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Visual space is represented by cortical cells in an orderly manner. Only 
little variation in the cell behavior is found with changing depth below 
the cortical surface, that is, all cells in a column with axis perpendicu- 
lar to the cortical plane have approximately the same properties (Hubel 
and Wiesel 1962, 1963, 1968). Therefore, the multiple features of the 
visual space (e.g., position in visual space, preferred orientation, and 
orientation tuning strength) are mapped on a two-dimensional space, 
the cortical plane. Such a dimension reduction leads to complex maps 
(Durbin and Mitchison 1990) that so far have evaded an intuitive un- 
derstanding. Analyzing optical imaging data (Blasdel 1992a,b; Blasdel 
and Salama 1986; Grinvald et  al. 1986) using a theoretical approach we 
will show that the most salient features of these maps can be under- 
stood from a few basic design principles: local correlation, modularity, 
isotropy, and homogeneity. These principles can be defined in a mathe- 
matically exact sense in the Fourier domain by a rather simple annulus- 
like spectral structure. Many of the models that have been developed to 
explain the mapping of the preferred orientations (Cooper et al. 1979; 
Legendy 1978; Linsker 1986a,b; Miller 1992; Nass and Cooper 1975; 
Obermayer et  al. 1990, 1992; Soodak 1987; Swindale 1982, 1985, 1992; 
von der Malsburg 1973; von der Malsburg and Cowan 1982) are quite 
successful in generating maps that are close to experimental maps. We 
suggest that this success is due to these principles, which are common 
properties of the models and of biological maps. 

Recently it became possible to extract features of cortical cell behavior 
using optical imaging techniques (Blasdel 1992a,b; Blasdel and Salama 
1986; Grinvald et a/. 1986; Frostig et al. 1990; Ts’o et a / .  1990; Bonhoeffer 
and Grinvald 1991). A map of the preferred orientations in the visual cor- 
tex of monkey obtained this way is shown in Figure 2a (Blasdel 1992b). 
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One of the obvious features of the map shown is its periodicity (Hubel 
and Wiesel 1968; Albus 1975): for most points, the preferred orienta- 
tion is repeated in a certain distance, which we call A. Generally, cells 
with all preferred orientations are found in an area of linear dimension 
X around any point and visual space appears to be mapped in a re- 
peating pattern onto the cortex. A region in which "all" features (e.g., 
preferred orientation, ocular dominance, color, velocity, etc.) of visual 
space are represented at least once is called a hypevcolunin (Hubel and 
Wiesel 1968). Hypercolumns seem to be arranged roughly following a 
"module concept" (Szentagothai 1975) in which adjacent x. y-locations in 
the visual field are projected onto adjacent hypercolumns in the cortex. 
This leads to a complete representation of all features of one location in 
the visual space in a locally confined cortical module while representing 
adjacent locations in adjacent modules. 

There are many ways to achieve a modular organization. I t  is nei- 
ther required to arrange the features periodically with one predominant 
frequency nor is it necessary to have an orderly arrangement within the 
individual modules, by only making sure that each module has at least 
one feature detector of each characteristic. Therefore, periodicity does 
not seem to be an a priori concept of cortical design but rather a derived 
quantity. What then are the basic cortical design principles that, together 
with modularity, engender the observed periodicity of the maps? 

We propose that these principles are (positive) local correlation, ho- 
mogeneity, and isotropy, all with respect to a length scale A, which is the 
only parameter in our framework. Let us introduce a coordinate system 
with coordinates' x = ( K , . x ~ )  in the cortical plane and let qb(x) be the 
preferred orientation of the column at location x. Following Swindale 
et 01. (1987) we define the complex orientation anglef by 

We introduced a factor 2 because the angles of preferred orientation 
take on values only between 0" and 180" (not 3600) and two angles differ- 
ing by 180" are equivalent [see Swindale (1982) for details]. The preferred 
orientation at point x is then represented by the complex numberf, which 
can be interpreted as a vector of unit length in the complex plane. The 
correlation between the preferred orientations at two points is given by 
the scalar product of the respective vectors at these points. When we 
define the complex two-point autocorrelation function off( x )  as, 

(see, e.g., Champeney 1973), it is seen that the real part of C(y)  corre- 
sponds to the mentioned scalar product, 

'We use bold characters to designate vectors. 
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Isotropy implies the absence of systematic differences with respect to 
direction in the cortical plane. Therefore, $(x) - 4 ( x  + y )  depends only 
on r2 = y: + y: and the autocorrelation function is circularly symmetric. 
We may therefore write 

We define a map as being locally correlated if, on average, variations of 
the preferred orientation on a length scale much smaller than A are sig- 
nificantly smaller than those on a length scale A. The autocorrelation 
function has then high values at small distances ( r  << A) .  A system is 
Ironropcous if all its locations are equivalent, that is, no systematic dif- 
ferences can be observed between different locations. Such a system is 
devoid of long-range correlations and therefore has a vanishing correla- 
tion function for long distances ( r  >> A) .  

