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Abstract. Rhythmic neural circuits play an important role in biological
systems in particular in motion generation. They can be entrained by sen-
sory feedback to induce rhythmic motion at a natural frequency, leading
to energy-efficient motion. In addition, such circuits can even store the
entrained rhythmical patterns through connection weights. Inspired by
this, we introduce an adaptive discrete-time neural oscillator system with
synaptic plasticity. The system consists of only three neurons and uses
adaptive mechanisms based on frequency adaptation and Hebbian-type
learning rules. As a result, it autonomously generates periodic patterns
and can be entrained by sensory feedback to memorize a pattern. Using
numerical simulations we show that this neural system possesses fast and
precise convergence behaviour within a wide target frequency range. We
use resonant tuning of a pendulum as a simple system for demonstrating
possible applications of the adaptive oscillator network.

1 Introduction

Rhythmic neural activity is very important in the function of animal organisms
including locomotion. Neurophysiological studies suggest that the periodic neu-
ral activity patterns are generated by central pattern generators (CPGs) [3,5].
CPGs are neural circuits that are capable of producing basic periodic outputs
without any rhythmic inputs or sensory feedback. Nevertheless, sensory feedback
to CPGs is critical for ensuring their coordination to appropriately control pe-
riodic motion of limbs or limbless bodies [3]. Besides the coordination, another
role of sensory feedback is for the adaptation and entrainment of the CPGs such
that they can produce motion at a natural frequency.

There is a wide variety of different CPG models available ranging from de-
tailed biophysical models to pure mathematical oscillator models [2,3,6]. They
can be classified as purely reactive or adaptive oscillators. Only adaptive ones
show the ability to memorize the influence of an external perturbation. Accord-
ing to this, Righetti et al. developed a frequency adaptation rule for a general
time-continuous oscillatory system [11]. This adaptation rule enables the system
to adapt to the frequency of any periodic input signal. It has been applied to
automatically tune or generate robot motion to a resonant frequency [1]. How-
ever, the mechanism suffers from a long adaptation time typically longer than
hundred periods of the goal frequency.
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In this contribution we propose for the first time an adaptive neural oscillator
with synaptic plasticity which requires only a short time to adapt towards a
given goal frequency. It is based on a discrete-time SO(2)-network with recurrent
connections [10]. Discrete-time recurrent neural networks reflect properties and
phenomena that are also observable in continuous-time recurrent neural networks
[10]. At the same time they are easier to study and easier to implement on robots
as they are in many cases computationally less expensive. We apply a modified
version of the adaptation mechanism developed by Righetti et al. [11] to the
SO(2) oscillator. By introducing an additional neuron and three plastic synapses
we obtain an adaptive neural oscillator system that is able to operate using the
same parameter configuration within a wide frequency range. The weights of the
plastic synapses are governed by a Hebbian type learning rule in combination
with a relaxation term resulting in short-term plasticity behaviour.

In the following, first, we present the SO(2) network which is the base of our
adaptive system. Afterwards, we show that an implementation of the general
adaptation mechanism [11] on the SO(2) network does not offer good adapta-
tion behaviour over a wide frequency range. Thus, we modify the adaptation
mechanism and introduce an additional neuron together with plastic synapses
to the network leading to the complete adaptive neural oscillator system. Fi-
nally, we apply this oscillator as a CPG to drive a simple dynamical system and
show the ability of the network to adapt to the resonant frequency of the system
within few periods.

2 The SO(2) Network

We use standard additive time-discrete neurons Hi, i ∈ {0, . . . , N − 1} where N
is the number of neurons. The weight of the synapse from neuron Hj to neuron
Hi is wij . There are no biases to neurons, the activity ai at neuron Hi and time
t + 1 is given by the sum of all products of incoming synaptic weight wij and
pre-synaptic output oj at time t:

ai(t+ 1) :=

N−1∑

j=0

wijoj(t), i = 0, . . . , N − 1 . (1)

The output oi of neuron i is given by a sigmoidal transfer function of the activity
ai which in this contribution is always chosen to be the tangens hyperbolicus:

oi(t) = tanh(ai(t)) . (2)

The SO(2) network consists of two mutually and self-connected neurons H0 and
H1 as shown in Fig. 1a. As proven in [10] the network produces quasi-periodic
output when the weights are chosen according to

(
w00 w01

w10 w11

)
= α ·

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
(3)



Adaptive Neural Oscillator 453

w00 w11

w01

w10

H1H0

(a)

�
���
���
���
���
���

� ��� ��� ��� ��	 �


�
�

�
��

��
f

��������� ϕ[π]

���

Fig. 1. (a) General two-neuron oscillator network. (b) Relation between the parameter
ϕ and the resulting frequency f of the SO(2) network for α = 1.01.

with −π < ϕ < π and α > 1. o0(t) and o1(t) have a phase delay of π/2 where
o1(t) is in front for ϕ > 0. For α = 1 + ε and ε � 1 both o0(t) and o1(t) have a
small amplitude and are almost sine-shaped [10]. The parameter ϕ determines
the frequency of the oscillation. In this work we always choose α = 1.01 which
gives a nearly proportional relationship between ϕ and f and an amplitude of
approximately 0.2. Figure 1b shows the relation between the parameter ϕ and
the frequency f of the neural oscillator.

