
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011 1135

The Driving School System: Learning Basic Driving
Skills From a Teacher in a Real Car

Irene Markelić, Anders Kjær-Nielsen, Karl Pauwels, Lars Baunegaard With Jensen,
Nikolay Chumerin, Aušra Vidugiriene, Minija Tamosiunaite, Alexander Rotter,

Marc Van Hulle, Norbert Krüger, and Florentin Wörgötter

Abstract—To offer increased security and comfort, advanced
driver-assistance systems (ADASs) should consider individual
driving styles. Here, we present a system that learns a human’s
basic driving behavior and demonstrate its use as ADAS by issuing
alerts when detecting inconsistent driving behavior. In contrast
to much other work in this area, which is based on or obtained
from simulation, our system is implemented as a multithreaded
parallel central processing unit (CPU)/graphics processing unit
(GPU) architecture in a real car and trained with real driving data
to generate steering and acceleration control for road following.
It also implements a method for detecting independently moving
objects (IMOs) for spotting obstacles. Both learning and IMO
detection algorithms are data driven and thus improve above the
limitations of model-based approaches. The system’s ability to
imitate the teacher’s behavior is analyzed on known and unknown
streets, and results suggest its use for steering assistance but limit
the use of the acceleration signal to curve negotiation. We propose
that this ability to adapt to the driver can lead to better acceptance
of ADAS, which is an important sales argument.

Index Terms—Advanced individualized driver-assistance
system, driving, imitation learning, independently moving object
(IMO), real-time system.

ADVANCED driver-assistance systems (ADASs) that adapt
to the individual driver have high potential in the car

industry since they can reduce the risk of accidents while
providing a high degree of comfort. Conventional systems are
based on a general moment-to-moment assessment of road
and driving parameters. To arrive at a judgment of the current

Manuscript received March 12, 2010; revised November 5, 2010 and
March 15, 2011; accepted April 6, 2011. Date of publication June 20, 2011; date
of current version December 5, 2011. This work was supported in part by the
European Commission under Project FP6-IST-FET (DRIVSCO) and in part by
the Bernstein Focus Neurotechnology (BFNT) Göttingen. The Associate Editor
for this paper was S. Tang.

I. Markelić and F. Wörgötter are with Georg-August-University Göttingen,
37077 Göttingen, Germany (e-mail: irene@physik3.gwdg.de; worgott@
physik3.gwdg.de).

A. Kjær-Nielsen, L. Baunegaard With Jensen, and N. Krüger are
with Maersk McKinney Moller Institute, University of Southern Denmark,
5230 Odense, Denmark (e-mail: akn@mmmi.sdu.dk; lbwj@mmmi.sdu.dk;
norbert@mmmi.sdu.dk).

K. Pauwels, N. Chumerin, and M. Van Hulle are with Katholieke Universiteit
Leuven, 3000 Leuven, Belgium (e-mail: Karl.Pauwels@med.kuleuven.be;
Nikolay.Chumerin@med.kuleuven.be; Marc.VanHulle@med.kuleuven.be).

A. Rotter is with Hella KGaA Hueck & Co, 59552 Lippstadt, Germany
(e-mail: Alexander.Rotter@hella.com).

A. Vidugiriene and M. Tamosiunaite are with Vytautas Magnus
University, 44248 Kaunas, Lithuania (e-mail: m.tamosiunaite@if.vdu.lt;
a.vidugiriene@if.vdu.lt).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2011.2157690

situation, they use control laws, from which they derive out-
put signals to aid the driver [1]–[5]. However, interindividual
differences in driving can be large [6], [7], and it is difficult
for conventional control systems to accommodate these differ-
ences, leading to suboptimal driver support. This can finally
decrease the driver’s safety [8], [9].

Such observations were our motivation to investigate and
build a system that automatically adapts to the driving style of
its users. In addition, current R&D efforts of the car industry
focus on systems that explicitly take the driver and its behavior
into account [10], [11]. In addition to the safety aspect, such
systems will also be more easily accepted by users because
they will provide more comfort, which is an important sales
argument.

