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Abstract

For a consistent analysis of a visual scene the different features of an in-
dividual object have to be recognized as belonging together and separated
from other objects. In the brain of higher vertebrates it has been sug-
gested that this is achieved by synchronization of the activity of disjunct
nerve cell assemblies. However cross-talk between spatially adjacent im-
age parts occurs preventing efficient synchronization. As a consequence
image segmentation can be heavily impaired in network models. In these
cases, temporal differences, naturally introduced by stimulus latencies in
every biological sensory system, can strongly improve the performance of
the network.

1 Introduction

The segmentation of a.visual scene is a fundamential process of early vision,
where elementry features are grouped together into discrete objects and objects
are segregated from each other and the background. Image segmentation by
synchronized cell activity requires that a minimal phase difference exists between
cells belonging to the same assembly, while the phase difference to cells of another
assembly should be much larger. The temporal separation of two objects achieved
by such a mechanism, however, cannot exceed more than one half-cycle of the
underlying oscillation period, which is about 10-30 ms in the visual cortex [2].
Retinal latencies are contrast dependent and can span much larger ranges of 20-
120 ms [4],[5],[6], measured after a significant proportion of the response has built
up (e.g., 4th spike, [5]). The visual latencies in the cortex [7],[8] can, therefore, be
used for a contrast dependent grouping of the neuronal activity, leading to a larger
temporal separation of the cell assemblies, which strongly improves undisturbed
internal synchronization.

The system we present combines a conventional synchronization algorithms
with a conceptionally new algorithm that utilizes latency differences to enhance
the speed of synchronization for a cell assembly which represent one feature.
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2 The Model

The network consists of nine layers (Fig. 1). Neurons of each layer are arranged
in a three dimensional grid (for simplicity only the two-dimensional case is shown
in figure 1). The central column of Fig. 1 shows the connectivity pattern of the
multi-layer neural network. The architecture is related to the basic anatomy of
the primary visual pathway, however, largely omitting the spatial structure of
real receptive fields.
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Figure 1: Schematic diagram of the network. Lateral connections are only drawn
for the central column.

The membrane potential U for all layers [ is described by the following dif-
ferential equation (6= Kronecker function):

dU(;‘t’y”) = 6"'1(:”’)"'1 l-U(z,y, D)+ ,E, , V(i -z',y—-y',1=-U1); ifU<O
z ’y ¥

U = 0 else.

This is a low-pass differential equation with a time constant that in the first
layer depends on the image intensity I. The first part of the equation describes
the oscillator dynamics, while the second part is a spatial coupling term which
is incorporating excitatory (V; > 0) and inhibitory (V, < 0) connections. If a
neuron at position p'=(z’,y’,l') fires, the membran potential U of a neuron at p
= (z,y,1) is shifted by V.. Since U describes a concave function, synchronization
occurs necessarily as soon as V; is unequal zero [12]. The coupling V, leads to an
excitatory interaction within layers over short distances while inhibitory coupling
is predominate at long distances. The coupling strength decays exponentially
with increasing distance. © is the firing threshold. If the membrane potential U
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reaches the threshold © a spike is generated and U is reset to zero.

In the network two functionally different areas can be distinguished. The first
area is mainly responsible for the latency differences. In Fig. 1 it is labeled as
Retina and LGN. The second part labeled V1 causes fast synchronization and
feature binding, which is achieved by standard circuitry [9].

2.1 Latency Layer

In the visual system latencies arise due to complex electrochemical processes,
with which we are not concerned. Instead, at the input stage we use frequency
coding, that depends on feature contrast. To excite neurons in the next layer long
integration times (2-3 cycles) are used. As a result neurons with a high frequency
(high features contrast) at the input stage need less time (short latency) to excite
cells in layer two and three than neurons with a low frequency (low feature
contrast). This effectively mimics the different latencies of a real retinal signal.

Only sparse connectivity is used at this stage, to ensure a fast information
flow to V1 with less interference between different cell assemblies.

2.2 Synchronization Layer

The next stage synchronizes the neurons, and therefore binds the features. In
this area no additional latencies are introduced. The propagation time through
the layers is constant and neurons of a cell assembly, representing a certain fea-
ture, can group their activity fast. The grouping is undisturbed, because there
is no interference between objects with different contrast due to their different
latencies.

Layers in V1 have four different types of connections.

