
A Modular System Architecture for Online Parallel Vision Pipelines

Jeremie Papon, Alexey Abramov, Eren Aksoy, Florentin Worgotter

Bernstein Center for Computational Neuroscience (BCCN)

III Physikalisches Institut - Biophysik, Georg-August University of Gottingen

{jpapon,abramov,eaksoye,worgott}@physik3.gwdg.de

Abstract

We present an architecture for real-time, online vision

systems which enables development and use of complex vi

sion pipelines integrating any number of algorithms. In

dividual algorithms are implemented using modular plug

ins, allowing integration of independently developed algo

rithms and rapid testing of new vision pipeline configura

tions. The architecture exploits the parallelization of graph

ics processing units (GPUs) and multi-core systems to speed

processing and achieve real-time peiformance. Addition

ally, the use of a global memory management system for

frame buffering permits complex algorithmicfiow (e.g. feed

back loops) in online processing setups, while maintaining

the benefits of threaded asynchronous operation of separate

algorithms. To demonstrate the system, a typical real-time

system setup is described which incorporates plug ins for

video and depth acquisition, GPU-based segmentation and

opticalfiow, semantic graph generation, and online visual

ization of output. Performance numbers are shown which

demonstrate the insignificant overhead cost of the archi

tecture as well as speed-up over strictly CPU and single

threaded implementations.

1. Introduction

There is a growing interest in development of complex

vision systems for robotic vision applications. Such re

search has strict requirements; these systems must operate

in real-time, using input from multiple sources, and typi

cally consist of multiple algorithms which work in concert

to produce useful output with minimal delay. Consequently,

the architecture which binds algorithms and input sources

together has become an increasingly important factor. This

work presents a vision architecture which uses modular plu

gins, a novel buffering scheme, and GPU memory optimiza

tions to allow real-time performance of an online vision sys

tem, even with complex pipelines and algorithms developed

by independent researchers.

A primary concern when developing such complex vi-

361

sion systems lies in how to properly integrate algorithms

developed by different researchers, often from multiple in

stitutions. Typically, computer vision researchers develop

solutions tailor-made for their particular problem, without

concern over the difficulties involved in integrating their

particular algorithm in a large system. The proposed ar

chitecture eases this integration process by providing a plu

gin interface. The plugin system allows independently de

veloped algorithms to communicate with the architecture's

central memory management system, interact with the GUI,

define their own unique data types, and integrate into sys

tems with plugins developed by other researchers.

Another motivation for developing a vision architecture

is the desire to enable the use of complex algorithmic lay

outs in an online system. In particular, interest in creating

loops that allow high level algorithms (i. e. which come late

in the pipeline) to feedback and improve the output of low

level vision methods. Traditional online vision pipeline ar

chitectures cannot accommodate such loops in an adequate

way, as at any given moment each portion of the pipeline is

processing data from different instants in time.

Existent vision system architectures also do not sup

port the use of GPUs in a fully integrated way, leading to

inefficient use of the device and communication with de

vice memory. The presented method incorporates specially

designed GPU data-containers to ensure optimal PCI-bus

use through a pre-caching scheme and concurrent mem

ory transfers. In addition to these, extendibility is en

sured through an interface which allows user-defined data

container handling, allowing plugin developers to explicitly

define how the memory manager shares data between the

host and device. The paper is structured as follows: first we

review existing architectures, then present our system, de

scribe a typical system configuration used for robotics, and

then give performance figures from a demonstration setup.

2. Related Work

There are a few eXlstmg open-source projects cen

tered around computer vision system architecture, such as

ice Wing [J] and Imalab [2]. These systems bear some simi-

larities to ours, in that they are sophisticated vision develop

ment environments, featuring modularity, efficient visual

ization, and simple control of algorithm parameters. While

a step forward, these projects lack two core features re

quired for our work; support of feedback loops and inte

grated use of the GPU as a coprocessor. In addition to the

open-source projects, there are a few commercial solutions

available. Foremost among these is MATLAB, which uses

a high-level scripting language to allow for rapid develop

ment. Unfortunately, its restrictive and expensive licensing

can make it difficult to develop algorithms in distributed lo

cations; every developer must have not only a MATLAB li

cense, but also licenses for the multiple toolboxes required.

