
J Intell Robot Syst (2012) 68:165–184
DOI 10.1007/s10846-012-9683-8

A Novel Trajectory Generation Method for Robot Control

KeJun Ning · Tomas Kulvicius ·
Minija Tamosiunaite · Florentin Wörgötter

Received: 10 September 2011 / Accepted: 30 May 2012 / Published online: 16 June 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract This paper presents a novel trajectory
generator based on Dynamic Movement Prim-
itives (DMP). The key ideas from the original
DMP formalism are extracted, reformulated and
extended from a control theoretical viewpoint.
This method can generate smooth trajectories,
satisfy position- and velocity boundary condi-
tions at start- and endpoint with high precision,
and follow accurately geometrical paths as de-
sired. Paths can be complex and processed as
a whole, and smooth transitions can be gener-
ated automatically. Performance is analyzed for
several cases and a comparison with a spline-
based trajectory generation method is provided.
Results are comparable and, thus, this novel tra-
jectory generating technology appears to be a
viable alternative to the existing solutions not

Parts of this work have been published in preliminary
form at ICRA 2011 [38].

K. Ning (B) · T. Kulvicius ·
M. Tamosiunaite · F. Wörgötter
Bernstein Center for Computational Neuroscience,
Inst. of Physics III, University of Göttingen,
37077 Göttingen, Germany
e-mail: nkj@sjtu.org

K. Ning
Research & Technology, Lenovo,
100085 Beijing, China

only for service robotics but possibly also in
industry.

Keywords Trajectory generation ·
Dynamic trajectory joining · Control theory ·
Machine learning

1 Introduction

Trajectory planning is one of the most fundamen-
tal and important research fields in robotics. For
a robotic manipulator, the trajectory generator is
used to generate a time history of relevant vari-
ables: the desired positions, velocities, and accel-
erations in state space [1], i.e., joint space or task
space (Cartesian space). The resulting trajectory
signals are then sent to the motion control system
(also known as trajectory tracker) at specific time
intervals. The motion control system guarantees
that the robot manipulator executes the planned
trajectory [1].

Generally, the trajectory generation problem
can be divided into two separate sub-problems
[2]. The first one is called “path planning” and
has to design path geometry by providing the se-
quence of points in space needed to execute a task.
The second one is called “trajectory planning and
optimization” and includes designing of the tem-
poral (dynamic) structure of the trajectory based
on optimization criteria. The second aspect covers

166 J Intell Robot Syst (2012) 68:165–184

many different issues and is heavily dependent on
the specific application requirements.

When planning takes place in joint space, we
can specify trajectories for each independent joint.
A common method for joint space trajectory
control uses lower order polynomials to provide
interpolating points at servo rates between user-
specified via-positions [1, 4]. Using one higher
order polynomial to pass through all the via-
points (also known as way-points) is not practical,
because it will result in large oscillations of the
trajectory. Since polynomials of two neighbor-
ing regions can be joined in a continuous way,
we can impose specific boundary conditions (i.e.,
position, and higher derivatives) onto several
lower order polynomials to obtain continuous tra-
jectories. There are some other solutions for pro-
viding smooth transitions between the specified
points in joint space, e.g., [4]. The problem is
that in task space, one only knows the initial and
goal positions of the end-effector, and can not
constrain the intermediate path. Planning in joint
space is popular in point-to-point applications as
it is easy to implement without having to deal with
the kinematics singularity problem [1].

On the other hand, when planning a trajectory
in task space, we can completely specify the de-
sired trajectory of the end-effector. As planning
in task space is easier to comprehend for practical
applications and can be used for completing versa-
tile operations, it is more popular and widely stud-
ied. However, for task space planning, we need
to take care of the kinematic singularity problem
[1]. For most applications, we can describe the
path information by a sequence of via-points in
the task space. A popular approach is to utilize
some simple curves (e.g., lines, arcs or parabolas)
to setup a whole path in task space, depending
on the assigned via-points. The problem is how
to connect separate segments, in order to create a
smooth path. Common solutions are based on the
introduction of zones in which an interpolation
between the two adjacent segments can be per-
formed [2]. Once we get the planned path, trajec-
tory planning and optimization can be executed,
depending on the task-specific requirements and
criterions.

The literature about traditional trajectory plan-
ning and optimization is substantial. Optimization

topics cover energy [29, 30], jerk (the third deriv-
ative of position) [29, 31–33], time [30, 33–36],
etc.; and different optimization techniques are em-
ployed (e.g., [30, 36]) as well. Generally, these ap-
proaches are complex and require physical models
(dynamic parameters, specifications of the actu-
ators, etc) of the studied robotic manipulators.
Some of them also need to provide predefined
path information. Mostly, these research and de-
velopment activities are motivated by the increas-
ing need for improved motion performance for
achieving higher productivity in industry.

In the current paper we will address the prob-
lem of trajectory planning and generation provid-
ing a novel and versatile alternative approach that
combines aspects from control engineering with a
dynamic systems perspective.

In general there are two, often conflicting,
demands on trajectory generation: On the one
hand, trajectories should arrive at specified points
in task space (start- and endpoints as well as
via points) with small error - a demand usually
existing for industrial robots. On the other hand,
trajectories should be smooth, human-like, and
robust against disturbances - a demand found in
humanoid and/or service robotics, e.g., [3]. Two
fundamental methods (and many variations
thereof) exist, which address these demands to
different degrees. In a somewhat simplified view
one can broadly state that Splines (and other
lower order polynomials) are very well suited for
via-point control [1, 4–9], whereas trajectories
generated by a dynamical systems approach
(dynamic motion primitives, DMPs [10–13]) are
smooth and robust against perturbations.

The goal of the current study is to augment
the DMP framework such that it will obtain
some of the advantages of via-point control. This
paper will, thus, in the next Section 1.1 intro-
duce DMPs so that we can discuss their pros and
cons and begin developing our own framework.
In Section 1.2 we will state the purpose of our
investigation. In Sections 2 and 3, we present our
new solution for trajectory generation. Some case
studies are shown, disclosing more details and
implementation issues are provided in Section 4.
Section 5 will then compare our approach to oth-
ers showing that the new trajectory generation
algorithm presented here is a useful alternative to

J Intell Robot Syst (2012) 68:165–184 167

the existing methods. In the Appendix we give a
summary of the required parameters.

1.1 Introduction - DMPs

The DMP algorithm proposed by Schaal and
Ijspeert et al. is “a formulation of movement prim-
itives with autonomous non-linear differential
equations whose time evolution creates smooth
kinematic control policies” [10].

The original DMP algorithm consists of two
sets of differential equations namely a canonical
system τ ẋ = h (x) and a transformation system
τ ẏ = g (y, f (x)) [10–13]. The canonical system is
used to represent the phase of the movement
process. The transformation system is a basic
point attractive system utilized to generate the
desired movement.

For the point attractive behavior (reaching
movement), Ijspeert et al. instantiated the trans-
formation system by a second-order dynamics, as
follows [13],

τ ż = αz(βz(g − y) − z) + f, (1)

τ ẏ = z, (2)

f (x, v, g) =
N∑

i=l

�iwix/

N∑

i=l

�i (3)

where

�i = exp
(−hi(x − ci)

2) .

And the exponential system described by

τ ẋ = −αxx. (4)

In Eqs. 1–4, αz, βz, αx are time constants, τ

is a temporal scaling factor. y, z and ż can be
interpreted as desired position, velocity and ac-
celeration, g is a given goal state. Centers ci and
widths hi characterize the Gaussian functions ψi,
wi denotes weights, and the other variables are
used as state variables. The phase variable x is a
substitute for time, and v is a phase velocity [13].

The function f , shown in Eq. 3, is a nonlinear
function approximator [14], which can be trained
(by adjusting the weights wi) to approximate dis-
crete movements of various shapes. By appropri-

ate parameter settings when the above-mentioned
second-order system is critically damped, x acts
as a “gating term” to ensure that f = 0 at the
end of the movement. If the weights wi in Eq. 3
are bounded, the combined system asymptotically
converges to the unique point attractor g. A more
detailed explanation can be found in the literature
[10–13].

