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Image segmentation in spin-lattice models relies on the fast and reli-
able assignment of correct labels to those groups of spins that represent
the same object. Commonly used local spin-update algorithms are slow
because in each iteration only a single spin is �ipped and a careful an-
nealing schedule has to be designed in order to avoid local minima and
correctly label larger areas. Updating of complete spin clusters is more
ef�cient, but often clusters that should represent different objects will
be conjoined. In this study, we propose a cluster update algorithm that,
similar to most local update algorithms, calculates an energy function
and determines the probability for �ipping a whole cluster of spins by
the energy gain calculated for a neighborhood of the regarded cluster.
The novel algorithm, called energy-based cluster update (ECU algorithm)
is compared to its predecessors. A convergence proof is derived, and it is
shown that the algorithm outperforms local update algorithms by far in
speed and reliability. At the same time it is more robust and noise tolerant
than other versions of cluster update algorithms, making annealing com-
pletely unnecessary. The reduction in computational effort achieved this
way allows us to segment real images in about 1–5 sec on a regular work-
station. The ECU-algorithm can recover �ne details of the images, and it
is to a large degree robust with respect to luminance-gradients across ob-
jects. In a �nal step, we introduce luminance dependent visual latencies
(Opara & Wörgötter, 1996; Wörgötter, Opara, Funke, & Eysel, 1996) into
the spin-lattice model. This step guarantees that only spins representing
pixels with similar luminance become activated at the same time. The
energy function is then computed only for the interaction of the regarded
cluster with the currently active spins. This latency mechanism improves
the quality of the image segmentation by another 40%. The results shown
are based on the evaluation of gray-level differences. It is important to re-
alize that all algorithmic components can be transferred easily to arbitrary
image features, like disparity, texture, and motion.
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1 Introduction

Solutions for computer vision problems almost always avoid the use of
spiking neural networks because they are computationally expensive. This,
on the other hand, makes it usually rather dif�cult, if not impossible, to
implement neuronal algorithms directly. For example, image segmentation
by spiking neural networks is commonly achieved by synchronizing the
�ring patterns of units that represent a common object (von der Malsburg
1981; von der Malsburg & Schneider 1986; Gray, König, Engel, & Singer,
1989; Ernst, Pawelzik, & Geisel, 1994; Nischwitz & Glünder, 1995). The same
concept (i.e., “synchronization”) can be introduced into spin-lattice models
by mapping every neuron of the neural net onto one spin element in the
lattice (Geman, Geman, Graf�gne, & Dong, 1990; Vorbrüggen, 1995; Eckes &
Vorbrüggen, 1996; Blatt, Wiseman, & Domany, 1996). Synchronization then
means that different spins will get the same orientation. In principle such
a mechanism can be used to label the different objects in a visual scene by
trying to ensure that spins that belong to the same object have the same
orientation (i.e., the same label).

Several spin-lattice algorithms exist that can be used to segment visual
scenes by labeling the objects (Geman et al., 1990; Vorbrüggen, 1995; Eckes
& Vorbrüggen, 1996; Blatt et al., 1996). These algorithms differ mainly in the
way in which they de�ne the interaction range between spins and how the
individual spins are iteratively updated. Local update algorithms (Geman
et al., 1990; Vorbrüggen, 1995; Eckes & Vorbrüggen, 1996) modify only one
spin per iteration, and the interaction ranges are usually small. With cluster
update algorithms (Blatt et al., 1996), on the other hand, larger interaction
ranges are introduced due to the treatment of whole clusters and groups
of spins—the spin clusters—are updated simultaneously. Like neural nets,
spin-lattice models are also confronted with the problem of how to organize
spins (synchronizeunits) over large areas.Local update algorithms cansolve
this problem in many cases by propagating a certain modi�cation through
the whole lattice step by step, which makes them rather slow. Cluster update
algorithms are much faster because a change can affect many spins at the
same time. This, however, affects their robustness in a negative way because
clusters that should get different labels can easily collapse and form one
indistinguishable clump.

In this article, we mainly focus on cluster update algorithms and de-
scribe a modi�cation of the Potts model (Potts, 1952), which preserves the
advantages of the original version—the convergence speed—but is much
more robust. We also show that this algorithm can be used to introduce one
additional neuronal concept—visual latencies—to improve its performance
(Opara & Wörgötter, 1996; Wörgötter et al., 1996).
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Figure 1: Schematic diagram of the system. The input image is piped into a
luminance-dependent delay line. Bright objects are processed before dark ob-
jects. The temporal structure of this data stream determines the interaction be-
tween spins within the second part of the system, which consists of a spin lattice.