Additionally, since MATLAB (and it's open source equiva

lent Octave) development is not in C/C++, creation of novel

GPU algorithms using a language such as CUDA is diffi

cult. Other cOlmnerical solutions, such as HALCON [3] or

BLOX [4] also suffer from their restrictive licensing, mak

ing them not well suited for research. None of these so

lutions permit feedback loops in a real-time online vision

system.

3. System Architecture

Our vision system is a plugin shell which provides an

easy-to-use API for interacting with the GUI, memory man

agement system, and visualization components. In or

der to ensure expandability, such a system must provide

straightforward communication and interaction between

plugins created independently, while employing strong

typing checks to ensure only valid plugins may be inter

connected. In addition, it must ensure that plugins have

the flexibility to define their own methods for visualiza

tion. Finally, the system must ensure that each plugin is

self-contained, and executes within its own thread. This is

especially important for fast execution on modern proces

sors, where the number of cores can match, or even exceed,

the number of plugins one is running.

In the next subsections, we shall describe how our ar

chitecture accomplishes these goals while requiring as lit

tle computational and communication overhead as possible.

Small overhead is especially important in the case of real

time video processing, where relatively large images must

be processed at fast frame rates.

3.1. Execution Flow

At its core, the architecture provides a shell which

consists of a GUI for loading plugins and visualizing

data, a system for storing plugin output to file, and a

buffering/memory-management system for handling data.

This functionality is contained in the Main Thread and

Memory Manager Thread shown in Figure l. Users build

their system by adding plugins, configuring their options

via the GUI, and then connecting the plugins to each-other.

362

The user can also save/load a fully configured system as an

XML file. Once a vision system has been built, the user

can control execution using the frame rate module, which

controls the firing rate of the system clock.

As the whole system runs asynchronously in indepen

dent threads, the clock trigger acts as the initial starting

point for each frame. This means that any source plugins,

such as a stereo camera rig or a video file reader plugin,

must connect to the frame rate module. As a trigger arrives

at each plugin, a triggering signal is sent to the memory

manager, telling it to generate a DataContainer for the plu

gin's output. The plugin is then triggered, causing it to exe

cute its processing functionality and generate output, which

it stores in the location assigned to it by the memory man

ager. The plugin then generates another triggering signal,

which is connected to both the memory manager and what

ever ensuing plugins use the output as their input. When a

plugin has multiple inputs, it will loop inside its execution

thread, waiting until all inputs for a frame have arrived be

fore executing. This is accomplished by each thread having

its own input queue map; it is important to note though, that

these queues contain no actual data (and thus minimal over

head), and merely serve as a message passing system. The

signaling and triggering system employs the open-source Qt

signal & slot architecture. In particular, the system makes

use of Qt's ability to queue signals for execution as they

arrive at a thread.

3.2. Plugin Development and Interaction

The functionality of the system is provided primarily via

plugins. A plugin consists of a shared library which is lo

cated and loaded dynamically at run-time. The system is

based on the low-level Qt plugin API, which facilitates de

velopment and ensures compatibility across different plat

forms. Plugins inherit from a pure abstract interface class

which defines a protocol for communicating with the core

application. This permits plugins to define input and out

put types and pass messages to/from the GUI and memory

manager.

Developers are required to implement a processData

function, which receives input and writes to an output Data

Container. The developer can optionally create any number

of GUI elements (e. g. sliders, buttons) using the interface

functions. Plugins specify how many inputs they require,

and give the possible types for these inputs. Communica

tion between plugins is accomplished through a standard

ized data container interface. The core architecture contains

commonly used data container implementations, such as

StereolmageContainer. Plugins may define their own spe

cialized data containers which are loaded at runtime with

the plugin. For example, the Segmentation plugin has its

own container type SegmentationData, which contains a list

of labeled segments, metadata about the segments, and la-

Main / GUI Thread

Frame Rate Module

GUI Element Manager

Visualization
Windows

Memory Manager Thread

Hard-Disk
Output
Thread

Device Memory

Memory Access
Trigger Signal
Kernel Invocation
GUI Signal

Figure L Overview of the system architecture and demonstration system output for four frames. The colums show output from the different

components; from left to right, Kinect image and depth (in mm), optical flow, and graphs overlaid on segmentation plugin output. This

type of output can be seen live in any number of visualization windows within the GUI.