In order to avoid discontinuities in acceleration
Eq. 1 can be replaced by

τ ż = αz(βz(r − y) − z) + f, (5)

where

τ ṙ = ag(g − r). (6)

The original DMP framework can be used to
implement discrete as well as rhythmic control
policies [15], and has exhibited great potential for
learning from demonstration due to its flexibility
and robustness against perturbations. Several ap-
plications using DMPs have been shown in the
field of humanoid robot research. For example,
tennis swings [11], reaching with obstacle avoid-
ance ability [16, 17], constrained reaching [18],
drumming [19], “Ball-in-a-Cup” game [20], hitting
and batting [21], handwriting generation [22], etc.

1.2 Introduction - Goals of This Study

The basic DMP formulation has some limitations
which restrict its usefulness for trajectory genera-
tion applications. For example, limited by its for-
mulation and structure, the original DMP can not
be used to directly incorporate a target velocity
or a via-point (but see [21]). It always asymptot-
ically converges to the final point and the speed
of approaching the target is zero. These aspects
make it not practical to chain several trajectory
segments together, because a robot will have to
“intermittently stop” at all the via-points. By start-
ing the next DMP while the previous one is not
totally finished one can create smooth connections
of the DMPs, but this will reduce control over
the accuracy of the path, and lead to a limited
capability to steer the velocity at the connection
points.

In the current study we will therefore modify
the DMPs framework to incorporate via-point

168 J Intell Robot Syst (2012) 68:165–184

control and to allow for the chaining of DMPs.
This, way we will gain a higher level of accuracy,
but we will also partially loose some of the DMPs’
original properties. Specifically:

(1) The algorithm will be based on an analysis of
the original DMPs from a control theoretical
viewpoint considering several aspects. This
is important because it extends the current
literature on DMPs and allows employing
conventional and well-established methods
for control via second-order systems.

(2) From this, we will design a trajectory gen-
erator by modifying DMPs. The resulting
algorithm is, thus, removed from the original
framework. This is done to target a different
application field, more related to low-level
control under given, rigorous error bounds.

(3) Thus, the here presented method has its own
application field (chained trajectories with
precise boundary conditions and disturbance
robustness). In this field it can compete (or
even excel) in applicability with the original
DMPs as well as with Splines and is therefore
a viable alternative.

(4) The new algorithm does reintroduce strict
time dependency. This is required for the
above mentioned target application fields
where high-accuracy along the trajectory is
needed and obtained by introducing explicit
timing-laws [1].

2 The Trajectory Generator Based on DMP

In this section, we will start with the task descrip-
tion and then present detailed information on our
method.

2.1 Specification Goals for the Trajectory
Generator

Figure 1a shows a schematic plan of an example
task. The robot has to move from point A to
B along the straight line AB, but the initial and
final velocity vectors are not zero. Obviously the
actuators of a robot would have to provide ex-
tremely high and unacceptable torques at the two
ends. Figure 1b shows the solution of a popu-
lar polynomial-based method, which can provide
a smooth and safe trajectory but remains ill-
defined at intermediate positions. Figure 1c shows
a natural and smooth solution: at the two con-
nection points, transitions zones are introduced
to satisfy the specified boundary conditions and
to smoothen the response of the physical sys-
tem. Generally, traditional solutions need to
insert intermediate points and fit the zones by
splines/polynomials [1], or simple curves (e.g.,
for industrial applications, circular arcs are em-
ployed). In this paper, as the case shown in
Fig. 1c, we target to attain smooth transitions
using our newly developed method. In the mid-
dle of the path, this trajectory should match
the desired pathway and velocity profile. In the
two end zones the trajectory has transition seg-
ments. The segments should arrive at the target
point with the assigned velocity vector (orien-
tation and magnitude) as accurately as possible.
Also, the trajectory has to be smooth (i.e., the
velocity change of the whole process must be
continuous). A suitable compensation introduced
during the transition segments will reduce jerk,
leading to smooth movement of a real robotic
manipulator.

X
Y

Z

O

A

B

v2

v1

X
Y

Z

O

A

Bv1
v2

X
Y

Z

O

A
B

v1
v2 B

v2

(a) (b) (c)

Fig. 1 A schematic plan of a task. a A robot needs to move
from point A to point B, with the assigned velocities v1 and
v2. Obviously, a straight line (dashed) is not practical for a
robot platform. b A smooth trajectory can be implemented

like the solid one, but intermediate positions remain un-
defined. c This track shows a smooth and acceptable solu-
tion, and is everywhere defined

J Intell Robot Syst (2012) 68:165–184 169

In summary, the following requirements are
fundamental for a complete and useful trajectory
generating technology.

(1) Accurate adherence to boundary conditions
in position and velocity of the start and
endpoints.

(2) Global smoothness (e.g., C2: continuity of
the second derivative over the closed in-
terval of the data set) and accuracy of the
trajectory.

(3) Allowing for desired speed profiles and path
constraints.

(4) Definite end-time; an aspect which is impor-
tant for most applications.

From such trajectories, we can build a com-
plicated path by a serial connection of several
sub-trajectories with boundary conditions for the
joining between them. Furthermore, for possi-
ble industrial applications, we also need to in-
corporate the required velocity profile into the
trajectory.

2.2 Architecture of Our Trajectory Generator

Figure 2a shows the architecture of the DMP
based trajectory generator, which consists of four
key modules. The Second-Order System module
provides the trajectory y(t). The outputs from
the Boundary Function Generator r(t), and Mod-

ulation Function f (t), are fed into the Second-
Order System. The Boundary Function Generator
imposes the boundary conditions onto the system.
The Modulation Function consisting of a Gaussian
Kernel Based Approximating Function and a Sup-
pressing Window Function (see Fig. 2b) will affect
the Second-Order System’s response as a forcing
input. The Gaussian Kernel Based Approximat-
ing Function contains a weight vector, and these
weights need to be trained in order to encode the
information brought from the sample trajectory
y∗(t), provided by the Sample Trajectory Genera-
tor. After training, the Modulation Function mod-
ule will contain the main information obtained
from y∗(t), and the sample trajectory will not be
used anymore.

The architecture shown in Fig. 2 is for one
Degree-of-Freedom (DOF). For an N-DOF appli-
cation, we can employ N copies of this architec-
ture in parallel.

2.3 Second-Order System Module

In the original DMP and the following studies
[10–13, 15–22], parameters αz and βz shown in
Eqs. 1 and 5 have not been directly related to the
physical meaning of a second-order system. In the
current paper, we adopt a standard formulation
to make the system easier to understand from a
control theory perspective.

Fig. 2 The architecture
of our DMP based
trajectory generator.
a The whole structure.
After training, only the
pink-shaded components
will be used. b The inner
components showing the
Modulation Function

+
+

Second-Order
System

Modulation
Function

Sample
Trajectory
Generator

+

_

y (t), y (t)

Boundary
Function
Generator

Boundary
Conditions Training

Notice: After training, only these components will be used.

y0, yf

y*(t)

e*(t)

e*(t)

f (t)

f (t)
u (t) y (t)r (t)

y0, yfy0, yf
. .

Modulation Function

Gaussian
Kernels

Suppressing
Window

(a) (b)

. .

170 J Intell Robot Syst (2012) 68:165–184

+
_

2

2
n

ns +

Y(s)E(s) 1

s

sY(s)G(s)

+R(s) U(s)

F(s)

+

Y(s)

1H(s) =

Fig. 3 Block diagrams of the employed Second-Order Sys-
tem in Laplace space. We can get position and velocity
outputs directly

Figure 3 shows the block diagram of the
Second-Order System module employed in this
paper, expressed in Laplace space. Its forward
channel is G (s) = ω2

n
s(s+2ζωn)

, and its feedback chan-
nel is H(s) = 1. It is a type-1 system. Let U (s) =
R (s) + F (s) and Y(s) denote the input and output
respectively, then the transfer function is as
follows,

Y (s)
U (s)

= G (s)
1 + G (s) H (s)

= ω2
n

s2 + 2ζωns + ω2
n
. (7)

This is a standard second-order system, where
the constants ζ and ωn are the damping coefficient
and the natural undamped frequency of the sys-
tem, respectively. As we know, when ζ = 1, the
system has a double pole at −ωn, and this results
in a critically damped response [23].

Let us define y2 (t) = ẏ1 (t) = ẏ (t), then in state
space the Second-Order System is described as,

Ẏ = AY + Bu, (8)

where, Y =
[

y1 (t)
y2 (t)

]
, A =

[
0 1

−ω2
n −2ζωn

]
, B =

[
0
ω2

n

]
, u = u (t) = r (t) + f (t) .

