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Abstract— Robust visual tracking is an essential precursor
to understanding and replicating human actions in robotic
systems. In order to accurately evaluate the semantic meaning
of a sequence of video frames, or to replicate an action
contained therein, one must be able to coherently track and
segment all observed agents and objects. This work proposes a
novel online point cloud based algorithm which simultaneously
tracks 6DoF pose and determines spatial extent of all entities
in indoor scenarios. This is accomplished using a persistent
supervoxel world-model which is updated, rather than replaced,
as new frames of data arrive. Maintenance of a world model en-
ables general object permanence, permitting successful tracking
through full occlusions. Object models are tracked using a bank
of independent adaptive particle filters which use a supervoxel
observation model to give rough estimates of object state. These
are united using a novel multi-model RANSAC-like approach,
which seeks to minimize a global energy function associating
world-model supervoxels to predicted states. We present results
on a standard robotic assembly benchmark for two application
scenarios - human trajectory imitation and semantic action
understanding - demonstrating the usefulness of the tracking
in intelligent robotic systems.

I. INTRODUCTION

Multi-target visual tracking (MTVT) and 6DoF pose esti-

mation are crucial challenges for many applications such as

visual surveillance, action recognition, and robotic imitation

learning. In many such functions, visual tracking serves

as the precursor to all further high-level inference, making

robust tracking fundamental to the success of a large variety

of intelligent systems. Related to the problem of visual

tracking is segmentation, the task of grouping observations

according to the entities which they contain. Video object

segmentation (VOS) attempts to cluster pixels of video

frames into segments which are both spatially and temporally

coherent. While generally similar to MTVT, VOS goes a

step beyond localizing tracked objects, in that it makes an

association decision for each observed pixel; in addition to

estimating overall state, it must re-estimate spatial extent

every frame. In both VOS and MTVT there are two chief

challenges that must be addressed: first, the data association

problem, whereby noisy observations must be associated

with the proper targets, and secondly, the occlusion problem,
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in which targets may become partially or fully obscured for

a number of observations.

While MTVT remains an unsolved problem, single target

visual tracking (STVT) is a fairly well-studied problem, with

many mature approaches [1], [2]. Additionally, recent work

has progressed in estimating pose (in addition to tracks)

for single targets, for example [3] uses a particle filter to

track 6-DoF pose of arbitrary objects in point clouds. Recent

work in MTVT [4] successfully tracks multiple objects using

a segmentation and association approach and adaptive 3D

appearance models, but is limited by the need to align model

point clouds to the observed data every frame. This precludes

it from handling occlusions, as once a target is no longer

observed, its track must be terminated.

Multiple hypothesis video segmentation (MHVS) from su-

perpixel flows [5] provides dense online unsupervised video

segmentations, but is only able to handle partial occlusions

for a few frames, and does not consider full occlusions. There

also has been much recent work in VOS specifically address-

ing the problem of segmenting foreground from background

[6], [7]. While these works have been to shown to perform

very well in their task, they only solve the single target

case, as they do not need to resolve the multiple association

problem.

In [8] Papadakis and Bugeau use a dynamical model to

guide successive segmentations, along with an energy func-

tion minimized using graph cuts to solve the label association

problem. They formally model visible and occluded regions

of tracked objects, tracking them as distinct parts. While they

do consider occlusions, they do not maintain a world model,

and as such their methodology must fail under complete

occlusions. Although it does not address segmentation or

tracking, we should mention Isack and Boykov [9], as its use

of a global energy function and RANSAC model sampling

to solve a geometric multi-model fitting is similar to the

approach taken in this work.

While MTVT and VOS are clearly related, they tradition-

ally have been considered separate areas of research. In this

work, we unify them by taking a mature tracking approach,

particle filtering, and apply it to tracking supervoxels (3d

segments) from a recent 3d segmentation technique [10],

Voxel Cloud Connectivity Segmentation (VCCS). To make

this possible, we extend the concept of VCCS to dynamic

scenes by maintaining a world-octree supervoxel model



Fig. 1. Supervoxels found using VCCS. From left to right: original RGB image, supervoxels with Rseed = 0.08m, and supervoxels with Rseed = 0.03m.

which lets objects persist indefinitely through occlusions.