2 Overview of the Model

The model we propose consists of two parts, shown in Figure 1. The �rst
part of the system contains a luminance-dependent delay line (“visual la-
tencies”; see also Opara & Wörgötter, 1996). Pixels with a high luminance
are processed before dark pixels. The temporal structure of this data stream
determines the interaction between spins in the second part of the system.
The second part consists of Potts spins (Potts, 1952), which are arranged on
a two-dimensional lattice. Within this spin lattice, the algorithm tends to
assign the same label only to those spatially adjacent pixels that reach the
spin lattice with high temporal coherence (same latency). Pixels with strong
delays between them will get different labels.

2.1 Spin-Lattice Model. First we will describe the model without visual
latencies. The spin-lattice model we use is similar to the model that Potts
proposed in 1952. In the Potts model, each spin can take q different values
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(2 · q), which is a generalization of the Ising model (q D 2) (Ising, 1925).
In the two-dimensional case, the spins are arranged on a lattice of size
N D LxLy.

We de�ne a label using the symbol w and a label con�guration by W D
fw1, . . . , wNg 2 V, where V is the space of all con�gurations. A subcon�gu-
ration, where we consider fewer than N spins, is denoted by a superscript
(e.g., Wc).

The global energy function of our speci�c Potts con�guration W 2 V is
given by:

E(W) D
NX

iD1

2
4Ki C

X

hi, ji
¡Ji, jdwi ,wj

3
5D

NX

iD1

2
4Ki C

X

< i, j>

Eij

3
5, (2.1)

where wi,wj is labels of spin i and j; Ji, j is the interaction strength between
spins at locations i and j; dwi ,wj is a kronecker function, being 1 if wi D wj
and 0 else; hi, ji is a neighborhood of spin i with | |i, j| | · D, where D is a
constant that needs to be set; and Ki is a global “inhibition.”

If the term Ki (which will be de�ned and discussed below) were set to
zero, one would get the global energy function of the generic Potts model
in its usual form. In the homogeneous Potts model (Jij D const), all spins are
interacting with the same strength. In the inhomogeneous Potts model, the
interaction strength is changing over space (Ji, j 6D const).

To apply the Potts model to an image segmentation task, the similarity
of the input image has to be represented in the interaction strength Jij of the
spins (Geman et al., 1990; Vorbrüggen, 1995; Eckes & Vorbrüggen, 1996; Blatt
et al., 1996). Spins that are representing similar image parts (same object)
have to interact strongly, while nonsimilar image parts will not interact or
will interact with a negative strength.

2.2 The Energy-Based Cluster Update (ECU) Algorithm. Several dif-
ferent algorithms exist in the literature to order the spins in a Pott-model
according to a prede�ned goal, like determining phase transitions in fer-
romagnetic systems or, as in our case, in order to segment an image. The
local-update “Metropolis” algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953), which rotates single spins per iteration and tries to
minimize a global energy function using simulated annealing (Kirkpatrick,
Gelatt, & Vecci, 1983), is well known. Cluster update algorithms (Swendsen
& Wang, 1987; Wolff, 1989) treat groups of spins simultaneously and are
therefore much faster, but often an undesired fusion of clusters is observed.

The approach we propose seeks to combine the advantages of both types
of algorithms: local and cluster update. We will demonstrate that our algo-
rithm overcomes the critical slowing down at phase transitions and in the
low-temperature phase observed in local update algorithms, so simulated
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annealing is not necessary for our approach. Moreover, it does not produce
unwanted cluster fusions.

The structure of the ECU algorithm is as follows. We start with a random
label con�guration, and individual spins are combined as clusters according
to equation 2.2. Then we calculate an energy function. Following this, the
label con�guration is modi�ed such that the probability of a new con�gura-
tion depends on the energy of this new con�guration and the temperature.
From this new label con�guration, a new cluster con�guration is formed,
and the next iteration starts.

First we show how clusters are formed. Similar to the de�nitions for
labels above, we de�ne c as a cluster; C D fc1, . . . , cMg, M · N as a con�g-
uration of clusters; and C 2 C , where C is the space of all possible cluster
con�gurations.