3 Direct Transfer of the Adaptation Mechanism

Applying the general frequency adaptation rule (compare [11]) to the SO(2)-
network we additionally introduce a learning rate μ to decouple the coupling
strength from the learning speed. The dynamics of the discrete-time adaptive
SO(2)-oscillator is therefore given by the following set of equations:

o0(t+ 1) = tanh(w00(t)o0(t) + w01(t)o1(t) + εP (t)) , (4)

o1(t+ 1) = tanh(w10(t)o0(t) + w11(t)o1(t)) , (5)

ϕ(t+ 1) = ϕ(t) + μεP (t)o1(t)
(
o20(t) + o21(t)

)−1/2
. (6)

The optimal values for ε and μ highly depend on the given initial and external
frequency. We define the final deviation δ, the final frequency amplitude u, the
convergence time tc and the respective relative values δ̂ = δ/fg, û = u/fg and
t̂c = tc ·fg as shown in Fig. 2a. Figure 2b shows the regions in the (ε, μ) parameter
space which enable a satisfying adaptation behaviour for two different frequency
settings. There is no value-pair satisfying the demands for both configurations.

4 Adaptive Neural Oscillator with Synaptic Plasticity

To obtain a less specific adaptive frequency oscillator an additional neuron H2

is introduced. The output of neuron H0 is fed back to H2 where it is subtracted
from the perturbation P . This is inspired by the feedback structure used e.g. in
[12]. Figure 3 shows the extended neural network.
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Fig. 2. (a) Definition of the final frequency amplitude u and the final frequency devia-
tion δ for an adaptation process with initial frequency f0 and goal frequency fg as given
by the external perturbation. The convergence time tc is the time step at which the
intrinsic frequency for the last time deviates more than 5% from the final average. (b)
Parameter regions that allow an adaptation with t̂c < 50, û < 0.05 and |δ̂| < 0.05 for
two different frequency configurations. The external perturbation is always sine-shaped
with an amplitude of 1.0.
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Fig. 3. Struture of the adaptive neural oscillator with synaptic plasticity

The weights of the three additional synapses β, γ and ε are governed by
a Hebbian-type learning rule based on correlation and a relaxation term driv-
ing them exponentially towards predefined relaxation values β0, γ0 or ε0. This
synaptic plasticity can be considered as short-term synaptic plasticity [14]. The
parameters A,B > 0 determine the influence of the different plastic terms:

β(t + 1) = β(t) −A · o0(t) · o2(t)− B · (β(t)− β0) , (7)

γ(t+ 1) = γ(t)−A · o2(t) · o0(t)−B · (γ(t)− γ0) , (8)

ε(t+ 1) = ε(t) +A · P (t) · o2(t)−B · (ε(t)− ε0) . (9)

As the radius
√
o20 + o21 of the limit cycle of the SO(2) oscillator is approximately

constant, we omit the corresponding factor in (6). The factor εP (t) is replaced
by the signal arriving at H0 from H2. The output of neuron H1 is multiplied by
w01. The altered frequency adaptation rule is given by:

ϕ(t+ 1) = ϕ(t) + μ · γ(t) · o2(t) · w01(t) · o1(t) . (10)

The modulation of ϕ influences the four synapses of the SO(2) oscillator (w00,
w01, w10, w11) in a long-term synaptic plasticity fashion.

If the perturbation P (t) and the output o0(t) differ the weights β and γ
decay towards their relaxation values and P (t) dominates the output of H2. As



Adaptive Neural Oscillator 455

����
���

P

����
���

o 0

����
���

o 1

�����
����

o 2

����

����

����

�	

�
�
f

����

�

���

� ��� ��� ��� ���

�
��
�
�



���� 


β = γ − 1 ε

Fig. 4. Adaptation of the neural oscillator with an initial intrinsic frequency of f0 =
0.04 to an external frequency fg = 0.02 and the reversed process. At time step t = 1600
the external perturbation is switched off. The intrinsic frequency is calculated out of
ϕ according to the relation in Fig. 1b. The parameters are A = 1.0, B = 0.01, β0 = 0,
γ0 = 1.0, ε0 = 0.01 and μ = 1.0.

a consequence ε gets enhanced. As soon as the oscillator has adapted to the
external frequency the outputs of H0 and H2 are positively correlated. That
makes γ shrink and β grow (according to amount) until the feedback signal
from H0 to H2 almost fully compensates the external perturbation. This makes
ε and, as a consequence, also β and γ decay towards their relaxation values.

