to
de�ne U and V. U is easy:

Uj D XjHj D
(

X0H0 for j D 0

X1Hj for j > 0
: (A.1)

V is more complicated. From the de�nition, we have

V D ½0X0H0 C X1

NX

kD1

½kHk; (A.2)

and from above, we know (see equation 3.1) that

X0 D P0[V C De¡sT]: (A.3)

Thus, we get for V,

V D ½0P0[V C De¡sT]H0 C X1

NX

kD1

½kHk (A.4)

D ½0P0H0V C ½0P0H0De¡sT C X1

NX

kD1

½kHk; (A.5)

resulting in

V D ½0P0H0De¡sT C X1
PN

kD1 ½kHk

1 ¡ ½0P0H0
: (A.6)

Substituting ½j ! ½j C ±½j, we get

QV D ½0P0H0De¡sT C X1
PN

kD1 ½kHk C X1
PN

kD1 ±½kHk

1 ¡ ½0P0H0
(A.7)

D V C X1
PN

kD1 ±½kHk

1 ¡ ½0P0H0
: (A.8)

Calculating the weight change is done using equation 2.5:

1 Q½j D ¹

2¼

Z 1

¡1
¡i!

"
V¡ C

X¡
1

PN
kD1 ±½kH

¡
k

1 ¡ ½0P¡
0 H¡

0

#
XC

1 HC
j d!; (A.9)

where we have introduced the abbreviations C and ¡ for the function argu-
ments Ci! and ¡i!.
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We realize that the �rst part of this integral describes the equilibrium
state condition and can be dropped; thus,

1½j D ¹

2¼

NX

kD1

±½k

Z 1

¡1
¡i!

jX1j2H¡
k

1 ¡ ½0P¡
0 H¡

0
HC

j d!; (A.10)

where for X1 we have made use of the fact that for transfer functions in
general, we can write YCY¡ D jYj2, and we have reached equation 3.20 of
the main text.

A.2 Introducing the Unity Feedback Loop Restriction. The basic (criti-
cal) property of a re�ex loop is its delay characteristic. This property under-
lies the conceptual necessity for temporal sequence learning and is essential
for any relevant mathematical treatment. The speci�c characteristics of some
of the transfer function, on the other hand, are secondary and can therefore
be simpli�ed.

Thus, we willuse the so-called unity feedback loopassumption to capture
this property. It is de�ned by

½0 2 ] ¡ 1; 0[ (A.11)

H0 :D 1 (A.12)

P0 :D e¡s¿ : (A.13)

The re�ex loop is thus entirely determined by its gain ½0 and by the delay
¿ (not to be confused with T), which is the delay between the motor output
V and the sensor input X0. The range of ½0 de�ned by equation A.11 results
from the demand that the re�ex should be a negative feedback loop and
that it must be stable.

In addition, we assume that the transfer function P1 of the predictive
pathway represents un�ltered throughput given by

P1 :D 1: (A.14)

Finally, we assume that the disturbance D should be short, with a dura-
tion that is shorter than ¿ (otherwise, the loop would become unstable) and
that it can be developed into a product series of conjugate zeroes and poles
(e.g., low-=band- or high-pass characteristics). Thereby, D also takes on the
property of a typical transfer function.

A.3 Convergence for Unity Feedback. In the main text, we arrived at
equation 3.22,

1½j D ¹

2¼
±½j

Z 1

¡1
jXC

1 j2jHC
j j2 ¡i!

1 ¡ ½0P¡
0 H¡

0
d! (A.15)
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and we have to prove that this integral is negative. This can be directly
shown for unity feedback. Thus, equation A.15 turns into

1½j D ¹

2¼
±½j

Z 1

¡1
jDHjj2| {z }

A.i!/

¡i!
1 ¡ ½0ei!¿

| {z }
¡i!F.¡i!/

d!: (A.16)

As in the main text, we apply Plancherel’s theorem to equation A.16 in
order to transfer the integral back into the time domain and prove that it is
negative. We get

1½j D ¹±½j

Z 1

0
a.t/ f 0.t/ dt: (A.17)

The function F.s/ of equation A.16 is given by the transformation pair,

F.s/ D 1
1 ¡ ½0e¡s¿

$ f .t/ D .¡1/n±.t ¡ n¿ /; n D 0; 1; 2; : : : ; (A.18)

where f represents an alternating ±-function at t D 0; ¿; 2¿; : : : ; which starts
with a positive delta pulse (Doetsch, 1961). Thus, together with ¡i!, the
complete term .¡i! 1

1¡½0ei!¿ / represents f 0.t/, hence the temporal derivative
of f .
The other term A.s/ of equation A.16 is given by

A.s/ D jDHjj2 $ a.t/ D 8[d.t/ ¤ hj.t/]; (A.19)

where the asterisk denotes a convolution and 8 the autocorrelation function.
As a consequence of the above �ndings, we have to discuss the integral

in equation A.17 speci�ed by the time functions in equations A.18 and A.19.
The integral should be negative to ensure stability. We know that D is short-
lived with a duration shorter than ¿ , without which the loop system would
be unstable to begin with. Thus, we can restrict the discussion of the integral
to t D 0. We know that the autocorrelation function a has a positive maxi-
mum at t D 0 and that the derivative f 0 of a delta pulse at zero approaches
¡1 for t ! 0I t > 0. As a consequence, the integral is negative, as required
for convergence.
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