The model shown in Eq. 7 is well-studied in
control theory. It is well known that its steady-
state error can be calculated by the final-value
theorem [23], as follows,

ess = lim
t→∞ e (t) = lim

s→0

sU (s)
1 + G (s)

(9)

Furthermore, the error’s change rate can be
expressed as

ėss = lim
t→∞ ė (t) = lim

s→0

s2U (s)
1 + G (s)

(10)

Spreading Eq. 8 we can get the relation equa-
tions relating ζ and ωn to the parameters αz and
βz, shown in Eqs. 1, 5 as follows,

ωn =
√

αzβz

τ
, (11)

and,

ζ = 1
2

√
αz

βz
. (12)

Schaal et al. [10] only provided βz = αz/4 to
get critical damping and had not been concerned
with other possible frequency characteristics and
responses of their DMPs. Entering this equation
into Eq. 12 we can get ζ = 1 (criterion for critical
damping). Please note, linear and nonlinear sub-
systems are interconnected in the DMP method
proposed. The Second-Order System shown as
Eq. 7 is positive real and passive. An intercon-
nection containing a passive subsystem (linear or
not) with a strictly proper, strictly positive real
one, is always closed-loop stable [39–42]. Fur-
thermore, based on Eqs. 9 and 10 and the time-
domain response of such a system [23], we can
explain why the original DMPs always asymptoti-
cally converge to the final point and the speed of
approaching the target is zero. Equations 9 and
10 also provide the foundation for including the
boundary conditions in the architecture shown in
Fig. 2. We will discuss this issue in the following
sections.

2.4 Boundary Function Generator

For a trajectory generator, we have to take into
account the boundary conditions (i.e., position,
velocity). As mentioned above, polynomials are
normally employed to remove discontinuities in
velocity and acceleration between adjacent path
segments. In order to allow imposing continuity
of velocities at the junction points, the lowest or-
der for an interpolating polynomial is three (also
known as cubic polynomial, in Eq. 13, NP = 3) [1].
For an application with acceleration constraints,
fifth-order polynomials can be employed.

x (t) =
Np∑

j=0

a jt j (13)

J Intell Robot Syst (2012) 68:165–184 171

We use a third-order polynomial and determine
the coefficients given by y0, y f and ẏ0, ẏ f as the
positions and velocities at the start- and endpoints
respectively.

However, we cannot employ the third-order
polynomial alone to construct the Boundary Func-
tion Generator shown in Fig. 2. As we know,
a type-1 system cannot follow a parabolic or a
higher order function, because the steady-state er-
ror is infinite [23]. This conclusion can be derived
from Eq. 9. Next we will show how we can fix this
problem. If u(t) is a ramp function, from Eqs. 9
and 10 we obtain

ess = V/Kv, (14)

and

ėss = 0, (15)

where V is the slope coefficient of u(t), and
Kv = ωn/2ζ . Equation 15 shows that the slope
coefficient of the Second-Order System’s re-
sponse will approach that of the input ramp func-
tion in the end. Even though Eqs. 14 and 15 hold
only for the steady-state, we can design our system
based on this principle with controllable precision.
In fact, Eq. 15 is the proof for approaching the
assigned velocity and Eq. 14 presents the offset
we can use to reduce the position error. Thus, we
can utilize a third-order polynomial extended by a
line segment to construct the reference signal r(t).
Figure 4 shows such a case.

Let us denote tm as the junction moment (the
time point where the polynomial segment and the

t0 = 0 tf = Ttm

r

t

δe

.

()tf , ye

()tf , yf

Polynomial Segment
Line Segment

Fig. 4 A solution for building the Boundary Function
Generator. A third-order polynomial extended by a line
segment can be employed here to construct the reference
signal r(t) for the DMP based trajectory generator

line segment are joined), then the reference signal
is defined as follows:

r (t) =
{

a0 + a1t + a2t2 + a3t3 0 ≤ t ≤ tm
ye − (

t f − t
)

ẏ f tm < t ≤ t f
(16)

where,

ye = y f + δe (17)

and δe = (2ζ/ωn) ẏ f .
In Eq. 16, the polynomial segment [0, tm] is

employed to connect the boundary conditions im-
posed on the start point, and the linear segment
(tm, t f] works as a ramp input which provides a
convergence reference for the Second-Order Sys-
tem, with both, position and velocity, constraints.
The coefficients of the polynomial segment are
determined as follows,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = y0

a1 = ẏ0

a2 = 3 (ym − y0) − tm
(
2ẏ f − ẏ0

)

t2
m

a3 = 2 (y0 − ym) + tm
(
ẏ0 + ẏ f

)

t3
m

(18)

where, ym = ye − (t f − tm)ẏ f = y f + [(2ζ/ωn) −
(t f − tm)]ẏ f . The calculation method for the
coefficients of the third-order polynomial segment
can be found in the literature [1]. The value tm de-
pends on the temporal properties of the Second-
Order System module (i.e., ωn and ζ), see later.

The Boundary Function Generator will guaran-
tee the required system’s performance at start and
end regions.

2.5 Modulation Function

For most application tasks, we need to control a
robot to move along an assigned path, e.g., the
case shown in Fig. 1. The Modulation Function
f (t) shown in Fig. 2 is used to “force” the gen-
erated response to follow the assigned trajectory
(i.e., the sample trajectory, see later) during the
middle of the processing.

As shown in Fig. 2, the input to the Second-
Order System is

u (t) = r (t) + f (t) . (19)

172 J Intell Robot Syst (2012) 68:165–184

The variable f (t) works as the forcing input to
this system and is used to steer the final result.
Please note, reference signal r(t) defined as Eq. 16
provides mathematical derivability (at the junc-
tion points), in the middle section, however, it is
unconstrained. By introducing a suitable f (t), we
can totally counteract unwanted effects brought
by r(t) and to reshape the system’s output in order
to force it to follow the desired path. The Gaussian
Kernels Based Approximating Function, as de-
scribed below, is a solution for getting such a
suitable f (t).

2.5.1 Gaussian Kernels Based Approximating
Function

The original DMP introduces a nonlinear con-
trol based on learned feed-forward controllers
[10–13]. A nonlinear function based on a group
of Gaussian kernels can be trained to smoothly
approximate a given sample curve. We utilize this
idea to build the Modulation Function for our
system. Let us define the Modulation Function
with M kernels,

f (t) = �TW
M∑

i=1
ψi

v (t) , (20)

where W = [w1, w2, · · ·, wi, · · ·, wM]T , wi is the
weight of the Gaussian kernel i and � = [ψ1,

ψ2, · · ·, ψi, · · ·, ψM]T , with

ψi = exp

(
−hi

(
t
T

− ci

)2
)

, (21)

where T = t f − t0 is the time length of the whole
process, t is the time, and v(t) is a suppress-
ing window function (see later). Constants ci

and hi are centers and widths of the Gaussian
kernels i, evenly distributed within the interval
[0,1]. To simplify the treatment, we let hi = h,

i = 1, 2, . . ., M.

2.5.2 Weight Learning

In this paper, the weight vector W will be trained
to match the sample trajectory y∗(t) generated by
the Sample Trajectory Generator shown in Fig. 2.

Several different methods exist for weight
adaptation like locally weighted regression meth-
ods [11, 24] or global regression methods [25].
Here we propose a simple and practical learning
rule to train the weight vector W. This procedure
is similar to back-propagation learning used in
artificial neural networks [26], where the error be-
tween target signal and system’s output is used to
change weights. In our case this can be formalized
by the following equation:

wi = γ
(
y∗ (k) − y (k)

)
v (k) , (22)

where, γ is the learning rate, k = ciT defines
the center of the i-th Gaussian kernel within the
time period [0, T]. Here, k serves to anchor the
Gaussian kernels to the time period T. By k =
ciT, we project M Gaussian kernels from the
range [0,1] to [0, T], and therefore only need to it-
erate Eq. 22 at time moments ciT, i = 1, 2, . . ., M.

The present “simple” solution will be robust to
approximate the sample trajectory and the final
accuracy (in the middle section of the path) is
depending on the learning rate (see Eq. 22).

Note, this simple approach might not be op-
timal for a single training trajectory. It is more
suitable for cases where many different (but simi-
lar) training trajectories are used and this method
should lead to an average trajectory. In general
any other more sophisticated method (e.g., LWPR
[10, 11, 24]) can be used to learn weights of the
kernels.