Having expressed homogeneity, local correlation, and isotropy in 
terms of properties of the autocorrelation function, what are the conse- 
quences of modularity?? Within every module of linear dimension zz A, 
all preferred orientations are represented. Close to a given point ( r  << A), 
orientations similar to that at the point itself preponderate. Since mod- 
ularity requires that within the distance ,\ from this point (on average) 
al l  orientations have to occur with comparable frequencies, orientations 
other than the one at the given point have to occur with above-aoerage 
frequency between the central peak and r = A. From equation 1.3 and 
the lines following it, it is then seen that the autocorrelation function is 
characterized by a central positive peak, a surrounding negative "valley," 
and zero values for large distances. 

A simple model for such a function is a difference of gaussians, 

(1.5) 

(the imaginary part of C vanishes identically in our model). This func- 
tion, shown in Figure la ,  has a peak with width zz A/4 around r = 0, a 
minimum at r FZ A/2, and decays to zero for r + x. 

According to the Wiener-Khintchine theorem (Champeney 1973), the 
power spectrum of the map is obtained from the Fourier transform of 
its autocorrelation function as P(k) = f I P k X C ( x )  d x .  From equation 1.5, 
we therefore obtain 

qr) = L , - ( ~ r / A ) '  - - p - ( 2 r / 1 F  1 
4 

where k2 = k: + k i .  This spectrum, shown in Figure lb, has a large 
amplitude on an annulus with radius zz 2r/A and small or vanishing 

'Modularity here is understood in a restricted sense, that is, we suppose modularity 
only with respect to the distribution of preferred orientation. Swindale (1990) has given 
arguments against the realization of a strong form of modularity in cortex, in the sense 
that onc module contains all represented features; see also Bartfeld and Grinvald (1992). 
These arguments do not exclude modularity in the more restricted sense used here. 
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Figure 1: (a) Radial component of the model autocorrelation function (equa- 
tion 1.5). The function is circularly symmetric around the origin. The horizontal 
axis is in units of A. (b) Radial component of the power spectrum correspond- 
ing to the autocorrelation function shown in (a), as computed in equation 1.6. 
The horizontal axis in (b) is in units of 2 i ~ / A .  Because the power spectrum is 
the Fourier transform of a function with circular symmetry, it is also circularly 
symmetric and therefore the function shown corresponds to an annulus around 
the origin. 
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amplitudes elsewhere. Similar power spectra have been observed exper- 
imentally for orientation column structures of monkeys (Obermayer et al. 
1991,1992). Local correlation leads to the absence of spectral components 
for frequencies much larger than the radius of the annulus (i.e., for spa- 
tial frequencies >> Y'). Significant nonzero components for high spatial 
frequencies would lead to short-range variations in the map, which are 
generically not observed. Such variations do occur at isolated points, 
the so-called singularities (Swindale ef al. 1987), but these singularities 
are necessary for topological reasons (they correspond to common ze- 
roes of the numerator and denominator in equation 1.8 and only in very 
unusual cases are such common zeroes absent) and they are not caused 
by high frequencies in the spectrum off.  This can be seen clearly by 
the singularities in maps generated from Fourier spectra with vanishing 
high-frequency components (e.g., Fig. 2D). 

Homogeneity leads to vanishing amplitudes of the low spatial fre- 
quency components in the spectrum inside the annulus because nonzero 
components for low spatial frequencies would lead to systematic differ- 
ences (inhomogeneities) between distant hypercolumns, which are not 
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observed. Isotropy is reflected in the spectrum by the fact that the statis- 
tical distribution of the nonzero components in the same in all directions 
around the origin. Local correlation and homogeneity (i.e., missing high- 
and low-frequency components) will lead to a bandpass characteristic 
and consequently to a periodicity with only one predominant frequency. 