Additionally, we use a novel global energy function to asso-

ciate observations to predictions, and thereby extract accurate

object segmentations (even for fully occluded objects) from

tracker predictions.

The paper is organized as follows: Section II first presents

the VCCS framework, then extends it to incremental up-

dating using sequential frames. Next, Section III discusses

the particle filters used for predictive tracking, and describes

the joint energy minimization used to associate predictions

with observed supervoxels. Finally, Section IV consists of

application scenarios where the pose and tracks of tracked

objects are used as the basis for robot imitation and genera-

tion of semantic summaries of human actions, and Section V

describes current limitations of the algorithm, discusses

future work, and concludes.

II. SEQUENTIALLY UPDATED SUPERVOXELS

A. Voxel Cloud Connectivity Segmentation

VCCS[10] is a recent method which generates volumet-

ric over-segmentations of 3D point cloud data, known as

supervoxels. Supervoxels adhere to object boundaries better

than state-of-the-art 2D methods, while remaining efficient

enough to use in online applications. VCCS uses a region

growing variant of k-means clustering for generating its

labeling of points directly within a voxel octree structure.

Supervoxels have two important properties; they are evenly

distributed across the 3D space, and they cannot cross bound-

aries unless the underlying voxels are spatially connected.

The former is accomplished by seeding supervoxels directly

in the cloud, rather than the projected plane, while the

latter uses an octree structure which maintains adjacency

information of leaves.

Supervoxels maintain adjacency relations in voxelized

3D space; specifically, 26-adjacency- that is neighboring

voxels are those that share a face, edge, or vertex. The

adjacency graph of supervoxels (and the underlying voxels)

is maintained efficiently within the octree by searching for

neighboring leaves in the voxel grid, where Rvoxel specifies

the octree leaf resolution. This adjacency graph is used

extensively for both the region growing used to generate the

supervoxels as well as determining adjacency of the resulting

supervoxels themselves.

VCCS is a region growing method which incrementally

expand supervoxels from a set of seed points distributed

evenly in space on a grid with resolution Rseed . Fig. 1 shows

how Rseed effects the resulting supervoxels. Expansion from

the seed points is governed by a distance measure calculated

in a feature space consisting of spatial extent, color, and

normals. The spatial distance Ds is normalized by the seeding

resolution, color distance Dc is the euclidean distance in

normalized RGB space, and normal distance measures the

angle between surface normal vectors: Dn = 1− pk · p j.

D =

√

D2
c +

D2
s

3R2
seed

+D2
n, (1)

Supervoxels are grown iteratively, using a local k-means

clustering which considers connectivity and flow. The gen-

eral process is as follows. Beginning at the voxel nearest

the cluster center, we flow outward to adjacent voxels and

compute the distance from each of these to the supervoxel

center using (1). If the distance is the smallest this voxel has

seen, its label is set, and using the adjacency graph, we add

its neighbors which are further from the center to our search

queue for this label. We then proceed to the next supervoxel,

so that each level outwards from the center is considered at

the same time for all supervoxels. We proceed iteratively

outwards until we have reached the edge of the search

volume for each supervoxel (or have no more neighbors to

check).

Since VCCS operates within an octree structure, additional

point clouds can be added directly into the model, meaning it

can be used to segment clouds coming from many sensor ob-

servations - either using multiple calibrated cameras [11] or

by accumulating clouds from one [12]. While previously this

was limited to clouds from the same time step or of a static

scene, in this work we extend the supervoxel framework

to handle changing scenes using a novel algorithm which

updates the supervoxels by considering the dynamics of the

octree leaves.

B. Adding Sequential Clouds to an Octree

Adding newly observed points to an existing supervoxel

octree is accomplished through a three stage process. First,

we must insert the points into the octree, and initialize

new leaves for them if they did not exist previously. This
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Fig. 2. Categorization of voxels based on new frame of data. Voxels fall
into three categories, they are either new, observed or not observed in the
frame. Furthermore, observed voxels can either have changed or remained
the same, while voxels not observed in the frame are either occluded or no
longer exist (in which case they should be deleted).

results in an octree where leaves fall into three possible

categories (illustrated in Fig. 2; they are either new, observed,

or unobserved in the most recent observation. Handling of

new leaves is straightforward; we simply calculate adjacency

relations to existing leaves and flag them as unlabeled.

