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Abstract

In this paper we propose a novel spatially stratified sam-
pling technique for evaluating the likelihood function in
particle filters. In particular, we show that in the case where
the measurement function uses spatial correspondence, we
can greatly reduce computational cost by exploiting spa-
tial structure to avoid redundant computations. We present
results which quantitatively show that the technique per-
mits equivalent, and in some cases, greater accuracy, as
a reference point cloud particle filter at significantly faster
run-times. We also compare to a GPU implementation, and
show that we can exceed their performance on the CPU. In
addition, we present results on a multi-target tracking appli-
cation, demonstrating that the increases in efficiency permit
online 6DoF multi-target tracking on standard hardware.

1. Introduction

Visual tracking is a crucial challenge for many com-
puter vision applications such as visual surveillance, action
recognition, and robotic demonstration learning. In these,
visual tracking serves as a precursor to higher-level infer-
ence, making robust tracking fundamental to their success.
Multi-target visual tracking (MTVT) is a well-established
field which goes back over thirty years [6]. One pop-
ular tracking methodology is Sequential Bayesian Filter-
ing (SBF), which recursively determines the time-changing
posterior distribution of target states conditioned on previ-
ous observations. Particle Filtering has received consider-
able attention as a method of approximating this posterior.
It was first introduced to the vision community by Isard and
Blake [8] for single targets, and was subsequently extended
to multiple targets [7, 19, 20].

There are two standard approaches that have been used
to extend the Particle Filter to multiple targets. The first
represents all targets jointly in a single particle filter by as-
signing individual particles to particular labels [18]. This

means that, for a given total number of particles, there will
be fewer for each individual target - resulting in reduced
accuracy. The second approach is to add additional dimen-
sions to the state space for each additional target [17]. Un-
fortunately, this approach quickly increases the dimension-
ality of the state space, which also results in a need for a
very high number of particles for the filter to remain accu-
rate.

In both of the above approaches, the computational com-
plexity increases exponentially as targets are added (for
constant level of accuracy). As a consequence of this, it
is beneficial to use a separate particle filter for each target.
One way of doing this is to add factors to the observation
and/or process models of the filters which explicitly model
occlusions and interactions between targets [9, 13]. Alter-
natively, one can use a discrete processing step to resolve
the association of target detections [10, 1].

While these approaches have attempted to address the
problem of multiple targets, in general they suffer from
one fundamental problem - they all significantly increase
the computational resources required. This increase can be
seen in the need for more particles - due to assignment of
particles to individual targets, a larger state space, or inde-
pendent filters for each target. While there has been work
addressing this problem by offloading processing to a GPU
[3], in this work we take a different approach, and search
for fundamental changes to the point cloud correspondence
particle filter which can reduce computational complexity
without affecting accuracy.

The primary contribution of this work is the use of a
supervoxel-based stratified sampling approach to greatly re-
duce the computational complexity of point cloud corre-
spondence particle filtering. We show that the approach
allows performance (on a standard CPU) exceeding that
which can be obtained on a recent GPU implementation [3].
Additionally, we present extensive experiments demonstrat-
ing the benefits of this approach, as well as show qualita-
tive results from a real-world application. We have released
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Figure 1. Example of data from “Tide” sequence. The left frame shows an example of the raw input cloud. Sampling effects from the
synthetic RGB-D camera are visible in the quantization of points, especially on the edges of objects. The middle frame shows the voxelized
model representation we use, while the right frame shows an example of supervoxel strata used for sampling with Rseed = 0.07m.

code for our tracker as part of the Point Cloud Library 1 so
that the community may take advantage of its quick perfor-
mance in their applications.

This paper is organized as follows: In Section 2 we
present the point cloud correspondence-based particle fil-
ter, and then present the sampling approach in Section 3.
We then give results from experiments on both synthetic
and real-world data in Section 4 and discuss the impact of
sampling on computational complexity and tracker error.

2. Particle Filters in 3D

The underlying mechanics of 3D point cloud correspon-
dence particle filtering remain the same as in other particle
filters, and so we shall not discuss them extensively here;
for a detailed introduction to the topic, we refer the reader
to [5] or [20]. Rather, we shall only discuss the aspects
that differentiate it - the models and how they are scored
and propagated. The models here consist of point clouds,
and the measurement function relies on point to point cor-
respondence for scoring, rather than a global per-detection
metric (such as a histogram distance, commonly used in 2D
trackers). The dynamic model uses real-world 3D coordi-
nates which also include orientation, rather than 2D pixel
coordinates in the image plane. The primary novelty of the
approach we present here lies in how we score individual
particle predictions using the measurement model.