In the preceding, we  have shown that a n  annular spectrum is neces- 
sary for modular orientation maps that are homogeneous, isotropic, and 
locally correlated. Is an annulus spectrum also suffcient to produce real- 
istic column structures? To test if this is the case or if more information 
is hidden in the details of the amplitudes or phases of the spectra of 
orientation column structures, we performed an inverse Fourier trans- 
form of simple annulus spectra (Fig. 2C), which have zero amplitudes 
everywhere except on an annulus of radius z 21r/X. On this annulus, the 
amplitude has random values and the phases were either all set to zero 

Figure 2: Facing page. Analysis of observed orientation preference map of mon- 
key (A,B) and synthesis of model map (C,D). (A) Map of preferred orientations 
in area 18 of the macaque monkey measured with optical imaging by Blasdel 
(1992). Color circle for the preferred orientations: 0" = dark blue, 22.5" = pur- 
ple, 45" = red, 67.5" = orange, 90" = yellow, 112.5" = green, 135" = light blue, 
157.5' = sky blue, 180" = dark blue. (B) Power spectrum obtained from (A). 
Except for a DC component (orange pixel in the center of the annulus) that 
we attribute to a bias caused by the finite size of the map, the spectrum has 
significant power only on an annulus of a radius given by the inverse period 
of the preferred orientation in (A). (C) Model power spectrum. The power 
vanishes everywhere except on an annulus where it takes on random values 
(uniform distribution). (D) Model map of preferred orientations, color coding 
as in (A). Defining F ( k , r . k , , )  as the Fourier transform of the complex anglef (see 
equation l.l), 

and from tan24 = Zml f ] /Rc l f ] ,  we can trivially compute the preferred orienta- 
tions d)(x. y) as follows: 

In this equation, Rr and I r u  describe the real and imaginary parts of  their ar- 
guments, and IFT denotes the inverse Fourier transform (i.e., the inverse of 
equation 1.7). In order to show that the amplitude information presented in 
(C) is sufficient to generate a realistically looking map, we replace F(k,, .k,)  in 
equation 1.8 by the square root of the power spectrum in (C), that is, we set all 
phases identically to zero (similar results were obtained by choosing random 
phases). The organization of the resulting map, shown partially in (D), is very 
similar to that of experimentally found maps (e.g., in A). 



608 Ernst Niebur and Florentin Wiirgcittcr 

or to random values (with similar results). In Figure 2D, we show the 
cortical map that is obtained from this spectrum by a standard procedure 
(Swindale 1985) and that shows a striking resemblance to experimentally 
observed maps. 

Furthermore, we found that this scheme is very robust: we obtain 
realistically looking maps for a wide range of variations in amplitudes, 
phases, and the width of the annulus, which can be varied by about a 
factor of 10 without significant disturbance of the maps. We also varied 
the form of the annular probabilistic distribution and found that artificial 
maps generated with an annulus constructed as a difference of gaussians 
(as in equation 1.6) yield realistic maps, as do annuli that are gener- 
ated by a distribution generated as a gaussian whose mean value is the 
annulus radius and “rectangular” annuli with sharp borders as the one 
shown in Figure 2C. This robustness might explain why so many different 
developmental models are capable of producing ”good-looking” maps: 
this is expected as long as their ”products” (the maps they generate) 
are consistent with the basic properties of local correlation, homogeneity, 
modularity, and isotropy. Note, however, that in this study we are not 
concerned with the properties of developmental models but only with 
the properties of maps. 

Nevertheless, care has to be taken to avoid the introduction of arti- 
facts in this procedure. Rojer and Schwartz (1990) obtained orientation 
columns by bandpass-filtering two-dimensional noise. This procedure is 
mathematically equivalent to our Fourier transformation of a noisy an- 
nulus. Their method differs, however, from ours in the next step. Since 
preferred orientation is a vectorial quantity, they then differentiated the 
output of the bandpass filter and interpreted the obtained gradient as a 
vector field representing the map of preferred operations. The obtained 
maps share many properties with measured orientation column maps: 
cells with similar orientation preference are clustered together and the 
maps have singularities as well as fractures. Closer inspection (Erwin 
et a1. 1993) reveals, however, that the thus generated maps differ from 
experimentally observed data. For instance, certain types of physiolog- 
ically quite frequently observed singularities can never occur in these 
maps. While loop singularities (“hairpin bend” shaped) with the open- 
ing to the left or right can occur, the same singularity cannot be obtained 
if they are turned by 90°, for example, if they have the opening to the 
top. Erwin ct al. (1993) show that this deficiency is due to the fact that a 
gradient field is conservative which limits the class of patterns that can 
be generated when using gradient fields. The described singularity (loop 
open at top) would require a vector field with nonvanishing curl that is 
not conservative and can therefore never be obtained as  the gradient of a 
scalar field. Experimentally observed orientation maps do not have this 
restriction and neither do the maps generated from annulus spectra by 
the procedure introduced by Swindale (1982) and used in this work (see 
caption of Fig. 2D). 
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Unfortunately, no complete scheme has yet been found for a quan- 
titative characterization of cortical orientation maps. A first attempt to- 
ward the development of such a "fingerprint" has been made by Ober- 
mayer ct al. (1992) who compared orientation and ocular dominance 
maps obtained from optical imaging data with maps generated from 
self-organizing feature maps. We have applied their methods to show 
that our simple model achieves quantitative agreement with experimental 
data. The power spectra of experimental and artificial maps are shown in 
Figure 3a, the circular autocorrelation function of the maps in Figure 3b, 
and the distribution of the orientations of the maps in Figure 3c. By all 
three' measures, the model maps generated with our simple procedure 
are strikingly similar to experimentally obtained maps. Furthermore, we 
counted the density of singularities in the measured map and in the ar- 
tificial map and found very similar values (3.3 singularities per squared 
hypercolumn length X2 in the real map and 3.4 in the artificial map). 

