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Towards Closed Loop Information: 
Predictive Information

 

Introduction

 

Since its introduction by Shannon and
Weaver (1949), a quantitative information
measure has been used in many disciplines.
For example, in telecommunications infor-
mation is used to quantify the quality of a
transmission. This definition of information
has also been applied to neurons where the
signal transmission from one neuron to the
next one can be expressed in terms of infor-
mation (Rieke, Warland, de Ruyter van
Stevenick & Bialek 1997). Such an informa-
tion measure treats the neuron as an input/
output system which is appropriate in this
case. However, when an organism acts in its
environment its actions feed back to its sen-
sors so that a closed loop perception–action
system is established. Consequently the dis-
tinction between input and output becomes

fuzzy (Atmanspacher & Dalenoort 1994; Porr
& Wörgötter 2005b) so that standard infor-
mation measures which assess information
transmission can no longer be used. In this
article we will present an information mea-
sure for a closed loop system which measures
how additional sensor inputs and therefore
additional sensor–motor loops are acquired
during learning.

Before we can define closed loop informa-
tion it is necessary to introduce closed loop
systems. Why do we need closed loop control?
In the real world our knowledge about our
environment is incomplete. We will always
encounter situations that we cannot predict
or in other words: the environment provides
“surprises” which are called disturbances
(Palm 2000). Such disturbances will cause a
deviation from the desired state of the organ-
ism. For example, we might become hungry
or an enemy may attack us unexpectedly. A

proper closed loop system is designed so that
it can cope with these disturbances and
thereby restore the desired state of the organ-
ism.

We will now define the point of view of the
closed loop system. In contrast to approaches
used in engineering, we are going to describe
a closed loop system from its own perspective
(Atmanspacher & Dalenoort 1994; Porr &
Wörgötter 2005b). This internal perspective
of the organism was first radically employed
by (Foerster 1960). The crucial difference
between the internal perspective and the
outer perspective is how closed loop systems
“observe” the environment and themselves.
Forester claims that closed loop systems can
only observe by using their own closed loops.
Therefore, the only aspect which can be
observed is the closed loop which establishes
the feedback from the motor output to the
sensor input (see Fig. 1). To make it clearer:
an organism can only use its own senses to
judge if an action has been successful or not.
It cannot perceive the action 

 

itself

 

. It can only
perceive the 

 

consequences

 

 of its actions. This
leads directly to the question of how an
organism 

 

evaluates

 

 its actions. The answer is
simple: only by its own sensor inputs. This
leads directly to the statement that organisms
can only control their inputs and not their
outputs (Glasersfeld 1995). The contradic-
tion between input- and output-control can
be made clearer by an example, which we call
the second chicken/egg problem (Porr &
Wörgötter 2005b): Let us interpret the
chicken as a closed loop system. The chicken
wants to 

 

keep 

 

the egg and acts in a way
designed to increase the sit-on-the-egg-time
to improve the probability of successful
hatching. The farmer, however, wants to 

 

have

 

the egg. The farmer perceives the hen as an
input–output system: food in and egg out.
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Motivation: Classical definitions of information, such as the Shannon information, are 
designed for open loop systems because they define information on a channel which has 
an input and an output. The main motivation of this paper is to present a closed loop 
information measure which is compatible with constructivist thinking. Design: Our infor-
mation measure for a closed loop system reflects how additional sensor inputs are utilised 
to establish additional sensor-motor loops during learning. Our information measure is 
based on the assumption that it is not optimal to stay reactive and that it is beneficial to 
become proactive through increased learning about the environment. Consequently our 
information measure gauges the utilisation of new sensor inputs to generate anticipatory 
actions. We call this information measure “predictive information” (PI). Findings: Our PI 
is zero if the organism uses only its reflex reactions. It grows when the organism is able to 
use other sensor inputs to preempt reflex reactions and is able to replace reflexes by 
anticipatory reactions. This has been demonstrated with a real robot that had to learn to 
avoid obstacles. Conclusion: PI is a new measure which is able to quantify anticipatory 
learning and, in contrast to the Shannon information, is calculated only at the inputs of an 
agent. This information measure has been successfully applied to a simple robot task but 
its application is neither limited to a certain task nor to a certain learning rule. 
Keywords: Closed loop system, information measure, differential Hebbian learning, reac-
tive vs proactive systems.
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The hen, however, operates as a closed loop
system to which the farmer is just a distur-
bance. As soon as the farmer removes the egg
the chicken will produce a new egg thereby
restoring its desired state. This example shows
that external and internal perspectives are
fundamentally different and illustrates Foer-
ster’s theory of organisms as closed loop sys-
tems, acting only according to their internal
perspective.