2.1. Model Representation

In this work we use voxelized 3D models of tracked ob-
jects, allowing tracking through any change in pose, and ad-
ditionally allowing accurate tracking of pose itself. We rep-
resent objects as clouds of voxels corresponding to the sur-

1http://www.pointclouds.org/

face of the object. A visual representation of such a model
is given in Figure 1.

Points for objects are stored in a model-centered refer-
ence frame (which we shall denote with superscript m), with
each containing an XYZ position, an HSV color, as well as
a surface normal vector. That is, each point p of the model
k consists of a nine-dimensional vector:

pmk = [xm, ym, zm,H, S, V, nx, ny, nz], (1)

and a model for an object Ok consists of a vector of nk

such points pm:

Om
k = [pm0 ...pmnk

]. (2)

Points of an object model given above are model-relative
- they must be transformed into the world coordinates in
order to evaluate their fit to observations.

2.2. Dynamic Model

Our trackers use a time-dependent state vector consist-
ing of translation and rotations around the object reference
frame x-axis (roll - γ), y-axis (pitch - β), and z-axis (yaw -
α). This yields a position state vector for particle j at time
t of

xj
t = [dx, dy, dz, γ, β, α]. (3)

Each object model is tracked using a set of N such par-
ticles. Additionally, we have velocity state vector

vt = [vx, vy, vz, vγ , vβ , vα], (4)

which is not tracked individually per particle, but rather
as a whole for the model. While the use of independent
per-particle velocity states potentially helps in complicated
tracking scenarios, in our experiments we were unable to
observe any tangible benefit. Moreover, in order to avoid
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instability in the tracking results we needed to significantly
increase the number of particles for a given noise level. As
such, we have chosen to use the “group-velocity”, and leave
it to future work to investigate the possibility of independent
velocity states.

Motion is modeled using a constant velocity model in
discrete time with a variable sampling period T , giving the
dynamic model

xt = xt−1 + Tvt−1 + ω, (5)

with noise vector ω assumed to be zero mean Gaussian
with fixed covariance. Particle velocities are updated af-
ter weighting of individual particles using the measurement
model, and are a weighted average of the change in position

vt =
1

TN

N∑
j=1

wj(x
j
t − xj

t−1), (6)

where wj is the normalized weight for particle j.

2.3. Measurement Model

As points for the model are given in a model-centered
frame of reference, pm = [xm, ym, zm, 1], we must trans-
form them to the world frame using a 3D affine transforma-
tion quaternion. This yields positions in the world frame for
each of our η model points for a particular particle j:
pj
1

pj
2
...
pj
η



[x1, y1, z1, 1]

T

[x2, y2, z2, 1]
T

...
[xη, yη, zη, 1]

T

 = diag(Bj)


[xm

1 , ym1 , zm1 , 1]T

[xm
2 , ym2 , zm2 , 1]T

...
[xm

η , ymη , zmη , 1]T

 .

(7)
Once we have our transformed points, we then must

establish correspondences between each particle’s model
points and a world point so that we can score how well a
state matches the current world model observation. That is,
for each transformed point pj

1...η, we select corresponding
point p∗ in the observation which has minimal spatial dis-
tance.

To find these correspondences, we first compute a KD-
tree of the spatial dimensions of the world model points.
This allows us to efficiently search for the nearest corre-
spondence for each transformed point. We create this tree
for the world model rather than the transformed model (even
though the former has more points) as there is only one
world, but many particles and models. Computing it for the
models would require a KD-tree for each particle in each
model. Additionally, computing it for the world allows us
to take advantage of sampling strategies which significantly
reduce run-time complexity. Finally, using the world-model
allows us to take advantage of the sequential octree first pre-
sented in [15], greatly improving performance in the case of
full and partial occlusions.

Figure 2. The model is divided into strata (shown as separate col-
ors) by the supervoxel algorithm. Each particle independently se-
lects a random sample (or samples) from each stratum for corre-
spondence matching, and then searches for a correspondence for
it in the observation.

Once we have selected (with replacement) an observed
point correspondence for each model point, we must cal-
culate a weight w̃j corresponding to the global similarity
of the transformed points to the world observation. This is
accomplished by summing the individual correspondence
scores computed using weighted Euclidean distance in nor-
malized world-spatial-, color-, and normal-space. In our ex-
periments we set the weighting factors to have a 1:1:2 ratio
(spatial:normal:color), as this balances the scoring between
color and geometric shape, and found experimentally that it
produced consistently good tracking results. The calculated
particle weights w̃j are then normalized, and a final state
estimate can be computed by taking the weighted average
of all particles

xt =
N∑
j=1

wjx
j
t , (8)

and the group-velocity can be computed using Equation 6.