The formation of clusters is the same as in other cluster update algo-
rithms. Clusters must contain only spins that are in the same state (same
label). The binding probability PB that two nearest-neighbor spins are con-
joined in order to form a cluster depends on the temperature T and the
coupling strength Ji, j (see below) of the two nearest-neighbor spins and is
given by:

PB,hijic (i, j) D (1 ¡ exp[¡0.5Ji, jdwi ,wj / T]) D (1 ¡ exp[0.5Eij /T]). (2.2)

The factor 0.5 is a normalization constant that is necessary because the
clusters are not �ipped independently of each other, as in the Swendsen
and Wang algorithm. We show later that this normalization ensures that
in the thermodynamic equilibrium, con�gurations are taken according to
the Boltzmann distribution. Furthermore, only a certain subset of spins de-
noted as hijic are taken into account when computing PB—namely, those that
are nearest neighbors and have a positive Ji, j, because otherwise negative
probabilities would obtain.

At high temperatures, the average cluster size is small (Ji, j / T ! 0 and
PB(i, j) ! 0), while at lower temperatures the possible cluster size increases.

In our approach we consider the energy gain of a cluster �ip. Therefore,
we de�ne the energy of the subcon�guration Wc

k , assuming that all spins
in the cluster c would take the label wk. This is done by considering the
interactions of all spins in the cluster with those outside the cluster but
within a neighborhood hiji, ck 6D cj,

E(Wc
k) D

X

i2ci

2
64Ki C

X

hiji
ck 6Dcj

gijEij

3
75 (2.3)

where hiji, ck 6D cj is the noncluster neighborhood of spin i, which is that
set of spins j outside the cluster ck but within the interaction range D of
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spin i given by | |i, j| | · D. The constant gij can be set to 1.0 for all practical
purposes. In order to arrive at the correct proof of the detailed equilibrium,
however, a more complicated de�nition is required.1

In classical cluster update algorithms, each cluster is simultaneously and
independently assigned a spin label. In the ECU algorithm, we instead
update one cluster at a time given the label of neighboring clusters. This
uses the relative energies of different label assignments computed by equa-
tion 2.3.

Ki acts as a global inhibition and is commonly used in other neural net-
works. Its value is rather noncritical, and it can be set within wide ranges.
It ensures that far-away objects will get different labels. We de�ne it as:

Ki D
a

N

NX

jD1

dwi ,wj , (2.4)

where a is a control parameter that adjusts the strength of the global inhi-
bition (a ¸ 0).

Ji, j, which occurs in the de�nition of Eij (see, e.g., equation 2.1), is the
interaction strength of two spins i and j. We de�ne it such that regions with
similar gray values will get positive weights, whereas dissimilar regions get
negative weights (Vorbrüggen, 1995; Eckes & Vorbrüggen, 1996):

Ji, j D 1 ¡
|gi ¡ gj |

H
, (2.5)

where gi is the gray value of pixel i of the input image and H is the average
difference of the gray values within all interaction neighborhoods Ni. It
thereby represents the intrinsic (short-range) similarity within the whole
input image. It is given by:2

H D
1
N

1
(2DC 1)2 ¡ 1

NX

iD1

X

hiji
|gi ¡ gj |, (2.6)

where (2DC 1)2 ¡ 1 is the number of neighbors of a spin.

1 The correct de�nition of g is given by rede�ning equation 2.3:

E(Wc
k ) D

X

i2ck

2
664Ki C

X

hijici
ck 6Dcj

0.5Eij C
X

hijinhijici
ck 6D cj

Eij

3
775,

where hijick is that set of spins used to compute PB and hijinhijick is its opposite.
2 In the case of H D 0, equation 2.5 is ill de�ned, but in this case only a single uniform

surface exists, and segmentation is not necessary.
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Similar to a Gibbs sampler, the selection probability PS of selecting a label
subcon�guration Wc

k where all spins in the cluster c take the label wk is given
by:

PS(Wc
k) D

exp(E(Wc
k ) / T)

Pq
jD1 exp(E(Wc

j ) / T)
. (2.7)

The number of possible labels that a cluster can take is given by q. In the
following simulations, we use q D 10 unless otherwise noted.

3 Detailed Balance

We have two sets of variables: the label con�guration W 2 V and (similar
to the Swendsen and Wang algorithm) the cluster con�guration C 2 C . The
complete system assumes con�gurations in the shared con�guration space
C £ V.