In the preceding paragraph we have
argued that an organism evaluates its own
actions via its sensor inputs. These inputs can
be used to improve future behaviour.
Although many sensor events are associated
with a real life situation, only a few inputs will
probably be able to improve the behaviour of
the organism. For example, with a hot sur-
face, it is beneficial to react to the early heat
radiation signal rather than a later pain signal
elicited by touching the heat source. Many
similar sequences of sensor events are
encountered during the lifetime of an organ-
ism as the consequence of existing far-senses,
e.g., vision, hearing, smell, and near-senses
such as touch, taste, etc. Generally one
observes that the trigger of a near-sense is pre-
ceded by that of a far sense, i.e., smell precedes
taste, vision precedes touch, etc. Therefore
far-senses are often predictive of correspond-
ing near-senses (Verschure & Coolen 1991).
Here, we will focus on the view that it is
advantageous to react to the earliest of sensor
events rather than to wait for later sensations.

We may now introduce our information
measure in this closed loop system. In the
paragraph above, we have argued that it is
beneficial for organisms to generate anticipa-
tory actions. These actions are generated by a

sensor input which predicts the
imminent trigger of a late reac-
tion. Consequently our infor-
mation measure is the utilisation
of new sensor inputs to generate
an anticipatory reaction. We call
this information measure “pre-
dictive information.” If the
organism only uses its late reflex
reaction, the predictive informa-
tion is equal to zero. When the
organism is able to use other
sensor inputs to preempt the late
reflex reaction, thus enabling
replacement of the reflex by an
anticipatory reaction, this pre-

dictive information increases.
Furthermore, the anticipatory reaction is a

learned behaviour, rather than being innately
available to the organism. Our information
measure therefore evaluates the learning pro-
cess, for which we use the ISO-learning model
(Porr & Wörgötter 2003) which is able to
replace a reflex reaction by an anticipatory
reaction.

 

Formalising 
closed loop control

 

Reactive control

 

Every closed loop control situation with neg-
ative feedback has a so called 

 

desired state

 

 and
the goal of the control mechanism is to main-
tain (or reach) this state as quickly as possible
(D’Azzo 1988). In our model we assume that
the desired state of the reflex feedback loop is
unchanging and defined by the properties of
the reflex loop. We define it as 

 

x

 

0

 

 = 0. First we
will discuss this system in the absence of
learning. Fig. 2a shows the situation of a non
learning organism embedded into a very sim-
ple but generic (i.e. unspecified) formal envi-
ronment which has a transfer function 

 

p

 

0

 

.
This organism is able to react to an input only
by means of a reflex.

Fig. 2b illustrates a possible set of signals
which can occur in such a system. When a dis-
turbance occurs, first the disturbance signal 

 

d

 

deviates from zero, and then the input 

 

x

 

0

 

senses this change 

 

x

 

0

 

 

 

≠

 

 

 

0 and only finally the

 

Figure 1: 

 

The organism as a closed loop system. 

 

h 

 

transforms sensor events into motor outputs. 

 

p 

 

transforms motor outputs into sensor events. The only 
thing that can be perceived by the organism are actions 
fed back via (a). Anything that does not feed back cannot 
be perceived (b) and cannot be used to establish goals.
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Figure 2: a 

 

Fixed reflex loop: the organism transfers a sensor event 

 

x

 

0

 

 into a motor response 

 

v

 

 with the help of the transfer function 

 

h

 

0

 

. The environment turns the motor response 

 

v

 

 again 
into a sensor event 

 

x

 

0

 

 with the help of the transfer function 

 

p

 

0

 

. In the environment there exists 
the disturbance 

 

d

 

 which adds its signal at ⊕⊕⊕⊕

 

 to the reflex loop. 

 

b

 

 Possible temporal signal shapes 
occurring in the reflex loop when a disturbance 

 

d

 

 

 

≠

 

 0 happens. The desired state is 

 

x

 

0

 

 := 0. 
The disturbance 

 

d

 

 is filtered by 

 

p

 

0

 

 

 

and appears at 

 

x

 

0

 

 and is then transferred into a 
compensation signal at 

 

v

 

 which eliminates the disturbance at ⊕⊕⊕⊕

 

.
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motor output 

 

v 

 

can generate a reaction in
order to restore the desired state 

 

x

 

0

 

 = 0. No
matter how fast the controller is, there will
always be a reaction delay in such a system
which means that there will always be an
unwanted transient at 

 

x

 

0

 

. A system which
operates purely reactive will always experi-
ence this transient. However, we will show in
the next section that this transient can be used
to learn an anticipatory reaction which then
finally eliminates the transient at the input 

 

x

 

0

 

.