To determine whether a leaf which existed previously has

changed, we test the distance between the centroid of the

points falling within its voxel (from the new frame) and its

previous centroid. This is done in the same feature space

used for growing the supervoxels, that is, we test whether

the normal, color, and spatial location have varied more than

a threshold value. This threshold is set to a relatively low

constant value so that it favors false-positives (finding change

when there was none), as they do not impact the tracking

performance of the algorithm, but only have a slight effect

on its run-time. If a leaf is found to have changed, we remove

its previous labeling. We also perform a global check to see

if more than half of a supervoxels support has changed; if

so, we completely remove the supervoxels label from all of

its constituent voxels.

Finally, we must consider how to handle leaves which

were not observed in the inserted point cloud. Rather than

simply prune them, we first check if it was possible to ob-

serve them from the viewpoint of the sensor which generated

the input cloud. This occlusion check can be accomplished

efficiently using the octree by determining if any voxels exist

between unobserved leaves and the sensor viewpoint. If a

clear line of sight exists from the leaf to the camera, it can

safely be deleted. Conversely, if the path is obstructed, we

”freeze” the leaf, meaning that it will remain constant until

it is either observed or passes the line of sight test in a future

frame (in which case, it can be safely deleted). This occlusion

testing means that tracking of occluded objects is trivial, as

occluded voxels remain in the observations which are used

for tracking.

Once the octree voxels have been updated, we then pro-

ceed to update the supervoxels as before. That is, first we

generate new seeds in regions of large unlabeled voxels,

and then conduct the iterative region growing. This results

in new supervoxels in regions which are new or changing,

while leaving supervoxels in static and occluded regions

unchanged. This reduces the tracking and segmentation

problem to finding the best joint association of these new

supervoxels with those from the prior time-step.

III. TRACKING SUPERVOXELS

A. Initialization of Object Models

While ideally one could directly track supervoxels them-

selves, this is generally not reliable due to the aperture

problem seen in neural visual fields [13]; local motion can

only be estimated perpendicular to a contour that extends

beyond its field of view [14]. This means that in order to

properly estimate motion of supervoxels, we must extend

our considered field of view significantly beyond the size

of the supervoxel itself; in fact, our aperture must contain

the borders of the object, otherwise pairwise association of

supervoxels is indeterminate.

As such, we first merge supervoxels into contiguous higher

level object groupings. For this work, we use a plane fitting

and removal algorithm to remove supporting surfaces, fol-

lowed by a euclidean clustering of the remaining supervoxels

as in [15]. It should be stressed that the overall tracking itself

is independent of the segmentation used to initialize objects;

one could easily use a model-based segmentation, or even a

2D classifier scheme on the original RGB image. Regardless

of the segmentation used, the supervoxel clusters found are

used to initialize the models which will be tracked.

B. Tracking with Parallel Particle Filters

Tracking of the segmented models is accomplished using

a bank of independent parallel particle filters. The models

consist of clouds of supervoxels, and observations are the

supervoxels produced using the persistent scheme discussed

in Section II. The observation model measures distance in

a feature space of spatial distance, normals, color (in HSV

space), and labels. Weights of predicted states ( x,y,z, roll,

pitch, yaw) are measured by associating observed supervox-

els with nearest supervoxels from the transformed models,

and then measuring total distance in the feature space as (2).

That is, the weight wk
i of particle i belonging to object k

(of size Nk) with state xi is the sum of the products of the

coherences W ,

wk
i ∑

p,q∈xi

WdWHSVWnWl . (2)



Coherences are calculated for each correspondence pair

between model supervoxel p and observed supervoxel q,

Wd = 1

1+
‖p−q‖2

3R2
seed

WHSV = 1
1+‖pHS−qHS‖2

Wn = 1

1+|1−np·nq|

Wl =

{

1, Lp = Lq
Nk−1

Nk
, Lp 6= Lq

, (3)

where supervoxel q has label Lq, normal nq, and hue &

saturation pHS.

KLD sampling [16] is used to dynamically adapt the

number of particles to the certainty of predictions. As

matching supervoxel labels gives a high certainty of a correct

prediction, objects which are not moving, and therefore have

static supervoxel labels, need very few particles for accurate

tracking. Details of the particle filters themselves are beyond

the scope of this work, but we refer the reader to [16] for

an in-depth description of their operation. For this work,

it is sufficient to understand that the particle filters yield

independent predictions of 6DoF object state, allowing a

transformation of the model to the current time-step - roughly

aligning it with the currently observed supervoxels.

