
Introducing Visual Latencies into Spin-Lattice Models for Image 
Segmentation: A Neuromorphic Approach to a Computer Vision 

Problem 

Ralf Opara and Florentin Worgotter 
Dept. of Neurophysiology, Ruhr-Universitat Bochum, 

D-44780 Bochum 

Abstract 

In this study we will show how a n  algorithmic prin- 
ciple which might play a role in information process- 
ing in the brain of higher vertebrates - the so called 
visual latencies - can be transferred with high ef ic iency 
to  a model system which is better suited for implemen- 
tation o n  conventional computer hardware. To this end 
we assign luminance dependent temporal delays (laten- 
cies) to  the individual pixels of a n  image. This temporal 
structure of the input  data stream then accelerates and 
improves the relaxation of a spin-lattice labeling algo- 
rithm for scene segmentation. 

1. Introduction 

The goal of neuromorphic modeling is to  bridge 
the gap between the complex information processing 
principles in the brain and their technical application 
in most cases on conventional computers. The basic 
“hardware” of both domains differs vastly such that 
a direct transfer of algorithms between both is almost 
always impossible. Thus, a successful technologically 
relevant application of an “algorithm taken from the 
brain” requires the extraction of the underlying mech- 
anisms, the reduction to  their basic algorithmic princi- 
ples and finally the adaptation to  the computer prob- 
lem and the employed hardware. 

The task of image segmentation may serve as an 
example. In the brain evidence exists that synchro- 
nization between the activity of neurons could subserve 
image segmentation [3], [6], [9]. On a conventional com- 
puter one would, however, rather not emulate the com- 
plex firing dynamics of nerve cells in order to  segment a 
scene. Instead other more efficient labeling algorithms 
are employed and only the biological principle of shar- 
ing a label (i.e., “being synchronized”) still indicates 

the initially existing relation between image segmenta- 
tion in the brain and on the computer. 

In a similar way, the objective of this study is to  
adapt a neuronal algorithm to the requirements of 
a computer vision problem. The physiological back- 
ground we take into consideration is based on the fact 
that every sensorial neuron only responds after a cer- 
tain delay (called “latency”) to  a stimulus [8], [l], [13]. 
In the visual system the latency of a neuron is shorter if 
the stimulus luminance increases. Thus, the population 
response of a group of neurons reacting to  a visual scene 
containing objects of different luminance will get spread 
out in time. Recently we have shown experimentally 
and by means of an artificial neural network that this 
initial temporal spread of activity introduced by the 
response latencies could be used to  improve segmenta- 
tion of a scene [17], [12]. Obviously, the dynamics and 
the architecture of an artificial spiking neural network 
cannot be smoothly represented on regular hardware. 
On the other hand, here we show that the principle of 
latency induced temporal spread of image information 
can be introduced with high efficiency into spin-lattice 
models for scene segmentation, which are much better 
adapted to  common computer architectures. 

We will first give an overview of the model. Then we 
will show an example of how the system segments a vi- 
sual scene and finally we will quantify the convergence 
speed of the algorithm. 

2. The Model 

The schematic diagram of our model is shown in 
Fig. 1. It consists of two main parts. 

The first part of the system (Fig. 1) contains a lu- 
minance dependent delay line. Pixels with a high lu- 
minance are processed earlier than those with a low 
luminance. The temporal structure of this data stream 
determines the interaction between spins within the 
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part 1 part 2 
is only accepted with a certain probability (Metrouolis 

where T is the temperature of the system and AE the 
energy difference between the old and new configura- 
tion. At high temperatures (T + 00) all configurations 
are accepted, while at low temperatures (T 0) a new 
configuration is only accepted, if the energy of the sys- 
tem is decreased. The annealing schedule starts with 

tpenaenr . .  
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Figure 1. Schematic diagram of the system. 

second part of the system. The second part consists 
of spins which are arranged on a two dimensional lat- 
tice of size N = nzny. Each spin can take q different 
labels [5], [14]. Within this spin lattice the algorithm 
applied tends to assign the same label to  spatially'ad- 
jacent data points that reach the spin lattice with high 
temporal coherence (same latency) while data points 
with strong delays between them will get different la- 
bels. This is realized by minimizing the energy function 
which describes the system (Eq. 1). Two spins i and j 
are interacting with a coupling strength wtl .  The cou- 
pling strength wz3 depends on the temporal coherence 
of pixels i and j in the input data stream. The cou- 
pling strength is high within an object (high temporal 
coherence) while it is low or negative between objects 
(low temporal coherence). 

The energy of the system is a function of the la- 
bel configuration and the connection strength between 
spins. 

N 

~ ( t )  = - ~ a , l ~ ~ , ~ ~ q ( ~ t ~ ) q ( ~ t 3 ) 1  +  at) (1) 
a=1  EN, 

labels of spin i and j ,  
connection strength between spins at 
location i and j ,  
kronecker function, 
neighborhood of spin i, 
global cost function for label ui, 

q(At,) : binary coupling term. Interaction of 
two spins i and j is only possible if the time is larger 
than the latencies of both spins, 
i.e., q(At,) = 0 if t - tlat(i) < 0 else q(Ati) = 1. 

There are several approaches to  minimize an energy 
function. Most approaches use local update algorithms 
[4], [5]. Local update algorithms are easy to  implement, 
but converge slowly, because only single spins are up- 
dated. To avoid local minima a new spin configuration 

a high temperature and for every iteration the temper- 
ature is decreased according to  T ~ + I  > C/log(l + IC) 
[4],[5]. If the temperature is decreased too fast or the 
initial temperature is chosen too small, the system will 
reach only a local minimum. 