 

Predictive control

 

The reflex defined above may be prevented by
an earlier sensor signal that informs the
organism of an imminent disturbance. Fig. 3
shows how the disturbance 

 

d 

 

elicits a
sequence of sensor events: first it enters the
outer loop arriving at 

 

x

 

p

 

 filtered by the envi-
ronment (

 

p

 

1

 

), while it arrives at 

 

x

 

0

 

 only after
a delay 

 

T

 

. The trigger of the reflex can be
avoided if the transfer function 

 

h

 

v

 

 generates a
signal which compensates for the disturbance

 

d

 

. In an ideal case the inner loop (

 

h

 

0

 

 and 

 

p

 

0

 

)
will be completely eliminated so that the sen-
sor input 

 

x

 

0

 

 is always zero and the organism
uses the input 

 

x

 

p 

 

instead. This means that the
motor reaction 

 

v

 

 is now solely generated by 

 

x

 

p

 

and no longer by 

 

x

 

0

 

. However, as the weight of
input 

 

x

 

0 

 

is fixed, input 

 

x

 

0

 

 is still available: if
anything in the environment changes and
input 

 

x

 

p

 

 is no longer triggered input 

 

x

 

0

 

 will
always serve as a “back-up.”

 

Learning

 

The filter 

 

h

 

v

 

 in Fig.  3 can be implemented by
ISO learning (Porr & Wörgötter 2003) which
is able to learn temporal relations between
input signals and uses these relations to turn
reactive behaviour into proactive behaviour.

We consider a system of 

 

N

 

 + 1 linear filters

 

h

 

 receiving inputs 

 

x 

 

and producing outputs 

 

u

 

.
The filters connect with corresponding
weights 

 

ρ

 

 to one output unit 

 

v

 

 (Fig. 4a).
We will use 

 

x

 

0

 

 to denote the reflex pathway
with its corresponding weight 

 

ρ

 

0

 

 = 

 

const

 

. The
output 

 

v

 

 is then given as:

(1)

where weight change is performed by the
following learning rule:

(2)

The constant 

 

μ

 

 is adjusted such that all
weight changes occur on a long time scale (i.e.
very slowly) compared to the decay of the
responses 

 

u

 

 which ensures that the system
operates in the steady state condition. The
transfer function 

 

h

 

 is that of a lowpass or
bandpass which transforms a 

 

δ-pulse input
into a damped oscillation. The bandpass has
two parameters: The frequency f and the qual-
ity Q which determines the damping where a
low Q represents a high damping. In general
we use as an initial condition for the weights
ρ0 = 1 and ρj = 0, j > 0.

ISO learning is illustrated in Fig. 4b:
Derivatives of low pass filtered signals have a
phase lead so that they precede the low pass fil-
tered signal. In our case (namely ISO-learn-
ing) the derivative is taken from the output v
of the neuron which is, before learning, iden-
tical to the low-pass filtered signal of the reflex
u0. This derivative u'0 is then correlated with
the filtered predictive input u1. Because of the

phase lead of the derivative u'0
 , weights will

grow when the signal at x1 precedes the signal
at x0. However, if the timing between x1 and
x0 is reversed the weights will shrink. The cor-
responding weight change curve is plotted in
Fig. 4c.

Closed loop 
information: 
Predictive information

At this point we can introduce an information
measure which reflects the performance of
predictive learning as outlined above. As the
measure should reflect the success of predic-
tive learning, it is reasonable to start with zero
information before learning. In our model
this means that we start with a late reflex via
x0 which is associated with zero information.
Predictive actions via xk, k > 0 are elicited

v ρkuk 

k 0=

N

∑= uk xk*hk=

td
d

ρj μujv'=

Figure 3: Schematic diagram of the augmented closed loop feedback mechanism which now 
contains a secondary loop. a h0 and p0 form the reflex loop already shown in Fig. 2. The new 
aspect is the input-line xp which gets its signal via transfer function p1 from the disturbance d. 
The reflex loop receives a delayed version (T) of the disturbance d. The adaptive controller hv 
has the task to use the signal xp, which is earlier than and, thus, “predicts” the disturbance d at 
x0, to generate an appropriate reaction at v to reduce the degree of change at x0. Consequently 
the pathway via xp can be called the predictive loop. b Shows a schematic timing diagram for 
the situation after successful learning when a disturbance has occurred. The output v sharply 
coincides with the disturbance d and prevents a major change at the input x0.
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when other sensor inputs are used in addition
to the reflex input. Consequently, our infor-
mation measurement should grow if these
sensor inputs are used by ISO-learning. If
there is more than one predictive sensor input
all additional sensor inputs should contribute
to the information measure.