2.5.3 Suppressing Window Function

The Suppressing Window Function v(t) in Eq. 20
serves as an “Enable” term inside the Modula-
tion Function shown in Fig. 2b. It controls kernel
influence by suppressing their action near start-
and endpoints thereby assuring accuracy of the
process. When the system is in those regions,
we should let the Boundary Function Genera-
tor’s output r(t) drive the Second-Order System
and Eqs. 14–16 will guarantee that the assigned
boundary conditions will be successfully reached.
Figure 5 shows a solution for a suitable Suppress-
ing Window Function. The double-sigmoid func-
tion is continuous and differentiable and it has

J Intell Robot Syst (2012) 68:165–184 173

t0 tfC1 C2

v

1

0
t

0.5

Fig. 5 Smooth suppressing window function given by the
product of two sigmoids

a pair of horizontal asymptotes as t → ±∞. We
define it by,

v (t) = s1 (t) × s2 (t) , (23)

with,

s1(t) = 1
1 + e−l1(t−Cl)

, and s2(t) = 1
1 + e−l2(t−C2)

,

(24)

where, l1, l2 are used to set the slopes, and C1,
C2 to set the inflection points (see Fig. 5). With
these parameters, we need to ensure that v(t) ap-
proaches zero at the start- and end-time as close as
possible in order to obtain f (t) = 0. This way, r(t)
totally governs the Second-Order System at the
start- and endpoints and a more precise result is
achieved. This kind of transition region is similar
to the popular “zone solution” [1, 2], but implic-
itly described by the parameters of the sigmoids.
Figure 1c shows the two regions at the ends of
the trajectory. In the following applications cases,
this aspect is analyzed in more detail. We define
l1 = l2 = 20, C1 = 0.3, and C2 = t f − 0.38 for all
following examples. For the policy on how to
choose these parameters see below.

2.6 Sample Trajectory Generator

Planning a trajectory by this method is done in
two steps. In the first step the sample trajectory
provides geometric path constraints and the speed
profile information along the trajectory. In the
second step the boundary conditions are imposed
and the final smooth result is obtained through the
interaction of f (t) and r(t). Note, when designing
the sample trajectory sequence, we do not need to

care about the possible initial and final velocities
imposed by the boundary conditions (see the sig-
nal flow shown in Fig. 2), which simplifies this step
substantially. Also, the sample y∗ is only used dur-
ing the training process (training the weight vector
Wof the Gaussian Kernel Based Approximating
Function, see Eqs. 20 and 22). After training, f (t)
will contain all information and y∗ will not be used
anymore.

Now we describe how to define the Sample
Trajectory Generator required for the step 1. It
provides a sample trajectory sequence y∗(t):

y∗(t)=[
y∗(0), y∗(τ), · · ·, y∗(kτ), · · ·, y∗(Lτ)

]T
,

(25)

where, τ is the sampling interval, L is the whole
step number, and then Lτ = T is the total desired
time to complete the path. We can acquire it by
imitation (teaching and recording), or generate it
by a simple path planner routine. Without loss of
generality, we focus on the latter in this paper.

To generate a velocity profile for a sample tra-
jectory, a simple trapezoidal timing law [1] can be
employed, which is also known as LSPB (Linear
Segments with Parabolic Blends) [27]. In fact, this
method is more popular for planning and con-
trol in joint space. It has a “speedup - uniform
motion - slowdown” speed profile. It represents
a time optimal solution for actuators and is easy
to implement. Here we need to take the maximal
acceleration that the actuator can provide into
account.

Obviously, LSPB leads to a discontinuous vari-
ation in the acceleration profile resulting in large
jerk. Our system filters this effect out (see later)
and, as a consequence, we can use LSPB to im-
plement the Sample Trajectory Generator. For
applications with many via-points, the easiest so-
lution is to set up independent LSPB trajectories
between adjacent via points and then to connect
them one by one to form the whole sample trajec-
tory sequence as shown in Eq. 25. In Section 4, we
will give examples for this, as well as demonstrate
the “filter” effect generated by the trained Mod-
ulation Function together with the Second-Order
System.

174 J Intell Robot Syst (2012) 68:165–184

3 The Whole Calculation Procedure

In the above sub-sections, we have disclosed all
the key components of this method. Following
Fig. 2, here we disclose the whole calculation pro-
cedure step by step, as follows.

(1) Use the LSPB method to generate the sam-
ple trajectory sequence y∗(t). Only positional
boundary conditions, (y0, y f) and possible
via-points are used here, with the duration
time T.

(2) Use the complete boundary conditions (y0,
y f and ẏ0, ẏ f), and the duration time T to
calculate the reference signal r(t), as shown
in Eqs. 16–18.

(3) Determine the parameters ωn, C1, C2, l1, l2,
tm and finish the configuration of the Sup-
pressing Window Function v(t), and initialize
the Gaussian Kernels Based Approximating
Function f (t) by all-zero weight vector W
(see Eqs. 20 and 21). How to choose these
parameters will be summarized later.

(4) Set a learning rate γ and start the iteration
to adjust the weight vector W, as shown in
Eq. 22. For an accuracy-requiring applica-
tion, we can choose smaller γ , and longer
iteration times, and employ bigger M and
bigger h. The influence of these parameters
will be discussed in the Appendix.

(5) Perform the training iterations, where in
every iteration, the output of the Second-
Order System (see Fig. 2) will approach the
sample trajectory y∗(t) more closely.

After this training procedure, the weight vector
W contains the information from the sample tra-
jectory sequence y∗(t). The whole architecture sat-
isfies the given boundary conditions by itself and
by now we have received the generated trajectory.

Please note, this method is a one-shot solution.
It means that if we change any of boundary con-
ditions (y0, y f and ẏ0, ẏ f), the position of the via-
points, or the duration time T, we need to repeat
the steps 4 and 5.

It seems that this method has many parameters
and that it is quite complex. However, little tuning
is required and once set up, we can use the pa-
rameters to deal with different and wide-ranging
applications on a physical platform easily. Fur-

thermore, we also can use this framework to gen-
erate different characteristic results for different
application scenarios, just by adjusting some para-
meters. In the following Section, we will explain
this by several cases.

4 Case Study: Application on Manipulators

Before discussing a robot application simulation,
we present a simple 1-DOF case with detailed
plots to show how our method works.

4.1 1-DOF Case

Figure 6 shows results from the 1-DOF case. This
corresponds to a single coordinate in task space
from a multi-DOF manipulator simulation study.
In this case we used, ωn = 50, ζ = 1, τ = 0.01 s,
γ = 1, and iteration time is 20. The kernel num-
bers are M = 8, and h = 50. Boundary conditions
are y(t0) = 0.08 m, y(t f) = 0.26 m, ẏ (t0) = 0 m/s,
ẏ

(
t f

) = 0.05 m/s, t0 = 0 s and t f = T = 2 s.
According to the assigned boundary conditions,

the reference signal r(t) is plotted in Fig. 6a. The
trained Gaussian kernels and the final modulation
signal f (t) are shown in Fig. 6b. The generated
trajectories (red curves) are shown in Fig. 6c–f
together with the sample trajectory (black curve).
Please note here that the sample trajectory has
velocity boundary conditions that equal zero, so
that it is very easy to implement. The assigned
boundary conditions are guaranteed by the archi-
tecture presented in this paper. From Fig. 6c–d
we observe that the boundary conditions and the
trajectories in the middle of the path match well
to our inputs.

For comparison, in Fig. 7 we show a pair of re-
sults with identical parameters except final bound-
ary velocity. All other parameters are as in Fig. 6.
The final accuracy of these examples is listed in
Table 1. Where, we define,

errP = ∣∣(ytarget − yreal
)
/ytarget

∣∣ . (26)

and

errV = ∣∣(ẏtarget − ẏreal
)
/ẏtarget

∣∣ . (27)

We can see that the final accuracy is quite high.