363

beled images. The standardized data container interface al

lows for any plugin to refer to a new container class without

actual knowledge of the container itself other then the string

identifiers of its members (e.g. "Segment Labels"). Cor

rect handling of access to these members is accomplished

through dynamic dispatch using the virtual lookup table.

This ensures that a plugin written by one researcher can be

easily used as input to another's, as long as they know the

proper identifiers and underlying formatting of the data.

3.3. Visualization

During the development and use of a vision system, it

is of utmost importance to be able to visualize what is oc

curring at every stage of the system pipeline. As such, our

system allows users to create any number of visualization

windows which can select any plugin to display (and which

part of the plugin's output to display, e. g. left or right im

age). If a developer creates their own data container for a

plugin, they can define a special visualization callback func

tion as part of this container. The system will automatically

detect this callback when the plugin is loaded, and use it

for visualizing the plugin's output. Developers can spec

ify multiple methods for visualizing the plugin; the GUI for

visualization will allow selection of which to display.

Visualization windows read directly from the global

buffer, and as such have a small memory overhead. Ad

ditionally, visualization runs in the GUI thread, rather than

in any of the plugin threads. If a plugin slows down the

system, visualization (and the GUI) will remain responsive,

allowing the user to troubleshoot. This also means that vi

sualization that requires computation, such as labeling an

image with text or vector graphics, will have a negligible

effect on the actual frame throughput of the system. If vi

sualization lags behind the system output, frames are auto

matically skipped on an interval that allows visualization to

maintain synchronization with the rest of the system. This

is of particular importance in an online system, such as our

real-time robotic application, where visualization lagging

behind processing can cause confusion or even errors.

4. Memory Architecture

The memory management system has been designed

to allow distributed development and computing, complex

system pipelines incorporating feedback loops, and efficient

use of the GPU as a computational resource. The following

subsections will describe how these design goals have been

achieved by illustrating our Global Buffer design and ex

plaining how it manages GPU memory.

4.1. Global Buffer

Our global buffer concept was designed to overcome the

limitations of standard online vision pipelines. In a standard

364

Figure 2. A typical buffering scheme (top) and our buffer (bottom).

online pipeline a local buffering scheme is used; each al

gorithm has an input buffer, where data accumulates while

it is waiting to be processed. Such a setup is adequate as

long as the pipeline remains unidirectional, but complica

tions arise in using feedback loops. Figure 2 compares a

standard pipeline with our global buffer; unlike a typical

buffering scheme, our global buffer maintains and manages

all memory in a central location (and separate thread). The

global buffer is responsible for dynamic allocation of all

data containers, maintaining reference counts, and deter

mining when a frame can expire. Since the global buffer is

responsible for maintaining memory, plugins use a message

passing system to communicate. Plugins pass messages to

each other to notify completion of a new frame, or to trigger

a feedback mechanism. They also use the message passing

system to request that the global buffer allocate a new data

container for their output. When a developer creates a new

type of data container, they use a simple interface to pass

the global buffer a function pointer for creating an instance

of their new data container type.

In order to fully understand the limitations of a standard

buffering system, consider, for instance, the system shown

at the top of Figure 3. If the feedback mechanism is trig

gered for frame n, plugin B must return to frame n in or

der to modify how it was processed. This is not possible

in the standard local buffer scheme, as that data was dis

carded after it was used as input to B. One possible solution

is to maintain another local buffer for each plugin which

contains data which has already been processed, but this

quickly adds several degrees of complexity. In particular,

garbage collection becomes very difficult, and management

of these buffers when feedback does occur becomes unnec

essarily convoluted.