The goal of the ECU algorithm is to label an image according to the energy
function on the labels E(W) (see equation 2.1), which leads to an equilib-
rium probability distribution3 P(W) D 1

Z exp(¡E(W) /T). Labeling could
be done simply by Gibbs sampling, for example, but Gibbs sampling indi-
vidual spins can be very slow. To speed up sampling, we de�ne an energy
function over additional variables, the clusters c, such that the equilibrium
distribution P(W, C) D 1

Z exp(¡E(W, C) / T) still has the same marginal dis-
tribution,

P
C P(W, C) D P(W), as de�ned above. Then we de�ne a Markov

process over this joint system consisting of two steps: (1) sampling of clus-
ters given spins P(W, C ! W, C0 ) and (2) sampling of spins given clusters
P(W, C ! W0 , C). The claim to prove consists of two aspects. If detailed bal-
ance holds, applying these two steps in succession should (1) result in the
desired equilibrium distribution P(W, C), which has the desired marginal
distribution over spins P(W) and (2) this needs to be the Boltzmann distri-
bution (Swendsen & Wang, 1987; Binder & Heermann, 1988; Neal, 1993). In
the detailed balance, the probability P(W) of a con�guration W, multiplied
with the probability P(W ! W0 ) for the transition into the con�guration
W 0 , is identical to the probability of the reverse process. Hence:

P(W)P(W ! W0 ) D P(W 0 )P(W 0 ! W), (3.1)

where P(W) is the probability for a con�guration (W) and P(W ! W 0 ) is
the probability for the transition between (W) and (W 0 ).

The forming of clusters and the assigning of labels are independent
events. Therefore, we get the transition probabilities by summing over all

3 Z is the partition function.



1554 Ralf Opara and Florentin Wörgötter

possible cluster con�gurations that allow a transition from spin con�gura-
tion W to W 0 and vice versa:

P(W ! W 0 ) D
X

C

P(W ! C)P(C ! W0 ) (3.2)

P(W 0 ! W) D
X

C

P(W 0 ! C)P(C ! W). (3.3)

Dividing both equations, we have:

P(W ! W 0 )
P(W 0 ! W)

D
P

C P(W ! C)P(C ! W 0 )
P

C P(W 0 ! C)P(C ! W)

D exp
¡

E(W) ¡ E(W 0 )
T

¢
. (3.4)

The right-most equality in equation 3.4 is the condition of detailed balance,
which we have to show. This is equivalent to showing that the following
equation holds:

P(W ! W 0 )
P(W 0 ! W)

D
P(W ! C)P(C ! W 0 )
P(W0 ! C)P(C ! W)

D exp
¡

E(W) ¡ E(W 0 )
T

¢
. (3.5)

The equivalence of equations 3.4 and 3.5 is spelled out in equations 3.6 and
3.7:

P(W ! C)P(C ! W 0 ) D exp
¡

E(W) ¡ E(W0 )
T

¢
£P(W 0 ! C)P(C ! W) (3.6)

X

C

[P(W ! C)P(C ! W 0 )]

D
X

C

[exp
¡

E(W) ¡ E(W 0 )
T

¢
P(W0 ! C)P(C ! W)]

D exp
¡

E(W) ¡ E(W 0 )
T

¢X

C

[P(W0 ! C)P(C ! W)]. (3.7)

Thus, equation 3.5 needs to be proved.
In the following equations, only the contributions that are different for

the con�gurations W and W 0 are calculated, because all others cancel in
equation 3.5.

P(W ! C) »
Y

hijic
wiDwj
ci 6Dcj

exp(0.5Eij /T), (3.8)
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where hijic are the neighboring spins that are taken into account by forming a
cluster (see the remarks concerning equation 2.2). The probability of moving
from a cluster con�guration C to a label con�guration W0 is given by:

P(C ! W 0 ) »
Y

hijic
ci 6Dcj

w0
iDw0

j

exp[(¡0.5Eij) /T]
Y

hijinhiji
ci 6Dcj

w0
iD w0

j

exp[(¡Eij) /T] (3.9)

where hijinhiji are the neighboring spins that are not taken into account by
forming a cluster. Now equation 3.5 can be evaluated by constructing the
other term similar to equations 3.8 and 3.9:

P(W ! C)P(C ! W0 )
P(W 0 ! C)P(C ! W)

D

Q
hiji

ci 6Dcj

w0
iDw0

j

exp(¡Eij /T)

Q
hiji

ci 6Dcj
wiDwj

exp(¡Eij /T)

D exp
¡

E(W) ¡ E(W 0 )
T

¢
, (3.10)

which proves the claim.