J Intell Robot Syst (2012) 68:165–184 175

0 0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

Po
si

ti
on

 (
m

)

The Reference Signal r(t)

0 0.5 1 1.5 2
-0.01

-0.005

0

0.005

0.01

0.015

Time (s)

Po
si

ti
on

 (
m

)

The Modulation Input f(t)

0 0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

Po
si

tio
n

(m
)

Pos: Sample
Pos: DMP

(a) (b) (c)

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

V
el

oc
ity

 (
m

/s
)

Vel: Sample
Vel: DMP

0 0.5 1 1.5 2
-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

A
cc

el
er

at
io

n
(m

/s2)

Acc: Sample
Acc: DMP

0
0.1

0.2

0
0.1

0.2
-0.5

0

0.5

1

Pos (m)Vel (m/s)

A
cc

 (
m

/s
2)

(d) (e) (f)

Fig. 6 1-DOF case. a Reference signal r(t). b Gaussian
Kernels and the final modulation signal f (t). c–e Gener-
ated trajectory result and the provided sample trajectory

information over time. f 3D phase track, “acceleration -
velocity - position”, of the generated trajectory

Analyzing the case shown in Fig. 7a and b,
we can find an interesting phenomenon. Around
1.5 s to 2 s, the resulting trajectory deviates from

the sample trajectory: it slows down and then
approaches the assigned boundary condition. In
fact, this phenomenon exhibits the autonomous

Fig. 7 Comparisons
between two different
final speed boundary
conditions. a, b End
speed is 0.1 m/s. c, d End
speed is −0.05 m/s.
The method shows a
powerful autonomous
capability to satisfy
boundary conditions

0 0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

Po
si

ti
on

 (
m

)

Pos: Sample
Pos: DMP

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

Vel: Sample
Vel: DMP

(a) (b)

0 0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

Po
si

ti
on

 (
m

)

Pos: Sample
Pos: DMP

0 0.5 1 1.5 2
-0.1

0

0.1

0.2

0.3

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

Vel: Sample
Vel: DMP

(c) (d)

176 J Intell Robot Syst (2012) 68:165–184

Table 1 Accuracy of the resulting end-point

y f (m),ẏ f (m/s) errP errV

0.26, 0.05 1.09× 10−5 1.3× 10−3

0.26, 0.1 7.37× 10−5 4.9× 10−3

0.26, -0.05 1.15× 10−4 1.6× 10−2

ability to adapt to the final boundary conditions,
which is a property of our method. From a physics
viewpoint, the two curves shown in Fig. 7b and
their integral areas along the time axis must be
equal to each other in order to achieve the same
final position. As the assigned final speed ẏ

(
t f

)

is not zero, the near-to-the-end transition adjusts
itself automatically to obey to this law. As during
this period, f (t) will be suppressed by v(t) (see
Eq. 20), r(t) will govern the final result. In fact,
when approaching an arbitrary assigned boundary
condition, the “slowing down” and “reorienting”
shown as Fig. 7a and b, lets the physical manip-
ulator smoothly adapt to the required boundary
conditions. The other two cases shown in Figs. 6
and 7 share the same principle. At this point,
our method presents a “position and velocity”
attractor, quite different from the original DMP
framework presented in the literature [10–13].

Comparing the accelerations shown in Fig. 6e,
we can find that the trained Modulation Function
and the Second-Order System “filter out” the
discontinuous variation brought from the LSPB
based sample trajectory. As the acceleration starts
from and ends at zero, the peak-to-peak value is
bigger than the one from the given sample. This is
also reasonable from a physical viewpoint but for
real applications, peaks should be smaller than the
limitations of the employed mechanical platform.
If the peaks are too high to accept, we can reduce
the sample acceleration at the start and end of the
LSPB based sample trajectory.

A 3D “acceleration - velocity - position” phase
track is shown in Fig. 6f. As mentioned before, the
generated trajectory is very smooth, with low jerk.

In Table 2, we show the accuracy comparison
between the parameters C2 and tm, for the cases
in Figs. 6 and 7. If l2 is bigger than t f − C2 this
will yield better precision. The parameters affect
the final accuracy. We give a summary in the
Appendix.

Table 2 Accuracy comparison between C2and tm

tm = t f − 0.3, (ωn = 50)

C2 = t f − 0.28 C2 = t f − 0.48

errP 3.10 × 10−4 4.04 × 10−7

errV 3.5 × 10−2 7.44 × 10−5

C2 = t f − 0.38, (ωn = 50)

tm = t f − 0.2 tm = t f − 0.4

errP 1.45 × 10−5 8.65 × 10−6

errV 1.7 × 10−3 9.12 × 10−4

From the cases above, we can see that our
method shows a powerful autonomous capability
to satisfy boundary conditions with high precision.
In the following multi-DOF case, this aspect will
be more obviously demonstrated.

4.2 A Simple Case for a Multi-DOF
Manipulator

So far our DMP based trajectory generator con-
trols one DOF. For the N-DOF case, we can
use N independent such trajectory generators in
parallel, just sharing the same time base in or-
der to synchronize their activities and to achieve
coordinated motion. For instance, for a 6-DOF
robot, we can employ six trajectory generators
to represent all components (three for position
and three for orientation) in Cartesian space. In
order to control the manipulator, it is inescapable
to transform the Cartesian trajectory into a joint
space representation. This transformation is done
by standard inverse kinematics, which we will
not describe. For the following cases, the Robot-
ics Toolbox V7.1 [28] was employed to aid our
analysis.

Figure 8 shows the case of a 3-DOF manipu-
lator, where the trajectory is generated in task
space. The boundary conditions are: X(t0)=
[0.29, 0.08, −0.125]T, X(tf)=[0.24, 0.26, −0.125]T ,
Ẋ(t0) = [0.02, −0.04, 0.08]T , and Ẋ(t f) = [−0.05,

0.1, −0.1]T .
The resulting trajectory, shown in Fig. 8a and b,

matches to the target scenario described in
Section 2.1. Figure 8c shows the velocity com-
ponents. We can see that at the final end, the
obtained velocities match to the assigned values.
At the start, small jumps exist. This is due to the

J Intell Robot Syst (2012) 68:165–184 177

Fig. 8 Study of a 3-DOF
manipulator. a The LSPB
based sample and
resulting trajectories in
Cartesian space.
b Plot of the robot model.
c Velocity components.
d Deviation between the
sample and resulting
trajectories

0.2 0.25 0.3 0.35
0.1

0.2

-0.2

-0.15

-0.1

-0.05

X (m)Y (m)
Z

 (
m

)

Sample
DMP

XY

Z

(a) (b)

0 0.5 1 1.5 2
-0.1

0

0.1

0.2

0.3

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

X Vel
Y Vel
Z Vel

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

Time (s)

D
ev

ia
ti

on
 (

m
)

(c) (d)

fact that, for the Second-order system shown in
Fig. 3, it’s zero initial conditions response follows:

ẏ(t) = ω2
nte−ωnt. (28)

Furthermore, we use a third-order polynomial to
construct the Reference signal r(t), and we cannot
impose an initial acceleration on the conjoining
(start) point.

However, non-zero start velocities would only
be used for DMP joining and in this case the tran-
sition will be smooth due to matching the bound-
ary conditions (end point to next start point)
of two subsequent DMPs. Also, very short tran-
sients will always be smoothed by the real plat-
form due to its intrinsic mechanical low-pass filter
characteristics.

Note, the “deviation” plot shown in Fig. 8d
does not mean “positional error”. In this paper,
we define “deviation” as

∣∣y∗ (t)−y (t)
∣∣, to describe

the distance between the corresponding track
points (on the Sample trajectory and the result-
ing trajectory respectively, sharing the same time
index). In the middle segment, the trajectory is
close to the Sample. At the two ends, deviations

are almost zero, which means that the boundary
conditions are satisfied very well. The two peaks
near the two ends describe the automatically
generated transition zones (see Fig. 8a). Up to
now, this simulation fulfills our target described in
Section 2.1.

4.3 A Complicated Case for a Multi-DOF
Manipulator

Our DMP based trajectory generator has the po-
tential to deal with very complicated application
cases. Here we show such a case and more charac-
teristics of the method will be disclosed.

As shown in Fig. 9a, the manipulator needs to
move along a 3D multi-segment path. Velocity
vectors are assigned to start- and endpoints. The
difference between cases shown in Fig. 9b, d, f
and c, e, g is that they own different Gaussian
kernel parameters. For the former one, M = 4,
and h = 10; for the latter M = 40 and h = 400.
The results show that with the increasing number
of kernels the accuracy for both, position and
velocity, increases.