The global buffer solves this by maintaining data in a

Figure 3. Feedback using a global buffer

more structured way. When a feedback mechanism is trig

gered for frame n the triggering plugin (D) sends a message

to B, causing it to stop processing what it has scheduled, and

revert to frame n. As frame n is still easily accessible in the

global buffer, B can simply send a request for the pointer(s)

to the input data container(s) it requires. The global buffer

is guaranteed to still have the data for frame n, because D

never produced an output for frame n, so the global buffer

has not marked frame n as complete. Once B finishes pro

cessing frame n with its new feedback information, it will

overwrite its old output for frame n (shown in orange) and

then simply continue on as it would normally, processing

frame n+ 1. The feedback corrected data will propagate

down the pipeline, and any data which is no longer valid

(shown in red) will simply be overwritten. Infinite feedback

loops are avoided by a preventing feedback from occurring

more than once per plugin per frame.

4.2. GPU Memory Handling

While utilizing the massively-parallel GPU as a copro

cessor has become increasingly common, how to integrate it

effectively into an open vision architecture remains an open

question. Particularly vexing is how to integrate it seam

lessly into the memory system of such an architecture, as

the GPU has separate physical memory, which is entirely

distinct in both location and structure from that used by the

CPU [5] . Data streaming through the system must be trans

ferred to the GPU for modules which use it, and then trans

ferred back out for visualization and used by modules later

in the pipeline.

A naive implementation of this architecture would sim

ply serialize the operations; when a module needs to use

the GPU, it copies data to device memory, executes a ker

nel, and then copies the output back out to host memory.

While this is still relatively efficient, it fails to fully take

advantage of the pipe lined streaming architecture, since the

365

Figure 4. Streaming; Concurrent kernel execution

memory transfer bandwidth is idle while the kernel is exe

cuting. The architecture uses the streaming CUDA API to

utilize this spare bandwidth, allowing it to perform concur

rent asynchronous memory transfer and kernel execution.

As shown in Figure 4, we utilize a pre-caching tech

nique, whereby data for frame n+ 1 is transferred during the

execution of frame n. When the kernel execution time is sig

nificantly longer than the transfer time (B), memory trans

fer is completely hidden, even with unidirectional mem

ory. When kernel execution time is comparable to memory

transfer time, only some of the transfer can be hidden (C),

unless the hardware supports concurrent data transfers I (D).

5. Demonstration System

This section presents a real-time demonstration system,

consisting of six plugins. The demonstration system calcu

lates dense disparity using a standard stereo camera setup

(rather than Kinect data) in order to show the flexibil

ity of the architecture as well as highlight the speedup

achieved via multithreading. Switching from Kinect in

put to a stereo camera setup is simply a matter of changing

connections in the GUI. The pipeline described consists of

plugins for reading and rectifying stereo data, calculating

optical flow[7], computing disparity[7] , segmentation and

tracking[8] , dense disparity estimation, and semantic graph

and event chain generation[9, 10] . This type of a system

configuration is used to recognize and learn object manipu

lation actions in a robotics context.

I Concurrent data transfers are supported under the Fermi
architecture[5]. Currently the Fermi Quadro and Tesla series cards
have two Direct memory access (DMA) engines[6], aUowing them to
perform host-to-device and device-to-host operations simultaneously. The
consumer Fermi cards (GTX 4xx, 5xx) only have a single DMA engine,
so concurrent transfers are disabled on them.

5.1. Image Acquisition

Video is acquired using a Firewire stereo camera rig.

Triggering for image acquisition can be controlled using ei

ther an external hardware trigger or the architecture's soft

ware clock. Rectification is performed on the GPU (there

is a separate plugin for calibration using a standard chess

board). Time from triggering to output of a rectified pair of

stereo images is around lOms at lO24x768.

5.2. Disparity and Optical Flow

Optical flow is computed using the GPU implementa

tion [7] of a phase-based algorithm [J 1] . The algorithm

tracks the temporal evolution of equi-phase contours by tak

ing advantage of phase constancy. Differentiation of the

equi-phase contours with respect to time yields spatial and

temporal phase gradients. Optical flow is then computed

by integrating the temporal phase across orientation. Es

timates are refined by traversing a Gabor pyramid from

coarser to fine levels. The plugin uses the five most re

cent frames to compute optical flow in the case of online

video, but can also use "future" frames when working with

recorded movies (this can slightly improve the quality of

output flow).