We will now define our information value
by the weights of ISO learning:

(3)

where N is the number of inputs to ISO
learning and ρj are the corresponding
weights. We call this information “Predictive
Information” (PI). Now, we have to test if our
information measure behaves according to
our theory. In the reflex-only situation, the
weight ρ0 is the only weight which is non zero.
With ρ0 ≠ 0, ρk = 0, k > 0 Eq. 3 becomes zero
which is the desired outcome. Note that the
predictive information is always zero as long
only one weight is non-zero.

To gain a better understanding of Eq. 3 we
have to recall when the weights ρk, k > 0 start
to grow. ISO learning implements differential
Hebbian learning (Kosco 1986) which means
that the weights grow when the correspond-

ing inputs xj, j  >  0 precede the signal v and,
because of the fixed weight ρ0, precede the sig-
nal x0. Only those weights grow which are able
to generate an earlier reaction in relation to
the signal at x0 (or v). Consequently the
weights directly reflect the predictive power of
their corresponding inputs. The more
weights grow the more inputs are used for the
anticipatory actions. Our measure PI reflects
this: The larger the weights, the higher the
value of PI.

For example, a naive person might only eat
when she/he gets hungry. This represents
basic reactive behaviour which utilises in our
case just the pathway through x0. Because
only the weight ρ0 is non-zero the predictive
information is zero. Eventually, the person
learns to anticipate when he/she will get hun-
gry and will eat earlier. In our formal model
this predicative information enters the learn-
ing circuit through x1. Learning will increase
the weight ρ1 which is associated with the pre-
dictive input x1 which leads to a non-zero pre-
dictive information because the two weights
ρ0 and ρ1 are now non-zero. The more predic-
tive signals x2,… are available and used via
nonzero weights ρ2,… the more the predic-
tive information will grow.

Weights stop growing when the reflex has
been successfully avoided. In this case the

value of PI should also be at its maximum
value. Let us assume for now that all inputs xj
are normalised to one. Having normalised
inputs makes it easier to compare the loop
gains in our feedback system. In case of pure
reactive control only the weight ρ0 is non-zero
and therefore defines the gain of the feedback
loop. During learning the weights ρj, j > 0
start to grow until the learning goal x0 = 0 has
been reached. It makes sense to assume that
the feedback gain established by the weights
ρj, j > 0 is similar to the gain of the feedback
loop (ρ0). Thus, it can be assumed that similar
values for ρj ≈ ρ0, j > 0 for the predictive path-
way will evolve as long as the different inputs
are independent or form a sequence of events.
Then every input xj, j > 0 establishes a feed-
back loop on its own. In such a case the value
of PI is at its maximum value because of an
equal distribution of the weights. In our
example (see Fig. 3) the input xp feeds into a
filterbank so that the corresponding weights
are not independent. In such a scenario the
sum of the weights  will probably
generate a similar closed loop gain than the
reflex gain ρ0. Consequently PI will be lower
than for independent inputs xj, j > 0. If one
wants to compare the predictive information
from two different sensors then Eq. 3 can be
simply split up into the contributions from

PI
ρj
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Figure 4: a The neuronal circuit of ISO-learning. The shaded area marks the connections of the weights ρk, k ≥ 1 onto the neuron which 
represent hv with xk = xp, k ≥ 1. b shows the inputs x0, x1, the impulse responses u for a choice of two different resonators h and the derivative 
of the output v'. c shows the initial weight change ρ1(T)t = 0 for h1 = h0, Q = 1, f = 0.01 after having stimulated the two filters h0 and h1 with 
delta pulses x1(t) = δ(t) and x0(t) = δ(t – T). This pulse-sequence was repeated every 2000 time steps. After 400,000 time steps the weight ρ 
was measured and plotted against the temporal difference T. The learning rate was set to μ = 0.001.
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one sensor and from another sensor. Summa-
rising, the measure PI reflects the utilisation
of additional inputs xj, j > 0 to preempt the
reflex at input x0. The more inputs are used
the higher the PI but only under conditions
where the closed loop gain of the predictive
pathway(s) is comparable to the gain of the
reflex pathway.