178 J Intell Robot Syst (2012) 68:165–184

Fig. 9 A multi-segment
trajectory generating and
comparison case. Here,
the robot needs to go
along the straight lines
defined by the multiple
via-points one by one,
with two-end none-zero
velocity constraints.
b, d, f Case uses fewer and
wider Gaussian kernels:
M = 4, and h = 10;
c, e, g Case uses more and
narrower Gaussian
kernels: M = 40 and
h = 400

(a)

0.2
0.3

0.4

0.150.20.250.3

0.05

0.1

0.15

0.2

0.25

X (m)Y (m)

Z
 (

m
)

Sample
DMP

0.150.2 0.250.3 0.35
0.150.20.250.3

0.05

0.1

0.15

0.2

0.25

X (m)Y (m)

Z
 (

m
)

Sample
DMP

(b) (c)

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

Time (s)

D
ev

ia
ti

on
 (

m
)

0 1 2 3
0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

D
ev

ia
ti

on
 (

m
)

(d) (e)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Time (s)

V
e

lo
c

it
y

(m
/s

)

Vel: Sample
Vel: DMP

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

Vel: Sample
Vel: DMP

(f) (g)

XY

Z

In general, it is not feasible to let a robot track
a sharp corner very fast. The widely employed
traditional method is to set some transition zones
to disconnect the connected lines and use arcs
or higher order functions to smoothly connect

them. The smallest curvature of the transition
function will be dependent on the real platform’s
specification. Different from this, our solution
deals with this problem more easily and natu-
rally. As shown in Fig. 9g, the generated result

J Intell Robot Syst (2012) 68:165–184 179

“slows down” and closely passes these sharp cor-
ners (via-points) autonomously. This method can
learn well the information contained in the sample
trajectory. This is a quite interesting advantage of
this method.

Without loss of generality, in the cases shown
in Fig. 9, the path segments are straight lines. We
could in the same way also implement a different
curve using another trajectory y∗.

This case also shows another attractive poten-
tial of our method: we can use it to produce a
complicated trajectory all in one time. In fact,
this characteristic is totally different from all tra-
ditional solutions and quite attractive for compli-
cated applications. For the case shown in Fig. 9,
we don’t need to produce five straight lines and
six transitional curves (polynomials or arcs) sepa-
rately and then connect them one by one, as the
traditional approaches do.

It is also possible to employ some other
optimized solutions to implement the Sample
Trajectory Generator, because the following
training course does not rely on any specific
implementation.

Furthermore, as boundary conditions can be
imposed on our trajectory generator we can pro-
duce several bigger sub-trajectories independently
and connect them one by one to complete an even
more complicated trajectory.

4.4 A Comparison Case – Spline-Base
Trajectory Generation

In Fig. 10, two Spline-based trajectories are
shown, using the same scenario as in Fig. 9.
Different numbers of intermediate points are
equally distributed between the via-points (cor-
ners). Position accuracy is – as expected – higher
than for our method, but velocity in Cartesian
space is heavily depending on the position inter-
polations and the corresponding time indexes of
the intermediate points (note, we did not apply
any optimizing technologies here). As disclosed
here, in order to achieve a complex trajectory
with an assigned speed profile, many intermediate
points have to be defined [1] and the construction
of the trajectory will become increasingly difficult.

Fig. 10 Spline-based
solution comparison
cases, sharing the same
scenario with the case
shown in Fig. 9.
a, c 4 intermediate points
are equally distributed
between two neighboring
via points. b, d 18
intermediate points are
equally distributed
between two neighboring
via-points. Please note, at
the two ends, velocity
conditions are Ẋ (t0) =
[0.02, −0.1, −0.05]T and
Ẋ

(
t f

) = [0.1, 0, 0]T , and
zero speed are assigned at
the remaining corner
points

0.15
0.2

0.25
0.3

0.35

0.15
0.2

0.25
0.3

0.05

0.1

0.15

0.2

0.25

X (m)Y (m)

Z
 (

m
)

Sample
Spline
Via-Point
Intermediate Point

0.15
0.2

0.25
0.3

0.35

0.15
0.2

0.25
0.3

0.05

0.1

0.15

0.2

0.25

X (m)Y (m)

Z
 (

m
)

Sample
Spline
Via-Point
Intermediate Point

(a) (b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

Ve locity in Cartesian Space

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

Ve locity in Cartesian Space

(c) (d)

180 J Intell Robot Syst (2012) 68:165–184

In the examples shown here the velocity profile
is not really acceptable, especially case Fig. 10d.
While this can be mended by using different
support points for the spline, it is evident that this
requires explicit considerations. Thus, there is a
certain trade-off between position- and velocity-
accuracy that needs to be explicitly dealt with
when using splines. Different from that, our
method automatically arrives at a very good com-
promise for position as well as velocity accu-
racy with only a moderate number of kernels
(see. Fig. 9, right). Thus, without much effort our
framework leds to quite flexible results and recal-
culation of a trajectory is easy once the method
has been set up.

5 Conclusions and Application Potential

In this paper we presented a novel trajectory
generator based on DMPs. For this, the original
DMPs had been reformulated from a control the-
oretical viewpoint.

In the following we would like to compare
our solution with other methods for trajectory
generation. Most similarly there are Spline-based
solutions [1, 4–9], against which our methods must
“compete”. The original DMP framework, on the

other hand, contains several aspects which are
different from our new approach (despite the
fact that our approach was partly derived from
DMPs). In Table 3, we give a summary compar-
ison on the properties of these solutions some of
which will be discussed in more detail next.

(1) Similar to splines but different from DMPs,
we can define spatial and velocity constraints
of the two ends of the trajectory support. The
generated trajectory matches the assigned
boundary conditions with high precision,
with a definite temporal endpoint. As this
design introduces the boundary conditions in
an independent way, the path planning stage
of a practical task can be simplified greatly.

(2) The generated trajectories are smooth: posi-
tion and velocity profiles are continuous and
differentiable, acceleration is continuous,
and jerk is small.

(3) In our approach the generated trajectory se-
quence is passed through a built-in second-
order system. As normally ωn is low this
acts as a low pass filter. Thus, the trajectory
output will be easier to follow by motion con-
trol system [23], as long as the bandwidth of
motion control system is higher than the one
of our system. This is different from cubic or

Table 3 Property comparison between three kinds of trajectory generation technologies

Property Splines DMPs Our Approach Comment

Endpoint / end-velocity control +/+ +/− +/+
Velocity / acceleration profile +/+ +/− +/− Splines need 5th order to control

control acceleration, too.
Chaining of primitives + − +
Via point control + (direct) + (indirect) + (direct) Direct: by applying chaining.

+ (indirect) + (indirect) Indirect: by using kernel weights.
Built-in filter − + +
Time dependence direct indirect direct
Disturbance compensation − + +
Interpretability of coefficients − + + Interpretable means values have a

human-understandable meaning.
Number of kernels/knots 4*N (3rd order) N N+4
Number of free parameters n.a. 2 6
Phase stopping − + −
Generalization to different start − + −

and endpoints
Bandwidth and error control − + + Splines: Pure mathematical fitting.

against 2nd order system Behavior depends on motion servo.

J Intell Robot Syst (2012) 68:165–184 181

higher order Spline-based trajectories, which
do not match to the control system, even
though they might have perfect mathemati-
cal fitting capabilities.

(4) Our method combines the sample trajectory
y∗ and boundary conditions, given indepen-
dently, in a natural way. At the two ends a
manipulator behaves in a very smooth way
(see the ends of the paths shown in Figs. 7
and 9).

(5) Any reasonable required speed profile can
be imposed on the generated trajectory.

(6) For multiple via-point applications we do not
need to manually introduce (the tradition-
ally used) zones for interpolating and con-
necting two adjacent segments. The method
presented in this paper will generate smooth
transition on its own, and the transition of
the adjacent segments is also adjustable (see
Section 2.5.3).

(7) Our approach presents a uniform framework
to deal with simple as well as complex appli-
cations. The generated trajectory can be very
complicated. This aspect is quite attractive,
because when entering the path points, the
velocity boundary conditions do not need to
be considered, and thereby this simplifies the
planning burden greatly.