Sparse disparity maps are computed on the GPU using

a technique similar to optical flow [7] . Rather than use

temporal phase gradients, the disparity algorithm relies on

phase differences between stereo-pair rectified images. As

with the optical flow algorithm, results are computed using

a coarse to fine pyramid scheme.

5.3. Segmentation and Tracking

The segmentation and segment tracking plugin has two

roles; first, it partitions the image into labeled regions, as

seen in the right-most column of Figure 1 , and second, it de

termines correspondences between frames to maintain con

sistent labeling. The segmentation algorithm is based on the

work of Blatt et al. [12], which applies the Potts model in

such a way that superparamagnetic phase regions of aligned

spins correspond to a natural partition of the image data.

Initial spins are assigned to pixels randomly, and then a

Metropolis-Hastings algorithm with annealing [8] is used

to iteratively update the spins until an equilibrium state is

reached.

The Metropolis algorithm is implemented on the

GPU[8], permitting real-time performance. The algorithm

itself lends itself to efficient implementation on a GPU, as

interactions are only computed locally (8 connected nearest

neighbors). Coupling interactions between pixels are deter

mined using average color vector difference (in the HSV

space) of nearest-neighbors. Additionally, when depth data

is available, the algorithm prevents interactions between

pixels if there is a significant difference in their depth val-

366

ues. This prevents coupling across regions which have sim

ilar color but discontinuous depth.

In addition to segmentation, the plugin maintains con

sistent labels for objects from frame to frame. This is ac

complished by transferring spins between frames using out

put from an optical-flow plugin [8]. As such, only the first

frame is actually initialized at random; subsequent frames

are initialized using a forward-propagated version of the

previous frame's equilibrium spins. This has two advan

tages; the number of iterations needed to reach equilibrium

is greatly reduced since the spin distribution already ap

proximates the final state, and the algorithm naturally tracks

objects since spins (and thus labels) are maintained over

time.

5.4. Semantic Graphs

The semantic graphs plugin constructs a symbolic 3D

description of the scene from the segmentation results and

disparity maps. Segments are used to construct undirected

and un-weighted graphs (seen in the right-most column of

Figure 1; nodes are labeled with numbers and red lines are

graph edges). Each segment is given a node and edges rep

resent their three dimensional touching relations. Graphs

can change by continuous distortions (lengthening or short

ening of edges) or, more importantly, through discontin

uous changes (nodes or edges can appear or disappear).

Such a discontinuous change represents a natural breaking

point: All graphs before are topologically identical and so

are those after the breaking point. Hence, we can apply an

exact graph-matching method [1 3] at each breaking point

and extract the corresponding topological main graphs. The

sequence of these main graphs thus represents all structural

changes (manipulation primitives) in the scene.

This type of graph representation is then encoded by

a semantic event chain (SEC), which is a sequence-table;

rows and columns of which represent possible spatial rela

tions between each segment pair and manipulation primi

tive. This final output can be used to classify manipulations

and categorize manipulated objects for use in a robotics or

human-computer interaction (HCI) seuing[9, 10] . The pri

mary advantage of this method is that actions can be ana

lyzed without models or a-priori representation; the dynam

ics of an action can be acquired without needing to know

the identities of the objects involved.

6. Results and Discussion

Testing was performed to compare single threaded with

multi-threaded operation mode and to detect the impact of

visualization on processing speed. Testing was performed

on an Intel i7 (3.33Ghz, 8 execution threads) system with an

NVIDIA GTX 295 GPu. The demonstration setup depicted

at the top of Figure 5 was used for all tests. To determine if

visualization had a negative impact, the tests were run with

Stereo Capture
& Rectification II--;:::==========:;--� Segmentation

& Tracking
Graph &

Event Chain

� . Frame Lag- 90ms -

I
II(: �ax Fr�erat

:
e 1/90;ns (-� l.l fP

:
s)

Single Core �r-o+I---'----'--o---'-----"-"""""--o----1,l--l .11 . . 1. . I. 1
:
-I

.
iJ 4iJ 5iJ 6lJ i1J siJ � 1i:)Q I:JO 120 130 Iilo 1::;0 160 1270 ISO

Core 0 ';:::QJ �
� Core 1 iIIIIi

u Core 2 []J � � Core 3
Core 4

CIJ �
[]J

o
. . .