Thus, the problems with local update algorithms are 
twofold: 1. A large number of iterations is needed to  
guarantee the convergence to  a global minimum and 
2. Very many iterations are necessary to  escape from a 
local minimum for which already a large number of uni- 
form labels has been assigned, because all those spins 
have to be flipped individually. 

In order to circumvent these problems we use a dif- 
ferent approach which is similar to  cluster update al- 
gorithms known in statistical physics [15], [16]. Clus- 
ter update algorithms have the advantage, that large 
clusters of spins can be flipped simultaneously. Thus, 
to escape from a local minimum with large number of 
similar spins only one iteration is necessary. 

The dynamic of the used cluster update algorithm 
is the following: Clusters can only be formed between 
spins which are in the same state (same label). The 
probability that two spins are bound together to  one 
cluster depends on the temperature T and the coupling 
strength wi,j of the two spins and is given by: 

At high temperatures the average cluster size is small 
(wi , j /T -+ 0) while at lower temperatures the possible 
cluster size increases. The clusters, calculated accord- 
ing to Eq. 3, are flipped with a certain probability de- 
pending on the energy gain of the system (see above). 

3 Results 

As an example Fig. 2 shows snapshots of the label 
distributions of the model if a stimulus (Fig. 2, upper 
left) is given to the system. The stimulus consists of a 
128x128 image, containing a paraglider, a shaded sky 
and some hills. The panels show the label distribution 
of the system at different times (t 2 0). The labels are 
coded as gray values. Spins with the same label (same 
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gray value) belong to  one object, while different gray 
values indicate the assignment to different objects. 

The simulation starts with a random label configu- 
ration and each label is represented by nearly the same 
number of spins. 

During the first iterations only the brightest objects 
(small latency) are processed (paraglider and lower part 
of the sky, Fig. 2 iteration 0-2). According to  the com- 
petition included in the dynamics of the system the 
spins of the paraglider will receive the same label while 
spins representing the sky will get a different label. 

input 
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t=13 
Figure 2. Segmentation result. 

Due to the latency processing of the parts with a 
lower luminance does not start before iteration 8. After 
iteration 13 the whole image is segmented into four 
different areas. 

The efficiency of the introduced algorithm can be 
judged from iterations 12 and 13, where a surface of 
nearly 40*128 pixels (hills) is flipped during only one 

iteration. As mentioned above local update algorithms 
on the other hand would need numerous updates and 
a careful annealing schedule to  achieve this. 

The next figure (Fig. 3) shows the influence of the 
latency differences on the convergence speed of the sys- 
tem. For this test a rather simple image is used (Fig. 3, 
inset), containing four square objects. The squares 
have different gray values which lead to  different to- 
tal latencies tlat. 

The brightest object is always processed at iteration 
zero. The second object is processed at iteration tlat = 
1 x L and the third object at iteration tlat = 2 x L and 
so on. The unit-latency L is varied between 0 and 14 
iterations (abscissa). With a unit-latency of L = 0 all 
objects are processed simultaneously. 

n 

stimulus I 

0 2 4 6 8 1 0 1 2 1 4  

unit-latency L / #iterations 

Figure 3. Convergence speed of the algo- 
rithm. 

In 200 simulations the average computational time 
(tcomp, in number of iterations) is determined to  seg- 
ment a certain square and is plotted on the y-axis. We 
define tcomp = tseg - h a t ,  where tseg is the actual iter- 
ation time reached when a given square is completely 
segmented and tlat the total latency for this square. 
We use this particular measure, because at iterations 
t < tlat nearly no computer time is allocated for pro- 
cessing of that particular square. 

In figure 3 one can see that at L = 0 the averaged 
number of iterations to  segment a square is nearly the 
same for all four objects (tcomp M 5.7). With increasing 
latency the number of iterations necessary for the seg- 
mentation is decreased for all squares, until a plateau is 
reached (tcomp M 3.1). The number of iterations until a 
square is segmented is nearly reduced by 50% as com- 
pared to  L = 0. The brightest square benefits from the 
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latency mechanism, because the relaxation of its spins 
is not disturbed by those of the other objects during the 
first iterations. It wins the competition for a certain la- 
bel, because the spins of the other objects are still in 
disorder. The darker objects, on the other hand, take 
advantage in the ordered state of the brighter object, 
because in the dark objects all labels are punished that 
are already occupied by the bright object, leading to  a 
faster convergence. 

4 Discussion 

Earlier approaches that utilize visual latencies have 
been described by Burgi and Pun [2]. In the filter 
model proposed by these authors latency is used in or- 
der to  reduce the number of data points. Only the 
most relevant features and areas of the input image are 
processed, while the others are not. In the course of 
our work several steps have been undertaken to  pro- 
vide evidence that visual latencies can be used to  im- 
prove image segmentation. To this end we have ana- 
lyzed neuronal responses in the visual cortex by means 
of visually evoked potentials and demonstrated that 
this bulk neuronal signal synchronizes only after the 
visually induced latency [17]. In an artificial neural 
network latencies could be used to  raise the number of 
discriminable objects and to  improve the segmentation 
of simple scenes [la]. Only by the transfer of this al- 
gorithmic principle to  a spin-lattice model, however, it 
was possible to  achieve a high processing speed and a 
sufficient accuracy to  be able to  segment real images in 
a robust way. 

Furthermore we were able to  show, that cluster up- 
date algorithms can successfully be applied to  an image 
segmentation task. These algorithms are well estab- 
lished in statistical physics to  avoid the critical slowing 
down at  a phase transition of spin lattices. Therefore 
they are well suited to  overcome problems which are 
common in local update algorithms. 
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