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Abs t r ac t .  For a consistent analysis of a visual scene the different fea- 
tures of an individual object have to be recognized as belonging together 
and separated from other objects and the background. Classical algo- 
rithms to segment a visual scene have an implicit representation of the 
image in the connection structure. We propose a new model that uses 
an image representation in the time domain, operating on stimulus de- 
pendent latencies. Such stimulus dependent temporal differences are ob- 
served in biological sensory systems. In our system they will be used to 
define the interaction probability between the different image parts. The 
gradually changing pattern of active image parts will thereby lead to the 
assignment of the different labels to different regions which leads to the 
segmentation of the scene. 

1 I n t r o d u c t i o n  

The segmentation of a visual scene is a fundamental  process of early vision, 
where elementary features are grouped together into discrete objects and objects 
are segregated from each other and the background. In the brain of the higher 
vertebrates it has been suggested that  this could be achieved by synchronization 
between cells [3], [5], [7]. It  has also been supposed that  temporal  differences 
of neuronal signals could play an important  role in the perception of higher 
vertebrates [2], [6], [8]. 
In this paper  we present an labeling algorithm tha t  utilizes stimulus dependent 
temporal  differences (latencies) to segment visual scenes. This temporal  s t ructure 
is the only representation of the image in our system. 
We will first give an overview of the used labeling model. Then we will show an 
example how the system segments a visual scene containing a shaded surface, a 
square and a disk. Finally we will discuss the results. 

2 T h e  M o d e l  

For the task of image segmentation a labeling algorithm is used which is based 
on the interaction of labels in order to minimize the energy of the system as 
given in Eq. 1. The energy function is not related to observables of a physical 
system, but  only a quanti ty to describe the interaction of labels. The dynamics 
of the system will tend to assign the same label to units representing one object 
and a different label to units representing another object. 
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The units are arranged on a two dimensional lattice of size N = N=xNy. Each 
unit i = (i=, iy) can take k different labels a i e  {1..k}. 

The energy of the system is depending on the label configuration and the con- 
nection strength between units. 
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: number of units at the two dimensional lattice (N = N=xNy), 
: labels of unit i and j, 
: connection strength between unit at location i and j, 
: time dependent binary coupling term Pi B E {0, 1} which indicates, 

if two units are interacting at anyone point in time or not, 
: kronecker function, 

IIJ - i H  : distance of unit i and j, 
dins= : maximal allowed range of interaction. 

In classical label algorithms for image segmentation [4] the connection strength 
wij = wji between unit i and j defines the similarity between two locations i and 
j .  In our approach we will show that  it is sufficient to have a constant connection 
strength for all units, while the probability for an interaction p B is given in the 
time domain. 

Thus, the coupling term Pie(t) adds an additional time dependence to the dy- 
namics of the system. At first each unit is assigned a time dependent probability 
described by 

( t  -- t i )  2 
Pi(t) = a e x p (  2 )" (2) 
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ti is the characteristic latency of unit i given as a function of the contrast C of 
pixel i (t~ --+ c~, i f  C --+ 0). The probability for an interaction P / o f  unit i and 
j is given by the product of the corresponding probabilities Pi (Eq. 2) of unit i 
and Pj of unit j. For a given point in time we have P~(t) = Pi(t)Pj(t). Finally 
we restrict the approach to binary interactions Pi s E {0, 1}. The probability 

that  a binary interaction at time t is actually taking place (pS  = 1) is given by 

P / j  (t). In Fig. 1 the interaction probability is shown as a function of time for 
three units having different characteristic latencies. 
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Two units (i, j)  have rather similar laten- 
cies while the third unit (k) has a much 
longer latency. The probability of inter- 
action p1 (t) at time to is much larger for 
unit i and j as compared to unit i and 
k (Fig. 1). The effect of the time depen- 
dent interaction term is that units rep- 
resenting bright objects are responding 
earlier than units which represent darker 
objects. This yields to a temporal sep- 
aration of the different parts of the in- 
put image. In Fig. 2 it is shown that  the 
temporal structure by itself is sufficient 
to segment a visual scene (the connection 
strengths wij are constant for all units). 
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Fig.  1. The probability P for 
the interaction of three units i , j  
and k, as a function of time. 

3 R e s u l t s  

As an example Fig. 2b shows the label distribution of the units if a stimulus 
(Fig. 2a) is given to the system. The stimulus consists of two objects with uniform 
distributed gray values g a square (~sq~av~=240) and a disk -gdisk : 40), a shaded 
surface ( g r o i n  -~ 60, g m a x  = 220 ) and a background ( -gbackground  = 128). 
The simulation starts with a random label configuration thus each label is rep- 
resented by nearly the same number of units (Fig. 2c). 
During the first iterations only the most salient objects (low latency) are pro- 
cessed (square and bright parts of the shaded surface) (Fig. 2b iteration 10 and 
350 and Fig. 2d). According to the dynamics of the system the units of the 
square will receive the same label. This is indicated in Fig. 2c. The number of 
assigned units to the label square is increased after a few iterations. The plateau 
for the square (Fig. 2c) in the beginning, however, also contains units from other 
regions which by chance have the square label. These will eventually be removed 
and the plateau reaches its final level. Due to the latency the parts with a lower 
luminance are not processed at this time (Fig. 2d). 
At later times the case is quite different. Now the bright objects are processed 
with a small probability, while the darker image parts are processed with a high 
probability (Fig. 2b, 2d). 
One remarkable effect occures after ~ 350 iterations (Fig. 2), where the prob- 
ability distributions of the shaded surface and the background are overlapping. 
In spite of the overlapping probability distributions, the background and the 
shaded surface are segmented with different labels, except for a small part at 
the border of background and shaded surface. The assignment of different la- 
bels to the background and the shaded surface occures due to the history of the 
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Fig. 2. a: The stimulus consists of two objects with a uniform distributed gray value, 
a shaded surface and the background b: Label distribution of the system at different 
times. The labels are coded as gray values. Units with the same label (same gray value) 
belong to the one object, while different gray levels indicates the assignment to different 
objects, c: The number of units assigned to a certain label, d: The number of units 
which interact at a given point in time. 

processing of the objects and the small overlapping area. 
In s tandard algorithms for image segmentation [4] such smooth transitions be- 
tween two objects are also hard to segment, because at this area the similarity 
between the objects is nearly the same as within an object. 

4 D i s c u s s i o n  

In our conceptual framework we show that  image segmentation can effectively 
be realised in the t ime domain. Therefore no implicit representation of the image 
in the connection structure is needed. Features with a high contrast  are thereby 
favored and will be processed earlier than objects tha t  do not "jump to the eye". 
This mechanism thereby mimics human perception [1] but  more important ly  it 
efficiently limits the information flow which needs to be evaluated at any point 
in time. 
To this end we were only concerned with the separation of image parts  by con- 
trast .  With  only a few restrictions other features (color, spatial frequency etc.) 
could also be included in the system. The integration of other features would 
lead to a more robust segmentation. 
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