4 Characterization of the ECU Algorithm

In order to quantify the ECU algorithm, we use the magnetization m and the
magnetic susceptibility Â of the system (see Chen, Ferrenberg, & Landau,
1992):

m(W) D
qNmax (W) ¡ N

(q ¡ 1)N
, Â D

N
T

(hm2i ¡ hmi2), (4.1)

where Nmax is the number of spins whose label w occurs most frequently.
The magnetic susceptibility Â can be used to localize the different phases

of the system where large �uctuations of the magnetization occur. Other
interesting quantities are the spin-spin correlation hdwi ,wj i and the number
of clusters hQi. The spin-spin correlation indicates how many adjacent spins
are in the same state.

To show the basic properties of the ECU algorithm, a very simple image
was presented to the system consisting of two rectangles having different
averaged gray values and different standard deviations of the noise (see Fig-
ure 2A). In the following we will demonstrate the behavior of the system
for changing temperatures. (This is done merely to characterize the system,
because annealing is not necessary when segmenting an image with the
ECU algorithm.) Figure 2B shows the averaged magnetization at different
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Figure 2: The behavior of the system at different temperatures. As the system
parameter, we use N D 32 £ 32, DD 1, a D 0, and q D 10. In this simulation, we
use cyclic boundary conditions. (A) The stimulus consists of an image containing
two rectangles of different averaged gray values (gbottom D 60, gtop D 120) and
different standard deviations (sbottom D 0, stop D 25) of the noise. In this particular
simulation, H (see equation 2.6) was not computed but set to 25. As a function
of the temperature we plot, (B) the average magnetization and examples of
some segmentation results, (C) the average number of clusters, (D) the magnetic
susceptibility, and (E) the average spin-spin correlation.

temperatures. At high temperatures (T ! 1), all spins are totally disor-
dered (limT!1f< m >g D 0). As the system reaches temperature Tc1 , the
spins, representing the lower rectangle, show a phase transition, indicated
by an abrupt increased averaged magnetization, by large �uctuations of the
magnetization (Â; see Figure 2D), and by an abrupt decrease in the number
of clusters (hQi; see Figure 2C).

As the temperature is lowered, the magnetization and the spin-spin cor-
relation are slowly increased until a second-phase transition occurs at Tc2 .
At this temperature, the spins representing the upper rectangle are getting
ordered, again indicated by abrupt changes of the variables describing the
system. In the low-temperature phase (T · 0.4), the spins representing the
upper and lower rectangle have different labels.

5 Comparing Different Algorithms

A comparison of the three update algorithms—local (Gibbs sampler), cluster
(Blatt et al.), and the ECU algorithm—is shown in Figure 3. The input for
all simulations consists of two rectangles and a thin line surrounding and
separating them (see Figure 3A). In all simulations, the parameters are the
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Figure 3: Comparison of different update rules. As the parameter, we use N D
128 £ 128, a D 0, and q D 10. (A) The input image for all simulations consists
of two rectangles and a background. Most pixels of the background are covered
by the two rectangles, and only thin lines of the background are visible. (B) The
initial random con�guration. (C, D) Con�gurations of a local update algorithm
(Gibbs sampler) at different iterations (DD 5). (E) Con�gurations of the cluster
update algorithm (Blatt et al., 1996) (D D 1). (F) Con�gurations of the ECU
algorithm (DD 1).

same, with the exception of the temperature, which is varied.
The simulations start with a random con�guration, shown in Figure 3B.

Figures 3C and 3D shows the spin-lattice con�guration of a local update
algorithm at different iterations. The initial temperature T0 was set to 0.6.
At every iteration, the temperature is cooled according to TkC1 D 0.99992Tk
(see Figure 3C). At iteration k ¼ 5000, the rectangles start to move to an
ordered con�guration, and 50 iterations later, both rectangles are ordered.
At iteration k ¼ 14,000 the background starts to organize. Although we
used a very slow annealing schedule, the background is divided into several
segments (k D 20,000).
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If one uses faster annealing schedules, which is desirable if confronted
with any close-to real-time problem (e.g., robot vision), the rectangles are
also divided into several segments (see Figure 3D). Cluster update algo-
rithms label the input image correctly only within a small range of temper-
atures. The task of image segmentation is to �nd this range.

Figure 3E shows the con�guration of the spin lattice after 500 iterations of
the cluster update algorithm for several runs at different temperatures. For
every temperature, the system starts with a random con�guration, shown in
Figure3B. Athigh temperatures (e.g.,T ¼ 0.45), the spin lattice is disordered.
At temperatures between T D 0.32, and T D 0.35, the input image is more
or less correctly labeled by the spin con�guration. At T D 0.32, parts of the
background and the lower rectangle are bound together. If the temperature
is decreased to T D 0.25, all three objects are bound together.