Robot experiment

The task of the robot experiment is collision
avoidance. For a more detailed description of
the experiment we refer the reader to Porr &
Wörgötter (2003) and Porr, Ferber &
Wörgötter (2003). The built-in reflex behav-
iour of the robot is a retraction reaction after
the robot has collided with an obstacle. This
represents a typical feedback mechanism; the
desired state is that the signal at the collision
sensor should remain zero. In order to avoid
deviation from the desired state (i.e. collision)
the robot is fitted with range finders which
predict imminent collisions. ISO-learning is
employed to learn the existing temporal cor-
relation between the range-finder and the col-
lision sensor signals. After learning the robot
can generate a motor reaction in response to
the range finder signals and thereby avoid col-
lision and the retraction reflex.

The detailed circuit diagram of the robot is
given in Fig. 5. The robot has two ISO learn-
ers, one for the steering angle and one for the
speed of the robot. Here we focus on the ISO
learner and its corresponding weights which
control the steering angle. The predictive
information can be calculated using Eq. 3. To
be able to compare the predictive information
associated with the two range-finders we cal-
culated the predictive information for the left
and for the right sensor separately.

We conducted two experiments. In the
first experiment both range-finders were fully
operational so that both of them were able to
predict collisions. Comparing the traces of
the range finders (RF, lower trace) with the
signals from the collision sensors (CS, upper
trace) it is apparent that there is a strong tem-
poral correlation between both signals. Spe-
cifically, a peak at the collision sensor (CS) is
usually preceded by a peak coming from the
range finder (RF). In the presence of a strong
temporal correlation the weights from the
corresponding range-finders grow (see

Fig. 4c). Therefore, the robot successfully
learns to avoid obstacles by using both range
finder signals. The corresponding predictive
information grows for both ranger finders.

In the second experiment the right range-
finder was “blindfolded” by a small cap over
its sensor. Analysis of the traces in Fig. 4d
revealed that there was no longer a temporal
correlation between the signal from the right
range-finder (RF) and the signal from the col-
lision sensor (CS) and that only the left range-
finder was able to predict a collision (Fig. 4b).
As expected the predictive information is still
high for the left sensor but stays low for the
right sensor.

In summary, the predictive information
reflects the utilisation of the different inputs
to develop anticipatory responses in relation
to the reflex response. If a sensor signal is not

correlated to the reflex behaviour it does not
generate behaviour and therefore the predic-
tive information stays low. If a sensor signal is
able to predict the reflex it is used by ISO-
learning to generate an appropriate anticipa-
tory reaction which results in higher predic-
tive information.

Discussion

We have shown the successful application of
predictive information to a real world robotic
paradigm where the predictive information
reflects the utilisation of different sensor sig-
nals to generate an anticipatory action.

Many other information measures have
been defined (for a review in the context of
constructivism see Porr 2002) but the infor-

Figure 5: The robot has three collision sensors (CS), two range finders (RF) and two output 
neurons (speed ds and steering angle dφ). The reflex-behaviour is triggered by the collision 
sensors (dotted lines). The corresponding weights of the reflex are adjusted in such a way that 
the robot performs an appropriate retraction reaction (ρ0

ds = 0.15 and ρ0
dφ = –0.5). The two 

signals from the left and the right range finder are fed into two filter-banks with N = 10 
resonators with frequencies of fk = 1Hz/k; k ≥ 1 and Q = 1 throughout. The 20 signals from 
the two filter banks converge on both the speed neuron (ds) and on the neuron responsible 
for the steering angle (dφ).
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mation measure of Shannon & Weaver
(1949) is most pertinent to the present dis-
cussion. The total average information
which is caused by M discrete events is given
as:

(4)

This is the average information generated
by all M events which have the probabilities pk.
It can be proven that if all events have the prob-
ability pk = 1/M the information is at its max-
imum which means that all events have maxi-
mum uncertainty. The probabilities pk can be
interpreted in different ways, leading to differ-
ent interpretations of the information mea-
sure: The probabilities pk could be associated

with the amount of surprise the events have
caused which is reflected by the logarithm in
Eq. 4. On the other hand the probabilities
could be also interpreted as the amount of bits
which are needed to describe the probabilities.
Even more interpretations arise when not only
the information content but also the transmis-
sion of information is considered. Such an
information measure based on the transmis-
sion of events operates on the conditional
probabilities p(yk|xk) of the channel. Informa-
tion is zero in such a case when an event yk has
been triggered by any event xk at the input of
the channel. The information is highest if one
even yk has been caused exactly by one event at
the input xk. In such a scenario it is also possi-
ble to introduce redundancy by increasing the
channel capacity or by adding an auxiliary
channel.