¢ Direct feedback inhibition between layers, to uncouple them from the input
activity.

e Lateral excitatory‘ feedback connections to speed up the propagation of
lagging activity, which is caused by noise in feature intensity or latency
times. The radius of lateral excitation on the same layer increases in the
upper layers. This makes it possible that increasingly larger regions are
involved in the synchronization process.

o Lateral excitatory connections between neuron at neighbouring location.

o Lateral inhibitory connections over a large distance.

3 Results

As an example Fig 2 shows the activity and phase differences of the network
response to a stimulus (inset) which consists of two square objects (a,8) with
equal contrast and a third () low-contrast object, all subject to 45% noise. The
contrast difference between (a,8) and () is 0.22 (enhanced in the graphic).
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The phase difference A®(z,y) = &(z,y) — @ of the current phase &(z,y) to
the averaged phase  := 3 2y ®(z,y) of each neuron is coded as grey level. As a
consequence, for a single simultaniously active cell assembly, the phase difference
Ad(z,y) is equal to zero (in Fig. 2 coded with middle grey). On the other hand,
if two cell assemblies are firing with maximal phase difference, one cell assembly
is coded as black while the other assembly is coded as light grey.
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Figure 2: Left: Horizontal bars indicate the standard deviation of the firing phase
o of the neurons that belong to one object (top=c, middle=4, bottom=-y) aver-
aged for the complete run. Standard deviation drops to zero in the higher layers.
Middle: Time course of the activity distribution. Pixel grey values represent the
firing phase. Above layer three two objects (a,) are separated in time from the
third (v) which has a longer latency. Neurons, which represent one object, ac-
quire synchrony (i.e., constant phase which is indicated by constant grey values)
in the upper layers and phases are different for different objects. Right: Average
firing frequency for all cells in arbitrary units. The frequency is higher in lower
layers with two peaks representing the two objects and constant at a single lower
value in the model cortex.

In the first three layers the lack of lateral interactions leads to random phase
difference AP between all neurons.

Due to the latency mechanism, features with a high feature contrast against
the background (o and 8 in Fig. 2) need less time to propagate through the
first layers (retina and LGN) than features with a low contrast (v in Fig. 2).
Features with a high contrast difference are separated across the model layers
after a few iterations (column 2 in Fig. 2). This spatial separation of the activity
permits an independent processing of features with different contrast, leading
to less interference between the features after the first processing stages. As a
consequence the speed of the synchronization between neurons coding the same
. feature is strongly enhanced and in the higher layers individual features are bound
together to form a consistent representation of the objects in the visual scene.
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The response strength remains unaffected by the latency mechanism. Thus,
even contrast gain control mechanisms could be applied at higher levels without
interfering with the already existing temporal separation. In addition, more
complex spatio-temporal filter operations (e.g., oriented receptive fields) could
be introduced after the initial latency dependent separation, which would allow
for a more realistic feature detection (e.g., orientation discrimination, [10]).

4 Performance

The performance of the network is determed in a series of simulations, in which
the principal parameters, contrast and latency, are varied. The performance
test shows the quality of object segmentation in layer 9 measured by the firing
coherence rate between two adjacent objects. A high coherence rate of 1 indicates
a strong binding between the cell assemblies, which implies, that they belong to
one object. On the other hand two objects are indicated by a low coherence rate.
Only in a range of 30% up to 70% coherence the interference between the cells is
ambiguous. In such a case the system cannot clearly decide if the cell assemblies
are belonging to one or two objects. The goal for the system is to minimize this
ambiguity range. ‘
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Figure 3: Coherence rate between two cell assemblies representing two adjacent
objects as a function of contrast and latency.

In Fig. 3 the coherence rate is shown as a function of contrast and latency.
At long latencies the range of ambiguity is small because transition from area 1
to area 2 is steep. Down to shorter latencies the quality of separation decreases.
This is indicated by a larger transition range.

5 Discussion

. In our conceptual framework the combined application of several physiologically
inspired aspects of real neural networks (i.e., oscillation, synchronization) to-
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gether with the newly introduced latency mechanism simultaneously achieves
efficient object binding and image segmentation. To this end we were only con-
cerned with the separation of image parts by contrast. The enhancement of
assembly formation -achieved as the result of the latency mechanism can be used
as a first but highly efficient step in image analysis problems. It is very likely
that these originally formed cell assemblies provide not more than the basis for
an immediately following regrouping by other mechanisms to analyze more com-
plicated visual problems (e.g., objects with a graded shading). While we did not
attempt this, it is clear that the model provides no restrictions for a possible
rearrangement of the activity, which could for instance be achieved by feedback
from higher visual areas [11].
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