Figure 3F shows the spin lattices con�guration of the ECU algorithm af-
ter 40 iterations. The same parameters and the same connection strengths
between spins are used as in the simulations (Figures 3C–E). If the temper-
ature T is lower than 0.25, the input image is always segmented correctly
after 40 iterations. As the temperature increases, the system is increasingly
disordered. However, if the temperature were set to zero, randomly occur-
ring incorrect label associations (due to the initialization process) would
be frozen, and an incorrect segmentation might occur (see Figure 3E, left).
Thus, in general, zero temperature is to be avoided.

6 Introducing Visual Latencies

So far we have described the basic properties of the spin model and the
chosen dynamics of the ECU algorithm. Now we introduce visual latencies
that naturally occur in the visual system of the higher vertebrates. The �rst
part of the system (see Figure 1) contains a luminance-dependent delay line.
Pixels with a high luminance pass the delay line faster than low-luminous
pixels. The time to pass the delay line is de�ned as

tlat(i) D (gmax ¡ gi) flat, (6.1)

where flat is a factor that determines the maximal latency, gmax is the maximal
gray value, and gi is the gray value of pixel i. The latency differences of two
pixels i and j are therefore Dtlat D tlat(i) ¡ tlat(j) D (gj ¡ gi) flat.

Due to the temporal structure, which now de�nes the similarities of the
input image, the interaction strength of the spins (see equation 2.5) is now
rede�ned in the following way:

Ji, j D 1 ¡
|tlat(i) ¡ tlat(j) |

flatH
I if t > tlat(i) ^ t > tlat(j)

Ji, j D 0I else. (6.2)
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input t=0 t=1 t=2 t=3 t=4

t=5 t=6 t=8 t=10 t=13t=12

Figure 4: The stimulus consists of an N D 128 £128 image (upper left), contain-
ing a paraglider, a shaded sky, and some hills. The other panels show the label
distribution of the system at different iteration steps. The labels are coded as
gray values. Spins with the same label (same gray value) belong to one object;
different gray levels indicates the assignment to different objects. As parameters
we used T D 0.008, flat D 0.04, DD 4, a D 1, and q D 10.

Note that equations 2.5 and 6.2 are very similar; the gray-value differences
in equation 2.5 are recoded only as latency differences in equation 6.2. The
latency tlat(i) de�nes the time when the spin i representing pixel i is activated
the�rst time. This activation has theconsequence that spin i can interactwith
other spins that are already activated. Therefore, the temporal structure of
the input data stream also in�uences the temporal development of ordered
structures in the spin lattice.

7 Segmentation of Real Images

Figure 4 shows snapshots of the label distributions of the model if a stimulus
(upper left) is given to the system. In general, a few parameters need to
be set in order to make the algorithm work. The following can be used
as an adjustment guideline. The temperature is rather uncritical; it should
be low but must not be equal to zero (use, e.g., T D 0.01). Furthermore,
set flat 2 [0.00, 0.08]. If the image contains very little noise, one should let
flat ! 0. The same holds forD. Set it to 2.0 for noise-free images and to about
5.0 if noise exists. Setting a to 1.0 will almost always work. The number of
labels q is determined by the number of objects that are to be expected in
the visual scene. Most often q ¼ 10 will suf�ce.

The simulation starts with a random label con�guration, and each label is
represented by nearly the same number of spins. During the �rst iterations,
only the brightest objects (short latency) are processed (the paraglider and
the lower part of the sky). According to the competition included in the
dynamics of the system, the spins of the paraglider will receive the same
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label, while the spins representing the sky will get a different label. Due
to the latency, processing of the parts with a lower luminance does not
start before iteration 9. At iteration 13, the whole image is segmented into
four different areas.4 The ef�ciency of the ECU algorithm can be judged
from iterations 12 and 13, where a surface of nearly 40 ¤ 128 pixels (hills) is
�ipped during only one iteration. In comparison, local update algorithms
need numerous updates and a careful annealing schedule to achieve this.

Figure 5 shows the con�guration of the spin lattice at different iterations
for two more examples of real images. The input consists of a moose on a
meadow (see Figure 5A) and a canvas painting of a woman lying on a sofa
(see Figure 5B). Again the brightest areas are processed �rst: the sky and
the woman. The darkest objects, the moose and the sofa, are processed later,
at iterations 32 (Figure 5A) and 34 (Figure 5B), respectively. In Figure 5A,
�ve objects are detected: the sky, the meadow, two different hills, and the
moose. In Figure 5B, six objects are detected: the wall, the carpet, the woman,
and three segments representing the sofa. The sofa is divided into three
segments because they are disconnected over distances much larger than
the interaction range of the spins.