(8) Depending on the application, we can im-
plement one complicated trajectory passing
closely all via-points at once, or generate sev-
eral trajectory segments separately and then
connect them by the pre-specified boundary
conditions one by one. Using the latter ap-
proach, the robot can do its operations in
position space with high accuracy. Note, we
can impose velocity constraints on the end-
positions to achieve also some dynamic tasks,
e.g., to hammer, box, pitch, etc. This attrac-
tive property is quite obviously supported by
the system presented in this paper.

(9) Our method provides strong flexibility in
shaping the trajectory by ways of kernels (see
Appendix A.3 and the middle of the paths
shown in Fig. 9b and c).

Some limitations also presently exist:

(1) We have velocity peaks in the transition
zones, caused by the quick change of the

Suppressing Window Function, near C1, C2

(see Section 2.5.3, Fig. 9f). For real appli-
cations, the peak values should be below
the limitation of the actuators of the em-
ployed manipulator. The solution to alleviate
this problem is to use smaller accelera-
tions for the LSPB based sample trajectory
(see Section 2.6) or a longer whole time
period T.

(2) When using a complete, complex trajec-
tory via-points can be only passed closely;
and the kernel numbers determines the ac-
tual distance errors (see the case shown in
Fig. 9). For applications where via-points
must be passed exactly, we need to gener-
ate sub-trajectories and connect them one
by one.

Our method can be employed not only in
task space, but also in joint space. In task space
(Cartesian space), as the pre-planning work is
more obvious, we can apply it as shown in
Section 4. In joint space, without loss of generality,
if one uses this method to directly generate the
trajectories for each joint, it will also work. The
principle is the same.

The often pursued combination of DMPs with
imitation learning is also possible with this frame-
work. For such an application, this method has
the potential to allow for some dynamic tasks as
mentioned above. For instance, a humanoid robot
can imitate the movement profile and produce
different kinds of end velocities.

Conventional industrial applications (e.g., [2,
29–36]) are certainly not in the focus of this paper.
However, there is now quite a rising demand in
industry for methods that are smoother, more
easily adaptable, etc. This is where we see some
future potential for our method.

All methods presented in this paper have been
implemented on a simple robotic manipulator
platform (Neuro-Robotics, Sussex) in our labora-
tory, where not only the key algorithm shown in
this paper, but also more low-level driving and
interfacing programs for the embedded control
system of this platform have been implemented.
In the literature [37], this method is employed.
Several basic experiments and their explanations
are given in our preliminary publication [38] of

182 J Intell Robot Syst (2012) 68:165–184

this work. In summary, we believe that this novel
trajectory generating technology exhibits great
flexibility and applicability. Thus, we hope that
our work presented in this paper will stimulate
further DMP related research and development,
and that this novel trajectory generating tech-
nology can be an alternative and widely em-
ployed not only in humanoid robots, but also in
industry.

Acknowledgements The research leading to these results
has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 – Chal-
lenge 2 – Cognitive Systems, Interaction, Robotics –
under grant agreement No 270273 – Xperience. It was also
supported by the German BMBF BFNT 01GQ0810 project
3a of the University Göttingen.

The authors would also like to thank the anonymous
reviewers who have made many valuable comments, which
improved the paper.

Open Access This article is distributed under the terms of
the Creative Commons Attribution License which permits
any use, distribution, and reproduction in any medium,
provided the original author(s) and the source are credited.

Appendix: Summary of the Parameters

There are several free parameters used in this
method. Here we give a summary on how to de-
termine them for an application.

A.1 Dynamic Property Parameter: ωn

In Eqs. 7 and 8, ωn is related to this trajectory
generator’s dynamic property. As we know, the
inertia of the mechanical components and its mo-
tion control system has limited response band-
width. Thus, the trajectory output can be easily
followed by the motion control system, as long
as the bandwidth of the motion control system is
higher than the one of our system. As a conse-
quence of this the tracking error caused by the
properties of the motion control system can be
evaluated and remains well controlled [23].

For practical applications, we need to consider
the following trade-off:

(1) Too small ωn is meaningless because it will
need a too long time to finish a trajectory,

even though the results are very smooth (be-
cause it works as a low pass filter).

(2) Higher ωn brings fast response times, but
when limited by the parameters of a real
platform, the generated result will challenge
the motion control and actuation system.

(3) Founded by control theory, we just need to
keep in mind that the employed ωn should
be lower than the one of the real plat-
form. Then we can obtain an acceptable re-
sult (finite end-time, acceptable acceleration,
etc). For all the cases shown in this paper we
had ωn = 50.

A.2 Accuracy Related Parameters:
tm, C1, C2, l1 and l2

tm is the junction moment of the polynomial seg-
ment and the linear segment, shown in Eq. 16. The
time duration of the linear segment, (t f − tm), is
used to let the Second-Order System approximate
the linear segment. It means that (t f − tm) should
be long enough to achieve an acceptable error.

Here we can arrive at a strategy: given errP (see
Eq. 26), we need to satisfy t f − tm > t∗, here, t∗ is
defined as follows,

errp ≈ e−ωnt∗
(

1 + 2
ωnt∗

)
. (29)

This relation is derived from the ramp input re-
sponse (with zero state) of a second-order system,
and please keep in mind that the steady-state
error has been compensated by Eq. 17. By a nu-
merical calculation program, Eq. 29 can be easily
solved.

Please note that Eq. 29 is derived from a
zero state and it has not taken into account the
effect from the Suppressing Window Function.
Equation 29 can be used as a basic reference to
determine tm. For a real application, to be on the
safe side, the employed t∗ should be bigger than
the result shown in Eq. 29.

As disclosed in Eqs. 23, and 24, C1, C2, l1 and
l2 determine the Suppressing Window Function.
As mentioned there (Section 2.5.3), we need to
ensure that v(t) approaches zero at the start- and
end-time as closely as possible in order to let the
reference signal r(t)govern the Second-Order
System Module’s response to satisfy the given

J Intell Robot Syst (2012) 68:165–184 183

boundary conditions. Generally, bigger l1 and l2

bring fast zero-approaching performance but in-
duce higher velocity peaks as shown in Fig. 9f and
g. C1 and C2 set the inflection points (see Fig. 5),
and bigger values of them enforce the zero-
approach. Furthermore, they are related to the
transition zone of this method (e.g., see Figs. 1c
and 8b).

In the cases shown above, we have presented
suitable values of them, which can be directly used
for many (also other) applications. All of them are
related to the boundary condition accuracy of the
trajectory generator presented in this paper.

A.3 Flexibility Related Parameters: M and h

M and h are related to the middle of the gener-
ated trajectory, and they will let the result exhibit
different smoothness. Possible combinations are
as follows:

(1) Large M and h means more and narrower
basis functions. This should be employed
for applications requiring high accuracy (e.g.,
the tracking accuracy between the given path
is expected to be high).

(2) Small M and h: This should be employed, for
example, for a humanoid robotic task, as the
middle of the path accuracy is not a critical
issue. In this way, the trajectory is smoother
and “looks” more natural (human like).

(3) Small M and large h, this just brings some
peaks to f (t) and small ripples to the result
and, thus, does not make sense. The gener-
ated trajectory will mostly follow r(t), during
the whole process.

(4) Large M and small h, the result is similar to
(2), but one needs to spend more calculation
resources.

In summary, concerning M and h, the choice is
depending on the application requirements: if we
need to follow a path as accurately as possible,
we need to utilize narrower and more Gaussian
kernels; if not, fewer and wider kernels are more
suitable. We recommend (1) and (2) only, and
they can be tuned/determined during a real task.
Please compare cases shown in Fig. 9.