3. Supervoxel Stratified Correspondence Sam-
pling

While the tracking methodology discussed above works,
in practice its run time performance is very poor, even for
single objects. Moreover, speed of tracking is highly depen-
dent on the size of object models as well as voxel resolution
used. To address this, we propose a sampling scheme which
selects a limited number of points from the model to trans-
form and test. By doing this, we achieve linear asymptotic
time complexity for the particle filter with respect to the
number of particles - there is no dependence on the number



Figure 3. Tracking on the artificial “Kinect Box” sequence. The top row shows tracked output overlaid on input data, while the bottom row
shows the supervoxl strata that are used for sampling.

of points in the models or the voxel resolution used. The
only step which is dependent on the number of input points
is the KD-tree construction, but this is only done once for
the world model independent of the number of trackers, and
is done as a pre-processing step regardless (for normal com-
putation).

The proposed sampling scheme is as follows. We select
a spatial sampling resolution Rseed based on the number
of desired sample points per particle Ns. We then divide
the model into strata, where each stratum is a supervoxel
using the method of Papon et al.[14]. Supervoxels are a
voxel-based surface patch representation that use connec-
tivity, colors, and normals so that their edges conform well
to object part boundaries. The strata are evenly divided over
the spatial structure of the model, as seen in Figure 1. Ad-
ditionally, using supervoxels as the strata ensures that we
sample the important features of the models - for example
in the model of Figure 1, we have a stratum for the brand
logo, as well as ones for the concavities of the handle.

For each particle, we randomly select a point from each
stratum using uniform sampling, and then transform and
score it as described in the previous Section. As an ad-
ditional step, we also select Ns

4 points uniformly from the
entire model. Using strata reduces the noise which occurs
when sampling from the whole model exclusively, while
sampling randomly from the entire distribution improves
occlusion performance.

While sampling will tend to produce noisier tracking re-
sults for low Ns, it also greatly reduces the computational
complexity, as we only need to transform and test a small
subset of the model points. This allows one to greatly in-
crease the number of particles for a given frame-rate. Im-
portantly, each particle is testing a separate random subset
of model points. This results in the product of Ns, the num-

ber of sample points per particle, and N , the number of
particles, reaching a critical level where coverage becomes
sufficient that error is equivalent to sampling all points. In
the results presented below, we shall demonstrate that this
critical level can be used to significantly decrease run time
for a given level of error. That is, we shall show that the
number of points that must be tested overall, for a given
level of error, is lower when stratified sampling is used.
This means that we can significantly increase accuracy for a
given frame-rate, reducing run-time complexity to the point
that we can track 6 DoF pose for multiple objects in real-
time.

4. Results
In this Section we first present results on a set of syn-

thetic videos to quantify the effect of the stratified sampling,
and compare results to a state of the art GPU particle fil-
ter [3]. We then present qualitative results on real videos
in a robotic learning application, where we track multiple
interacting targets with significant occlusions. In both syn-
thetic and real cases, input consists of RGB-D sequences.
Trackers were initialized using an external pose - in the
synthetic case, from ground truth, and in the real case, us-
ing a pose estimation algorithm [2]. Object models were
generated by registering multiple views of the objects using
the same RGB-D sensor employed for tracking. All experi-
ments were performed on a standard desktop computer (In-
tel i7 3.2Ghz), using four cores, and real data was obtained
using a Kinect RGB-D camera.

4.1. Synthetic Data

In our first experiment, we demonstrate the effective-
ness of our stratified sampling strategy using four synthetic
tracking videos from [3]. These RGB-D sequences are set
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Figure 4. Displacement and rotation ground truth, with an example tracked result from a single run at Nsamples = 100 and Nparticles =
1000 (a frame rate of 20 fps).

in a virtual kitchen (see Figure 3) and each contain a single
item to track as the camera moves. Ground truth trajectories
of the cameras can be found in [3], but for our purposes it is
sufficient to note that the trajectories are complex, consist-
ing of large variations in position, orientation, and velocity.