8 Performance Quanti�cation of the ECU Algorithm

The performance of the model is determined in a series of simulations in
which the basic parameters of the system temperature, latency, and the
extent of the interaction neighborhood are varied. The stimulus given to the
system consists of two rectangles with average gray values of 100 and 120.
The task for the system was to segment input images that contain different
amounts of noise, like those shown on top of Figure 6A.

An image is segmented correctly if the spins representing rectangle 1 are
all in the same state, and the spins representing rectangle 2 are in a different
state. Therefore the performance is measured by a quantity denoted as the
relative amount of misclassi�ed pixels (RAMP).

In Figure 6A RAMP is measured as a function of the latency factor flat
(see equation 6.1) and noise. The latency factor flat was varied from flat D
0 iteration/Dg up to flat D 0.4 iteration/Dg. If the gray-value difference Dg
of two pixels is, for example, 20, then the latency difference between these
pixels is varied between 0 and 0.4 ¤ 20 D 8 iterations. The signal-to-noise
ratio (snr) was varied between 1 and 1. The temperature was set to 0.05.
For each data point, 100 simulations were used; afterward, the data points
were smoothed using a weighted binominal averaging procedure.

At high snr, the image was always segmented correctly by the ECU algo-
rithm, which is not necessarily the case for local update algorithms at such
low temperatures. If the

p
snr reaches 2.5, a few pixels are misclassi�ed,

4 There is a small strip with a different label to the right of the paraglider.
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Figure 5: (A) The stimulus consists of an N D 128 £ 128 image, containing a
moose. The panels show the label distribution of the system at different iteration
steps. As parameters, we used T D 0.008, flat D 0.2, D D 5, a D 1, and q D 10.
(B) Same as (A), but the input image consists of a painting of a woman and a
sofa. Parameters are the same as in (A).

and the RAMP is greater than zero. As the noise increases, the number of
misclassi�ed pixels also increases, due to fact that the similarities between
the pixels are not calculated correctly. The latency introduced in our system
has a positive effect on the segmentation quality, improving it by about 50%.

Figure 6B shows the in�uence of the latency differences on the conver-
gence speed of the system. For this test also, a rather simple image is used
(see the inset), containing four square objects. The squares have different
gray values, which lead to different total latencies tlat. The brightest object
is always processed at iteration zero. The second object is processed at it-
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Figure 6: The input image (N D 32 £ 32 pixel) consists of two rectangles with
averaged gray values of 100 and 120 and different noise (

p
snr 1 down to 1).

(A) RAMP as a function of latency and noise. We set T D 0.05, D D 5, a D 0.5,
and q D 10. (B) Averaged number of iterations to segment a certain square as a
function of the unit latency L. The input image (N D 32 £ 32 pixel) consists of
four squares with different gray levels (inset). We set D D 3, snr D 1, a D 1,
and q D 4.

eration tlat D 1 £ L, the third object at iteration tlat D 2 £ L, and so on. The
unit latency L is varied between 0 and 14 iterations (abscissa). With a unit
latency of L D 0, all objects are processed simultaneously.

In 200 simulations using different initial random con�gurations, the av-
erage computational time (tcomp, in number of iterations) is determined to
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segment a certain square and plotted against the unit latency L. We de�ne
tcomp D tseg ¡ tlat, where tseg is the actual iteration time reached when a given
square is completely segmented and tlat the total latency for this square. We
use this particular measure because at iterations t < tlat, nearly no computer
time is allocated for the processing of that particular square.

In Figure 6B one can see that at L D 0, the averaged number of iterations
to segment a square is nearly the same for all four objects (tcomp ¼ 5.7). With
increasing latency, the number of iterations necessary for the segmentation
is decreased for all squares, until a plateau is reached (tcomp ¼ 3.1). The
number of iterations until a square is segmented is reduced by nearly 50%
as compared to L D 0.