C. Joint Energy Minimization to Associate Supervoxels

The final step in the tracking process is to associate the

observed supervoxels to the predictions coming from the

particle filters, that is, we need to solve the multiple target

data association problem. This is accomplished using an

energy minimization which seeks to find an optimal global

association of supervoxels to predictions. To do this, we first

create a list of all observed supervoxels which lie within a

radius Rseed of each predicted supervoxel coming from the

particle filters (see Fig. 3). Then we determine all supervox-

els which could only be associated with one possible object,

associate them, and remove them from further consideration.

To associate the remaining observed supervoxels, we de-

termine which objects are competing for them, and then find

the predicted supervoxel from each object which lies closest

to them in the feature space (using spatial location, normals,

and color as in (1)). We adopt a RANSAC-like approach,

similar to [9], to sample from the set of possible associations

and determine a global association which best aligns the

predictions to the observed supervoxels. Additionally, we

use a weighted sampling strategy where the likelihood of

assigning object k as the label L of supervoxel q falls off

with increasing distance from the object centroid Ck

L (Lq = k|Ck) =
1

Ck

. (4)

To score a set of assignments, we compute a global energy,

given in (5). Each global label association A consists of local

associations a which assign an object label k to each ob-

served supervoxel q. The first summation term, ∑p ‖pk −q‖,

measures error in feature space between the observed super-

voxel and the closest supervoxel in its associated predicted

object pk.

Rseed

Observed Supervoxels
Predicted Supervoxels Obj. k1
Predicted Supervoxels Obj. k2
Association of Supervoxel
Supervoxel Adjacency Graph

Fig. 3. Association of observed supervoxels with predicted model super-
voxels using global energy.

EA = ∏
a∈A

∆k

(

∑
p

‖pk −q‖+λ ∑
(q,q′)∈N

δ (Lq 6= Lq′)

)

(5)

The second summation is a smoothing prior which con-

siders the adjacency graph of observed supervoxels. For

every observed supervoxel, we compare its assigned label

Lq to the label of all supervoxels q′ which lie within its

adjacency neighborhood N . We adopt the Potts model as in

[17], where δ ()̇ is 1 if the specified condition holds, and 0

otherwise, and λ is a weighting coefficient which controls

the importance given to spatial continuity of labels.

Finally, the multiplicative term ∏a∈A ∆k controls for the

expansion or contraction of object volumes through the

number of observed supervoxels associated with them. ∆k

penalizes for changes in volume by increasing the energy

for deviations from unity in the ratio of observed supervoxels

assigned to an object N̂k with the number in the object model

itself N̂k, that is

∆k =

{

N̂k/Nk if N̂k ≥ Nk

2− N̂k/Nk if N̂k < Nk .
(6)

Once the energy arrives at a stable minimum, we extract

the resulting association of observed supervoxels to predicted

results, and use them to update the tracked models.

D. Alignment and Update of Models

The joint energy minimization results in a global asso-

ciation A which assigns observed supervoxels to tracked

objects. In order to use this to update the object models,

we determine a transform which aligns it to the internal

representation stored by the particle filter. As an initial guess,

we use the inverse of the predicted state, and then use an

iterative closest point [18] procedure to refine the transform



Fig. 4. Result of tracking and segmentation on Cranfield scenario from different views. Here the tracks are shown as dots of the color of the tracked
label for each timestep. Initial locations of the pegs are shown in the middle bottom frame as semi-transparent masks. Calculated orientation is shown for
the red peg with a set of axes every second time-step; these axes show pose in a frame relative to the start.

such that the set of observed supervoxels best aligns with

the model prior. We then replace the model prior with the

new observed supervoxels.

As a final step, we use the refined transform to update the

states of the particles. To do this, we shift each particle xi

towards the refined state x̂, weighting the importance given

to the refined state by a constant factor ε

x′i∈L = (1− ε)xi + ε x̂ . (7)

For this work, we found that an ε of 0.5 effectively

removes noise (jitter) introduced by the replacement of the

tracked model. Additionally, we correct the internal motion

model of the particle filters to correspond to the new updated

state.