Fbme Lag- 92ms

1
o

· . . · . .
:::b � �

' -'
: · . · . · . · .

II]

.
� pj � : ' 1IIIIiIII

�m�
2

II(Max Frameraie ..
1I48ms (-20.83 fps)

Figure 5. Timing results for demonstration system; plugins are color coded and contain frame numbers. When run in single thread mode,

short GPU operations such as optical flow are significantly faster due to reduced overhead; this results in slightly lower (2ms) frame lag.

The true benefit of multi-threaded mode is the higher maximum frame-rate that can be achieved.

and without a visualization windows for each component,

showing live views of their outputs. Timing measurements

for plugins are the mean execution time per frame of a 1000

frame (640x480) stereo video sequence (frames of which

are shown in Figure 1), averaged over 10 runs. The code

for the single and multi-threaded versions is identical with

the exception of the movement of plugin objects to separate

threads.

We measure performance by analyzing two key at

tributes of a pipelined vision real-time vision system. First,

in terms of frame lag, that is time from frame acquisition

to final output, multi-threaded mode is slightly slower than

single-threaded. As shown in Figure 5, this is due to rel

atively fast plugins which use the GPU (disparity and op

tical flow in this case). This can be attributed to the static

overhead cost incurred by switching between threads while

using the CUDA run-time API. The switching is relatively

expensive for short GPU operations as it forces the CUDA

driver to create and destroy GPU contexts2. This could

be avoided by the addition of an additional GPU; in our

demonstration system the driver is forced to change con

texts as there are three threads (flow, disparity, segmenta

tion) attempting to use two GPUs. Additionally, the archi

tecture will soon be brought to the newest CUDA release,

which allows context sharing between threads. It should

also be noted that at higher resolutions multi-threaded mode

overtakes single-threaded, as the overhead cost of context

switching is outweighed by the gain from computing opti

cal flow and disparity in parallel.

2GPU contexts are analogous to CPU processes, and each have their
own distinct address space. Each thread may only have one context active
at a time, and contexts may not share threads. See [5, 14] for more details.

367

The second measure of performance, throughput, or

maximum frame rate, shows a significant speedup in multi

threaded mode, almost doubling from 11 .1 (stereo)fps to

20.83. While significant, the speedup is not equal to the

number of execution threads used by the demonstration

setup (six; one for each plugin and one for the GUI & mem

ory manager). This less-than-optimal gain can be attributed

to the fact that the demonstration system had one com

ponent, segmentation & tracking, which was significantly

slower then the rest. As seen in Figure 5, the entire system

throughput is limited by the rate at which the segmentation

plugin produces output.

As seen in Figure 6, the addition of visualization com

ponents has a small impact on performance. This delay was

most noticeable for the shorter components, disparity and

optical flow, but never exceeded 2ms. Fortunately, this ad

ditional time does not affect throughput in multi-threaded

mode, as it is hidden by the length of the longest component.

The times with visualization were used for Figure 5; clearly

shortening the time of any component other than segmen

tation will have a negligible effect on performance. While

the increase does not affect throughput, it has a slight effect

on frame lag. Frame lag is less important than throughput

for our research, but it should be noted that in certain cases,

such as when quick reactions are required, frame lag may

be an important performance measure.

Although we have shown that an architecture which sup

ports feedback loops for an online vision pipeline can be im

plemented efficiently and can have real-time performance,

we have not presented a feedback loop in our demonstration

system. The description of the algorithms which use them

is beyond the scope of this paper. As such, we presented the

Graph &
Event Chain

Segmentation

& Tracking

Stereo

Disparity

Optical Flow

Stereo Capture

& Rectification

o 10

Single-threaded
• Without Visualization

o With Visualization

Multi-threaded
• Without Visualization

40 50

Figure 6. Visualization has a slight impact on performance, but

the effect is negligible in multi-threaded mode where the slight

increases in processing time are hidden in the length of the longest

component (in this case, segmentation).

buffering system which enables the use of feedback loops

in a pipeline, but leave testing of the efficacy of feedback

mechanisms themselves in improving segmentation results

to future publication.