9 Discussion

9.1 Comparing the Algorithms. In this study we compared different
versions of update algorithms for image segmentation in spin-lattice mod-
els and tried to �nd a solution to several of the most common problems
associated with them. Figure 3 is exemplary for these problems, which un-
fortunately are very generic such that it is much easier to maladjust the
update algorithm rather than to �nd an acceptable parameter set. In par-
ticular, it is almost impossible to �nd such a set for nasty scenes like the
one in Figure 3, which looks so simple. Even with 20,000 iterations in the
annealing schedule, the local update algorithm still fails to produce the cor-
rect result, because the extent of the local similarities in the border of the
image is very small. A much slower annealing would ultimately achieve a
correct segmentation, but 20,000 iterations took more than 10 hours on our
workstation. Faster annealing leads to a failure in even the large rectangular
areas of the image, resulting in a patchwork structure. Commonly used ver-
sions of cluster update algorithms (Blatt et al., 1996) in principle could lead
to a fast and correct labeling of this image, but the range of temperatures for
which this will be achieved is in many cases rather small. Figure 3 demon-
strates that it is smaller than 0.03 (= 0.32–0.35) for this particular picture,
and the results after 500 iterations are unsatisfactory. In fact, after several
hours of trying to produce better results with this algorithm by adjusting
the temperature in ever �ner steps, we gave up.

The novel ECU-algorithm that we designed, on the other hand, produced
exact results within only 40 iterations at low temperatures. Thus, our algo-
rithm makes annealing unnecessary (like all cluster update algorithms). In
addition, it is robust with respect to the chosen temperature. This usually
allows setting the temperature within wide ranges.

Real images were segmented with the same speed and accuracy. Only
for the paraglider image did we spend some time trying to �nd the opti-
mal parameter set, which �nally reduced the number of iterations to 13.
For the moose and the painting of the lying women, we set the parame-
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ters in a single shot according to our previous experiences. Thus, in these
cases, we needed some more iterations to reach the �nal result; neverthe-
less, segmentation took less than 5 seconds without having particularly op-
timized the program code on our SUN SPARC 20 with respect to speed.
In addition, our algorithm is able to recover even �ne details (like the
antlers of the moose) and structures that fade into the background (like
its legs) will be labeled correctly. Furthermore, the image of the paraglider
shows that even rather strong luminance gradients (sky) will be toler-
ated and correctly treated. The painting demonstrates that complex bent
shapes, like the body of the women with its arms in different positions,
are also correctly recognized as long as they are connected. In general,
we found that segmentation failed to match our own expectations only
in those cases where contextual knowledge is necessary to bind objects cor-
rectly.

9.2 Visual Latencies Revisited. Intriguingly, the initial starting point
for this study was the realization that our own older studies (Opara &
Wörgötter, 1996; Wörgötter et al., 1996) needed to be pursued in a different
algorithmical context in order to better advertise the idea of using visual
latencies in image segmentation.

Latencies are observed in every sensorial system of the brain. In particu-
lar, it has been reported that different luminance levels will induce different
propagation delays such that the neuronal activity arrives with a differ-
ent latency in the visual cortex (Levick, 1973; Bolz, Rosner, & Wässle, 1982;
Sestokas, Lehmkuhle, & Kratz, 1987; Gawne, Kjaer, & Richmond, 1996). In
our older studies we introduced this concept into a spiking neural network,
and we showed that latencies strongly improveobject segmentation in many
cases. Top-layer (cortical) neurons of our network representing a bright ob-
ject are active earlier than those representing a dark object. Consequently,
neuronal assemblies that re�ect these different objects can synchronize one
after the other without mutual disturbance. Thus, these studies suggested
that sensorial latencies could play a role in information processing in the
brain, as have experimental studies in cat and monkey (Gawne et al., 1996;
Wörgötter et al., 1996).

From the viewpoint of computer vision, however, the latency mechanism
in the spiking neural network had only a conceptual character because the
total CPU time allocated in order to analyze even simple scenes was very
large, resembling that obtained with local update algorithms. Therefore, the
question for us arose as to how to implement a visual latency mechanism
and avoid this problem. This �nally led us to the ECU algorithm, which
by itself outperforms several other spin-lattice segmentation algorithms. In
addition, we observed that its performance can still be enhanced by about
50% using visual latencies, and the effect is more pronounced for good
signal-to-noise ratios.
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10 Conclusions

The problems inherent in low-level image segmentation are so complex that
the existence of a single optimal algorithmic solution is rather unlikely. Cur-
rently feasible, however, are attempts by which the performance limits of
individual algorithmical classes are pushed forward in order to achieve bet-
ter performance. The comparison of the different spin-lattice segmentation
algorithms and the introduction of the ECU algorithms in this study were
meant to contribute along this line. The second goal of this and our older
work (Opara & Wörgötter, 1996) was to pursue a neuronal algorithmical
concept (latencies) over different implementation stages in order to arrive
at a solution that can be used under the close-to real-time requirements of
computer vision problems.
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