To evaluate our approach, we compute root mean square
(RMS) error in both translation and orientation, averaged
over 25 test runs for each sequence. Computation times
are measured in ms per frame, and are also averaged across
all frames of the 25 test runs. In order to compare with
[3], we have combined their RMS error results for each di-
mension (x, y, z, roll, pitch, yaw) into two measurements -
displacement and rotation. Rotation is calculated using the
unit quaternion distance metric [11], which is equivalent to
the geodesic distance on the unit sphere. This combina-
tion reduces the amount of data to compare without loss,
as the choice of orientation of the dimensions is arbitrary
and without import. Example displacement and geodesic
ground truths for the “Kinect Box” sequence can be found
in Figure 4.

Timing results are given in Figure 5, showing results for
the “Kinect Box” sequence (the most challenging of the
four) scanning across number of particles and number of
sample points. Plots for the other sequences can be found
in the supplementary material and on the author’s website.
One can observe that, for a given level of sampling, the
RMS error decreases for both displacement and geodesic
as the number of particles increases. More importantly, it
is also apparent that, for a given level of error, run-time per
frame can be minimized by reducing the number of samples
used and increasing the number of particles. Additionally,
one can observe that RMS error appears to be asymptotic,

with lower sampling levels approaching the asymptote at
lower run-times.

We should also note that the minimum error asymptote
observed is likely a consequence of the sampling resolution
of the synthetic Kinect camera. For example, in the “Kinect
Box” sequence, average distance to neighboring points (8-
neighborhood) on the tracked box surface is 3.3 mm. This
corresponds almost exactly to our observed error asymp-
tote. This can be observed in all four sequences - our min-
imal error corresponds closely to the average point to point
resolution of the observations on the model.

Our performance compares favorably to the results of
Choi and Christensen [3] - for a given level of error, we
achieve per-frame run times that are between half and a
tenth of their published results. Additionally, we consis-
tently reach the error asymptote, at considerably lower run
times. We should also note that the highest sampling level
shown corresponds to a complete sampling of the model,
and is equivalent to the baseline PCL implementation, al-
though we have made some slight modifications to the re-
sampling and dynamic model which improve results. As
can be seen, we are at least an order of magnitude faster
than this base implementation.

4.2. Real Sequences

One application of our tracker is to provide semantic un-
derstanding and imitation of assembly tasks. This can be
accomplished by tracking all interacting parts of an assem-
bly as a human demonstrates, and then using the trajectories
and poses in order to train a robot to replicate the construc-
tion. Additionally, the tracked output can be used as an in-
put for the robot during construction in order to verify that
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Figure 5. Results on the Kinect Box artificial sequence. Each colored curve represents a certain number of samples, and gives mean RMS
error averaged over 25 trial runs for increasing numbers of particles (shown by increasing circle sizes). It is clear that using more samples
and using more particles tends to decrease error. The black dotted lines give the results of the GPU method of Choi and Christensen [3].

it has successfully completed each step of the task.

As a demonstration of this, we use the well established
“Cranfield” benchmark set [4]. This set consists of eight
pieces which can be assembled in a number of different or-
ders. In our experiments, models consist of voxelized point
clouds derived from high-resolution models of the pieces,
and initial poses for tracking are found using a combined
object recognition and pose estimation algorithm [2]. Each
object is tracked using an independent particle filter, with
Nsamples set to 50, and Nparticles set to 1000.

Figure 6 shows a montage of screenshots captured as a
human demonstrates assembly of the benchmark. As can be
seen, all pieces are successfully tracked from start to finish,
with each tracker outputting smooth trajectories that can be

used for training a robot using Dynamic Motion Primitives
(DMP) [12]. In Figure 7 we show tracks from multiple dif-
ferent human demonstrations - one can observe the different
strategies that people employ in assembling the benchmark.
The tracks in the lower right corner of the Figure are from
a robot reproducing the assembly after being trained on the
human demonstrations [16].

5. Conclusion
In this paper we have presented a novel spatially strati-

fied sampling approach which greatly reduces the compu-
tational complexity of 3D Point Cloud particle filters. We
evaluated the tracker using synthetic sequences for which
precise ground truth exists, as well as real sequences of



Figure 6. Human demonstration of assembly of the Cranfield Scenario on data from two fused RGB-D cameras. Tracking runs live for all
objects at once at sufficient frame rates to track the whole task. Extracted trajectories are shown as traces.

a robot-teaching application. To demonstrate the effect of
stratified sampling on performance, we conducted a sweep
over the parameter space of number of particles and sam-
ples. This sweep showed the clear effectiveness of the pro-
posed method in matching and even out-performing a GPU
implementation on the CPU.
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