7. Conclusion

Building a self-contained, efficient, and complete vision

system acts as a significant barrier to entry for those wish

ing to develop and test new vision algorithms. We have

presented a modular plugin environment, designed specifi

cally for expand ability and parallel architectures, which fa

cilitates rapid distributed development of vision pipelines.

Our plugin system allows simple collaboration between or

ganizations, allowing developers to share algorithms eas

ily, and without forcing them to share code. The architec

ture permits streaming use of the GPU as a coprocessor,

efficient visualization of algorithm outputs, and the ability

to use complex pipelines involving feedback mechanisms.

The system architecture is being released under an open

source GPL Iicense3, with the goal of spurring the growth

of GPU use and the research of feedback mechanisms in

real-time vision applications by lowering the cost-to-entry

of development and prototyping of algorithms.

Acknowledgements

The research leading to these results has received fund

ing from the European Community's Seventh Framework

Programme FP7/2007-201 3 (Specific Programme Coopera

tion, Theme 3, Information and Communication Technolo

gies) under grant agreement no. 270273, Xperience and

grant agreement no. 269959, Intellact.

3https://launchpad.net/oculus

368

References

[1] F. Lomker, S. Wrede, M. Hanheide, and J. Fritsch, "Build

ing modular vision systems with a graphical plugin environ

ment," in Computer Vision Systems, 2006 ICVS '06. IEEE

International Conference on, p. 2, jan. 2006. 361

[2] A. Lux, 'The imalab method for vision systems," in Inter

national Conference on Vision Systems, ICVS-03, pp. 21-26,
2003. 361

[3] "MVTec halcon - building vision for business." http:/ /
www.mvtec.com/halcon/.2011. 362

[4] "Common vision BLOX imaging system." http: / / en.
commonvisionblox.de/,2011. 362

[5] "NVIDIA's next generation cuda compute architecture:

Fermi." Whitepaper, http://www.nvidia.com/
content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.
pdf, 2009. 365,367

[6] NVIDIA, "NVIDIA quadro dual copy engines." Whitepa

per, http://www.nvidia.com/docs!IO/ 4 004 9/
Dual_copy_engines.pdf,2010. 365

[7] K. Pauwels, N. Krger, M. Lappe, F. Worgotter, and M. M.

Van Hulle, "A cortical architecture on parallel hardware for

motion processing in real time," Journal of Vision, vol. lO,
no. lO, 20lO. 365,366

[8] A. Abramov, E. Aksoy, J. Dorr, F. Worgotter, K. Pauwels,

and B. Dellen, "3d semantic representation of actions from

efficient stereo-image-sequence segmentation on gpus," in

International Symposium 3D Data Processing, Visualization

and Transmission, 2010. 365, 366

[9] E. E. Aksoy, A. Abramov, F. Worgotter, and B. Dellen,

"Categorizing object-action relations from semantic scene

graphs," in IEEE International Conference on Robotics and

Automation, ICRA2010 Alaska, USA, 2010. 365,366

[lO] E. E. Aksoy, A. Abramov, J. DOff, K. Ning, B. Dellen, and

F. Worgotter, "Learning the semantics of object-action rela

tions by observation," The International Journal of Robotics

Research (URR), Special Issue on 'Semantic Perception for

Robots in Indoor Environments' (In press), 2011. 365,366

[11] T. Gautama and M. Van Hulle, "A phase-based approach

to the estimation of the optical flow field using spatial fil

tering," IEEE Transactions on Neural Networks, pp. 1127-
1l36, 2002. 366

[12] M. Blatt, S. Wiseman, and E. Domany, "Superparamagnetic

clustering of data," Physical Review Letters, vol. 76, no. 18,
pp. 3251-3254, 1996. 366

[13] M. F. Sumsi, Theory and Algorithms on the Median Graph.

Application to Graph-based Classification and Clustering.

PhD thesis, Universitat Autonoma de Barcelona, 2008. 366

[14] NVIDIA Corporation, "NVIDIA CUDA C programming

guide," 20lO. Version 3.2. 367