We use a perturbation with the same amplitude as the oscillator output,
namely 0.2, and choose A = 1.0, B = 0.01, β0 = 0, γ0 = 1.0 and ε0 = 0.01. The
value for the learning rate μ is over a wide range uncritical. We choose μ = 1.0.

Figure 4 shows an example configuration with two adaptation processes. In
both cases the systems adapts within 15 periods of the external frequency. Only
very small deviations of the goal frequency and small final frequency amplitudes
are observed. Removing the signal P at t = 1600 demonstrates that the system
is independent of the perturbation once the synapses relaxed. Figure 5 shows
the relative convergence time t̂c for all pairs of initial frequency f0 and goal
frequency fg for which the conditions t̂c < 50, û < 0.05 and δ̂ < 0.05 hold.

5 Resonant Tuning of a Pendulum

Driving a dynamic system at its resonant frequency enables the controller to
drive the system in an energy-efficient manner. Applications of this resonant
tuning to the locomotion of robots have been described e.g. by Buchli et al.[1]
and Ronsse et al.[12]. We use a mathematical pendulum as a closed-loop test
control system. The dynamics of a pendulum with length l and mass m within
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Fig. 5. Relative convergence time t̂c = tc · fg in dependence of the frequency pair
(f0, fg). The parameters are the same as in Fig. 4. Shown are only those points for
which t̂c < 50, û < 0.05 and δ̂ < 0.05 hold.

a gravity field with acceleration g is given by the Newtonian equation of motion
for the angular displacement θ:

d2θ

dt2
= −g

l
sin θ − D

ml
θ̇ +

Mext

ml2
(11)

where D is a damping constant and Mext an external torque that is here con-
trolled by the adaptive oscillator network as a CPG.

The current value of θ is used as a feedback signal for the controller. When
Mext is periodic the pendulum will eventually follow the external frequency. In
case of resonance a phase difference of π/2 evolves between the angular displace-
ment θ and Mext where Mext is in front. It is therefore advantageous to use the
output o1 of neuron H1 to control Mext. This way the feedback signal θ and
the output o0 are in phase when the system is driven at its resonant frequency.
Figure 6 shows the control schema.

Mext
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lg
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Fig. 6. Control principle of the CPG driven pendulum

The torque applied to the pendulum is given by Mext = M0 · tanh(7 o1). The
feedback from the pendulum to the neural oscillator is P = 0.2 · tanh(20 θ). For
large amplitudes of the pendulum this produces a rectangle-shaped signal P .
With a slight parameter adaptation (B = 0.02) the network can adapt to this
signal as well. The network is updated with a frequency of 25Hz. Figure 7 shows
the time series of the pendulum being driven by the adaptive neural oscillator.

At the beginning the intrinsic frequency of the CPG is 0.032 · 25Hz = 0.8Hz
which is below the eigenfrequency of the pendulum system. After few periods
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Fig. 7. Pendulum controlled by the adaptive neural oscillator: Shown are the angular
displacement θ, the outputs oi of the three neurons, the intrinsic frequency fi of the
network and the pendulum [8] and the synaptic weights β and ε. The parameters are
m = 200 g, l = 20 cm, D = 0.005 Nms, g = 9.81m/s2, M0 = 0.03Nm. At t = 30 s we
set l = 40 cm, at t = 50 s again l = 20 cm. At t = 70 s the feedback is removed.

the CPG adapts to the eigenfrequency of the pendulum. Changing the pendu-
lum length l influences the eigenfrequency of the system. In both shown cases
the CPG adapts within approximately ten periods of the new goal frequency.
Finally, the feedback connection is cut by setting P = 0. Once the synapses have
converged to their relaxation values, feedback is no longer necessary.

6 Conclusion

We developed a discrete-time three-neuron adaptive oscillator network with
synaptic plasticity. Compared to other recurrent neural networks that could
potentially solve the same task, like e. g. echo state networks [9], the proposed
network has a minimal structure which consists of only three neurons and is
therefore computationally much more efficient. Furthermore, our network has the
ability for faster and still precise frequency adaptation and memorization within
a wider frequency range compared to existing solutions [1]. This is achieved by
a new short-term plasticity mechanism composed of a Hebbian-type learning
rule and a relaxation term controlling three synapses of the network. The other
four synapses are governed by a long-term synaptic plasticity rule based on the
modified frequency adaptation. In fact, the interplay of long-term and short-
term synaptic plasticity seems to also play an important role in biological motor
control, especially in fast network reconfigurations [7].

As shown here, the presented oscillator network can be used for fast resonant
tuning of the pendulum. Real world applications include generation of rhythmic
motion at a natural frequency of mechanical devices and adaptive locomotion of
multilegged robots in different terrains and situations[4].
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