References

1. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.:
Robotics: Modelling, Planning and Control. Springer
(2009)

2. Nystrom, M., Norrlof, M.: Path generation for in-
dustrial robots. Technical Report LiTH-ISY-R-2529,
Department of Electrical Engineering, Linkoping
University (2003)

3. Atkeson, C.G., Hale, J.G., Pollick, F., Riley, M.,
Kotosaka, S., Schaal, S., Shibata, T., Tevatia, G.,
Ude, A., Vijayakumar, S., Kawato, E., Kawato, M.:
Using humanoid robots to study human behavior.
IEEE Intell. Syst. 15(4), 46–56 (2000)

4. Castain, R.H., Paul, R.P.: An on-line dynamic trajec-
tory generator. Int. J. Rob. Res. 3(1), 68–72 (1984)

5. Tondu, B., Bazaz, S.A.: The three-cubic method: an
optimal online robot joint trajectory generator under
velocity, acceleration, and wandering constraints. Int.
J. Rob. Res. 18(2), 893–901 (1999)

6. Thompson, S.E., Patel, R.V.: Formulation of joint tra-
jectories for industrial robots using B-splines. IEEE
Trans. Ind. Electron. IE-34(2), 192–199 (1987)

7. Chand, S., Doty, K.L.: On-line polynomial trajectories
for robot manipulators. Int. J. Rob. Res. 4(2), 38–48
(1985)

8. Taylor, R.H.: Straight line manipulator trajectories.
IBM J. Res. Dev. 23(4), 424–436 (1979)

9. Wada, Y., Kawato, M.: A theory for cursive handwrit-
ing based on the minimization principle. Biol. Cybern.
73(1), 3–13 (1995)

10. Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learn-
ing movement primitives. In: Proceedings of Interna-
tional Symposium of Robotics Research, pp. 561–572
(2003)

11. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement im-
itation with nonlinear dynamical systems in humanoid
robots. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation, pp. 1398–1403
(2002)

12. Peters, J., Schaal, S.: Reinforcement learning of motor
skills with policy gradients. Neural Netw. 21, 682–697
(2008)

13. Schaal, S., Mohajerian, P., Ijspeert, A.J.: Dynamics sys-
tems vs. optimal control - a unifying view. Prog. Brain
Res. 165(1), 425–445 (2007)

14. Vijaykumar, S., Schaal, S.: Locally weighted projection
regression: an O(n) algorithm for incremental real time
learning in high dimensional space. In: Proceedings of
the International Conference on Machine Learning,
pp. 1079–1086 (2000)

15. Ijspeert, A., Nakanishi, J., Schaal, S.: Learning at-
tractor landscapes for learning motor primitives. In:
Becker, S., Thrun, S., Obermayer, K. (eds.) Adv.
Neural Inform. Process Syst., vol. 15, pp. 1547–1554
(2003)

16. Park, D.H., Hoffmann, H., Pastor, P., Schaal, S.:
Movement reproduction and obstacle avoidance
with dynamic movement primitives and potential
fields. In: Proceedings of the IEEE-RAS Interna-

184 J Intell Robot Syst (2012) 68:165–184

tional Conference on Humanoid Robots, pp. 91–98
(2008)

17. Hoffmann, H., Pastor, P., Park, D.H., Schaal, S.:
Biologically-inspired dynamical systems for movement
generation: automatic real-time goal adaptation and
obstacle avoidance. In: Proceedings of the IEEE
International Conference on Robotics and Automa-
tion, pp. 2587–2592 (2009)

18. Gams, A., Ude, A.: Generalization of example move-
ments with dynamic systems. In: Proceedings of the
IEEE-RAS International Conference on Humanoid
Robots, pp. 28–33 (2009)

19. Pongas, D., Billard, A., Schaal, S.: Rapid synchroniza-
tion and accurate phase-locking of rhythmic motor
primitives. In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pp. 2911–2916 (2005)

20. Kober, J., Peters, J.: Learning new basic movements
for robotics. In: Proceedings of the Autonome Mobile
Systeme, pp. 105–112 (2009)

21. Kober, J., Mulling, K., Kromer, O., Lampert, C.H.,
Scholkopf, B., Peters, J.: Movement Templates for
Learning of Hitting and Batting. In: Proceedings of
the IEEE International Conference on Robotics and
Automation, pp. 853–858 (2010)

22. Kulvicius, T., Ning, K., Tamosiunaite, M., Wörgötter,
F.: Joining movement sequences: modified dynamic
movement primitives for robotics applications exem-
plified on handwriting. IEEE Trans. Robot. 28(1),
145–157 (2012)

23. Dorf, R.C., Bishop, R.H.: Modern Control Systems,
8th edn. Addison-Wesley (1998)

24. Pastor, P., Hoffmann, H., Asfour, T. Schaal, S.: Learn-
ing and generalization of motor skills by learning from
demonstration. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation,
pp. 763–768 (2009)

25. Nemec, B., Tamosiunaite, M., Wörgötter, F., Ude, A.:
Task adaptation through exploration and action se-
quencing. In: Proceedings of the IEEE-RAS Interna-
tional Conference on Humanoid Robots, pp. 610–616
(2009)

26. Haykin, S.: Neural Networks: A Comprehensive Foun-
dation, 2nd edn. Prentice Hall (1999)

27. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot
Dynamics and Control, 2nd edn. John Wiley & Sons
(2004)

28. Corke, P.I.: A robotics toolbox for MATLAB. IEEE
Robot. Autom. Mag. 3, 24–32 (1996)

29. Kyriakopoulos, K.J., Saridis, G.N.: Minimum jerk path
generation. In: Proceedings of the IEEE International

Conference on Robotics and Automation, pp. 364–369
(1988)

30. Tarn, T.J., Xi, N., Bejczy, A.K.: Motion planning in
phase space for intelligent robot arm control. In: Pro-
ceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1507–1514
(1992)

31. Piazzi, A., Visioli, A.: Global-minimum-jerk trajec-
tory planning of robot manipulators. IEEE Trans. Ind.
Electron. 47(1), 140–149 (2000)

32. Piazzi, A., Visioli, A.: An interval algorithm for
minimum-jerk trajectory planning of robot manipula-
tors. In: Proceedings of the IEEE Conference on Deci-
sion and Control, pp. 1924–1927 (1997)

33. Nguyen, K.D., Ng, T.C., Chen, I.M.: On algorithms for
planning S-curve motion profiles. Int. J. Adv. Robot.
Syst. 5(1), 99–106 (2008)

34. Constantinescu, D., Croft, E.A.: Smooth and time-
optimal trajectory planning for industrial manipulators
along specified paths. J. Robot. Syst. 17(5), 223–249
(2000)

35. Shin, K.G., McKay, N.D.: Minimum-time control
of robot manipulators with geometric path con-
straints. IEEE Trans. Automat. Contr. 30(6), 531–541
(1985)

36. Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time-
optimal control of robotic manipulators along specified
paths. Int. J. Rob. Res. 4(1), 3–17 (1985)

37. Aksoy, E.E., Abramov, A., Dellen, B., Dörr, J.,
Ning, K., Wörgötter, F.: Unsupervised recognition
and classification of manipulations: grouping actions
and objects. Int. J. Rob. Res. 30(10), 1229–1249
(2011)

38. Ning, K., Kulvicius, T., Tamosiunaite, M., Wörgötter,
F.: Accurate position and velocity control for tra-
jectories based on dynamic movement primitives.
In: Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 5006–5011 (2011)

39. Marquez, H.J., Damaren, C.J.: On the design of strictly
positive real transfer functions. IEEE Trans. Circuits
Syst. Fundam. Theory Appl. 42(4), 214–218 (1995)

40. Ioannou, P., Gang, T.: Frequency domain condi-
tions for strictly positive real functions. IEEE Trans.
Automat. Contr. 32(1), 53–54 (1987)

41. Huang, C.-H., Ioannou, P.A., Maroulas, J., Safonov,
M.G.: Design of strictly positive real systems using con-
stant output feedback. IEEE Trans. Automat. Contr.
44(3), 569–573 (1999)

42. Sane, H.S., Bernstein, D.S.: Asymptotic disturbance
rejection for hammerstein positive real systems. IEEE
Trans. Control Syst. Technol. 11(3), 364–374 (2003)

	A Novel Trajectory Generation Method for Robot Control
	Abstract
	Introduction
	Introduction - DMPs
	Introduction - Goals of This Study

	The Trajectory Generator Based on DMP
	Specification Goals for the Trajectory Generator
	Architecture of Our Trajectory Generator
	Second-Order System Module
	Boundary Function Generator
	Modulation Function
	Gaussian Kernels Based Approximating Function
	Weight Learning
	Suppressing Window Function

	Sample Trajectory Generator

	The Whole Calculation Procedure
	Case Study: Application on Manipulators
	1-DOF Case
	A Simple Case for a Multi-DOF Manipulator
	A Complicated Case for a Multi-DOF Manipulator
	A Comparison Case -- Spline-Base Trajectory Generation

	Conclusions and Application Potential
	Appendix: Summary of the Parameters
	Dynamic Property Parameter: n
	Accuracy Related Parameters: tm, C1, C2, l1 and l2
	Flexibility Related Parameters: M and h

	References