Homogeneity, local correlation, and isotropy are properties of natural 
images (Field 1987), that is, properties of the input to the visual system, 
and it might be advantageous for an information-processing system if 
its structure reflects the properties of the input signals. For instance, 
if the incoming signals are, on average, homogeneous (no systematic 
variation across the visual field), similar signals have to be treated in 
all parts of the cortical representation of the visual field. It  is therefore 
plausible that similar structures are to be found in different parts of the 
topographic map. Two remarks are in order here: (1) Neither the visual 
input (Switkes et al. 1978) nor the human visual system (Mitchell et a/ .  
1967) are cornplefel!y isotropic, and similar statements are probably true for 
homogeneity and local correlation. Our results should rather be taken as 
a general framework for leading-order effects than as a detailed model for 
particular features. (2) We neglect distortions by the "complex-logarithm 
transformation" of visual images that emphasizes the foveal region with 
respect to the periphery (Schwartz 1977). 

Independent of the properties of visual input, one expects homogene- 
ity to be a useful feature in any parallel system, since it allows replication 
of one module many times for parallel information treatment. Local cor- 
relation is found in all cortical areas reflecting the tendency of neurons 
to work in an environment in which they are surrounded by other neu- 
rons whose properties vary in a smooth, orderly manner (Legendy 1978). 
There seem to be less compelling reasons for strict isotropy except from 
conceptual and developmental simplicity, and, indeed, this property is 
not always found in perfect form. Ocular dominance columns in mon- 
key and orientation columns in cat are better described by an anisotropic 
spectrum (Obermayer et al. 1991; Rojer and Schwartz 1990). It is possible 

'Obermayer et nl. (1992) introduced a fourth measure that characterized the inter- 
action between orientation columns and ocular dominance columns. Since we do not 
model binocularity, this is not applicable to our maps. 
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that interactions between sensory features (like ocularity and orientation) 
induce corresponding interactions between the feature maps, which allow 
only one of these maps to be described by these simple principles. 
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Figure 3: Facing page. Statistical analysis of the real and artificial maps and 
spectra shown in Figure 2. (a) Normalized distribution of the energy of the 
spectra Figure 2B,C as a function of the radial spatial frequency. The DC com- 
ponent (i.e., at radius = 0) is omitted. The solid line belongs to the spectrum 
obtained from the experimentally measured map. The dotted line is directly 
computed from the annulus using the formula: energy = d m ,  while 
the dashed line results from Fourier analysis of the artificial map Figure 2A. 
Note the significant background "noise" in the spectra, which is introduced by 
the numerical Fourier analysis. Due to the finite size of the map, most frequen- 
cies are not integer multiples of the map size and therefore do not correspond 
to sharp peaks in the spectrum but to rather broad structures. This background 
is also present in the spectrum of the experimentally determined map and high- 
lights the question about the limits of resolution of Fourier methods applied to 
cortical maps. (b) Circular autocorrelation as defined in the text for the maps 
in Figure 2A,D computed and averaged at 500 randomly chosen map locations 
(solid line, experimental map; dashed line, artificial map). (c) Distribution of 
the preferred orientations for 18,000 randomly chosen map locations (solid line, 
experimental map; dashed line, artificial map). 

In previous reports we have shown that rather unspecific isotropic 
connections similar to those observed in cortex (Bonds 1989) can produce 
complex, anisotropic behavior in cortical cells (Niebur and Worgotter 
1990; Worgotter et al. 1992). The circular connections we used there were 
embedded in the cortical column structure, which was the major topic 
of the current study. Here we conclude that the complicated looking 
column system might be based on only a few design principles and that 
these very simple principles are sufficient to explain the essential features 
of the column system. It  is certainly an  oversimplification to neglect ma- 
jor anatomical details, but it appears that the combination of rather un- 
specific connections on an unspecifically designed column system could 
already explain the robustness of the cortical network during develop- 
ment and while suffering from damage. Very little structural information 
could be at the basis of highly complex performance. 
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