IV. RESULTS

In order to demonstrate the usefulness of the proposed

method, in this Section we provide results from two success-

ful applications. Both applications use the Cranfield scenario

[19], a benchmark developed for assessing performance

of assembly robot systems. Fig. 4 and the supplementary

material1 show the results of tracking and segmentation (only

the pegs are shown in Fig. 4 to avoid clutter) using our

Cranfield pieces. It can be seen that the algorithm is able to

successfully track 6DoF states through the whole assembly

task, even maintaining proper tracks for the pieces when they

are fully occluded.

1See also http://www.youtube.com/watch?v=0dVzWgW6Bs8 and
https://www.youtube.com/watch?v=GjmUhm2JitU for longer versions.

A. Imitation of Trajectories for Robot Manipulation

The standard way of teaching robots to perform human-

like actions is imitation learning, also called programming

by demonstration [20], [21]. There are several ways to

demonstrate movements: 1) recording movements in joint-

space (joint angles) or target-space (Cartesian space) by

ways of a motion capture device (requires putting markers

on human body), 2) using kinaesthetic guidance (guiding a

robot’s movements by a human hand), or 3) via teleoperation

(controlling a robot via joystick). The only way to obtain mo-

tion trajectories from human observation in a ”non-invasive”

procedure is by using stereo vision [22], however, usually it

is model based. The tracking algorithm we have presented

here can be used as an alternative method to obtain motion

trajectories (in Cartesian space) in a model-free way.

To demonstrate this, we applied our tracking algorithm to

obtain human motion trajectories in Cartesian space includ-

ing orientation of manipulated object (in total six DoFs).

We tested it using a recording of the Cranfield scenario

where, first, we let a human demonstrate the action and then

reproduced it using a KUKA Light Weight Robot (LWR)

arm [23]. Specifically, here we imitate a human putting the

separator block on the pegs. To generate trajectories for

the robot from human demonstrations, we used a modified

version of Dynamic Movement Primitives [24], [25] (DMP)

and learning method as described in [26]. We used Cartesian

impedance control and, thus, generated six DMPs (three for

motion of the end-effector in Cartesian space and three for

orientation of the hand) based on trajectories obtained from



Fig. 5. Kuka LWR arm imitating trajectory and pose learned from tracked
human demonstration.

the tracking algorithm. Here we used 100 equally spaced

kernels with width σ = 0.05 for each dimension (for more

details please refer to [26]). As demonstrated in Fig. 5

and the supplementary video, trajectories obtained by the

proposed tracking algorithm are sufficiently accurate to allow

reproduction of the human motion.

B. Semantic Summaries of Actions

A fundamental task for intelligent autonomous robots is

the problem of encoding long chain manipulations in a

generic way, for use in tasks such as learning and recog-

nition. As a demonstration of the usefulness of the proposed

tracking framework, we use a recently introduced novel

Semantic Event Chain (SEC) approach [27] which converts

each segmented scene to a graph: nodes represent segment

(i.e. object) centers and edges indicate whether two objects

touch each other or not. By using an exact graph matching

technique the SEC framework discretizes the entire graph

sequence into decisive main graphs. A new main graph is

identified whenever a new node or edge is formed or an exist-

ing edge or node is deleted. Thus, each main graph represents

a key frame in the manipulation sequence. Figure 6 shows

a few detected sample key frames from the long Cranfield

action. While the complete action has in total 1453 frames,

the SEC representation reduces it to just 35 key frames, each

of which represents a topological change in the scene.

V. CONCLUSIONS

Robust tracking is a fundamental piece of any intelligent

system which seeks to use vision to interact with the world.

In order to make a useful link between observations and high-

level semantic knowledge, one must be able to coherently

track and segment all observed agents and objects. In this

work we have presented a method which moves the state

of the art towards this goal by ensuring consistent tracking

of multiple objects through full occlusions. Additionally,

we have shown that associating supervoxels with tracked

models in every scene can be done with a global en-

ergy minimization, permitting a full segmentation which is

consistent with tracked results. This has the advantage of

allowing straightforward update of models as well as precise

determination of the spatial extent of objects.

We have made source code for the complete tracking and

segmentation framework freely available as part of the Point

Cloud Library (PCL)2 so that the community can easily take

advantage of it and integrate it in their intelligent systems.
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