We will now compare our
predictive information with
the Shannon information.
Our information measure
uses certain properties of ISO
learning which can be also
found in other learning rules
like Hebbian learning (Hebb
1949), which has been exten-
sively investigated regarding
information processing.
According to Linsker (1988)
Hebbian learning implements
information maximisation
which means that a neuron
transmits as much informa-
tion as possible from its inputs
to its output. This so-called
“infomax principle” is equiva-
lent to the detection of the first
principle component in the
input space (Oja 1982). In
terms of weights this means
that those weights grow whose
inputs are highly correlated.
As a result we preserve maxi-
mum variance at the output of
the neuron which is equiva-
lent to maximum information
transmission through a chan-
nel. Linsker’s model is there-
fore directly concerned with
information transmission as
described by the work of
Shannon and Weaver. Infor-
mation in this context is only

limited by the signal to noise ratio and the cross
correlations between different channels. In our
model, however information is defined as a rel-
evance measure. Information is measured
against the reflex reaction and not against the
whole input space. In our case the input space
might be large (i.e. many sensors). However, if
these signals cannot be used to preempt the
feedback reaction the predictive information
remains at zero. Therefore, in contrast to our
measure the information defined by Shannon
and Weaver might be very high. For example,
the Shannon-information of an eye or a video-
camera is probably very high. Also the optical
nerve might transmit a large amount of infor-
mation in form of Shannon information.
However, the predictive information might
still be zero if this information does not lead to
learning and ultimately to behaviour.

I pk pk( )log

k 1=

M

∑–=

both sensors intact only left sensor operational
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Figure 6: Robot experiment. The first 4 panels (a–d) show the signals of the collision sensors (CS, upper 
traces) and of the range finders (RF, bottom traces) where in the left column both range finders were intact 
and in the right columns only the left range finder was intact. All signals are normalised to one. Panels e and 
f depict the predictive information calculated separately for the left and the right range finder. The x axis 
shows time steps where on time step was 5 ms. 
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There is a second important difference
between Hebbian learning and ISO learning.
While the weights in Hebbian learning
undergo unlimited growth ISO learning sta-
bilises the weights at the moment when the
reflex has been successfully avoided. Our pre-
dictive information takes this into account.
The predictive information is only high when
the gain of the learned predictive loop is com-
parable to the gain of the reflex loop. For
example, if one weight grows in an unlimited
manner the predictive information goes to
zero because the system has basically only one
input left.

The third difference between Linsker’s
infomax principle and our predictive infor-
mation is that our measure is designed for
closed loop control whilst Linsker’s measure
relates to open loop scenarios. Our predictive
information demands feedback in order to
evaluate predictive actions. To our knowledge
only Touchette & Lloyd (2004) and Klyubin,
Polani & Nehaniv (2004) have presented
recently closed loop information measures.
However, in contrast to our approach they
define closed loop information by informa-
tion transmission from the sensors of the
agent to its motor output. This definition
makes is possible to compare open with
closed loop control but makes the assumption
that an organism can observe its output which
contradicts the constructivist’s view.

So far our predictive information uses
properties of ISO learning, in particular it
performs differential Hebbian learning and it
stabilises as soon as the reflex has been
avoided. Our ICO learning model may also be
used in situations where nested predictive
loops are not needed (Porr & Wörgötter
2005a, 2006). The application to reinforce-
ment learning (Sutton 1988) should be also
possible but a major difficulty arises from the
fact that the feedback from the environment
is more indirect because the critic first modi-
fies the actor which then generates motor
actions.

More generally it would be interesting to
develop a measure which is completely inde-
pendent of the learning rule. Such measure
must be calculated by just looking at the dif-
ferent input signals. This would make our
predictive information applicable to other
closed loop systems such as fuzzy control sys-
tems or systems which employ symbolic con-
trol such as classical AI systems. The work by

Klyubin, Polani & Nehaniv (2004) promises
interesting opportunities in this sense, as their
information measure does not depend on a
specific learning rule.
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