In the current study, we will describe a system based on
imitation learning, i.e., a system that learns to interpret basic
aspects of the road (lanes) in the same way as its driver,
reproducing the driver’s actions. In addition, we demonstrate
its use as a basic driver assistance system by issuing warning
signals if the driver deviates from his/her predicted default
behavior. The so-called DRIVSCO1 system is realized by a
multithreaded parallel central processing unit (CPU)/graphics
processing unit (GPU) architecture. It is vision based, operates
in real time on real roads, and also includes a method for data-
driven detection of independently moving objects (IMOs). The
latter is not the focus of this paper and is therefore only briefly
described. The system has been designed for use on motorways
and country roads.

Before describing the details of our system and comparing
it to the literature (see State of the Art), we shortly explain its
structure as a guideline for the reader (see Fig. 1). Thus, this
paper is organized as follows: in Section I, the overall structure
of the system is presented. It is compared with the state of the
art in Section II, with its realization explained in Section III and
results presented in Section IV. In Section V, we conclude and
discuss the presented work.

I. SYSTEM OVERVIEW

The overall structure of the DRIVSCO system is shown
in Fig. 1. The yellow box (“human senseact”) symbolizes
the human driver who senses the environment, which is de-
noted by the “world” box, and responds to it with adequate
driving actions (“act”). At the same time, the system senses the

1This is short for Driving School.

1524-9050/$26.00 © 2011 IEEE

1136 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

Fig. 1. Block diagram of the DRIVSCO overall system structure. The notation
t − 1 indicates an earlier time frame.

environment (“system sense”) by detecting the street “sense
lane” and IMOs (“senseIMO”) in incoming image frames.
The latter refer to objects that move with respect to the static
environment. If an IMO is detected, a warning is triggered
(“warning IMO”) if it is considered to affect the driver (see
Section III-D). Detected lanes are filtered by comparing them
to a predicted expectation “generate lane expectation,” based
on a previous (indicated by t − 1) detection and action (see
Section III-E). Once the lane detection is initialized, it is
compared with a prediction about the expected lane positions
(“generate lane expectation”), which is obtained by using pre-
viously captured human action data and the previously detected
lane, which is indicated by the notation t − 1, to predict the
current lane structure. This way, incorrectly detected lanes
can be filtered out (see Section III-E). The learning system is
realized by the perception–action repository (PAR) depicted as
the gray container in the figure, which serves as the system’s
memory, where it stores its observations and retrieves them at a
later stage (see Section III-F). The experience stored in the PAR
is a state vector containing a concise lane description extracted
from the current image frame and sequences of preceding and
succeeding action data. Thus, there are two modi: 1) training,
during which the system gathers experience to fill the PAR,
which is denoted in blue as “system training mode” (explained
in Section III-F2) and 2) retrieval, during which the system
queries the PAR to retrieve stored knowledge, which is denoted
in green as “system query mode” (see Section III-F2). Since the
goal is to learn lane following, i.e., context-free driving, training
the PAR requires the recorded data to be filtered to free it from
context-dependent scenes (see Section III-F1). This makes the
training phase a demanding procedure that is done offline, i.e.,
not during driving. The retrieval mode, however, can be used
offline and online. Based on accumulated PAR returns, action
plans for the expected human steering and acceleration behavior
for lane following are predicted, i.e., “prediction of action se-
quences” (see Section III-F4). To demonstrate the system’s use
as an assistance system, predicted action sequences are com-
pared with the driver’s actions, and a warning is issued if they
considerably differ, i.e., “warning driving” (see Section III-F4).
In other words, the driver is informed when deviating from his
or her learned default driving behavior. The warning signals are
displayed on a screen close to the driver, as shown in Figs. 2(c)
and 4.

II. STATE OF THE ART

Since our work aims at generating sequences of future
driving actions based on visual sensory input, it is closely
related to vision-based autonomous driving. Many approaches
in this field rely on control-theoretic whitebox methodologies,
i.e., they are based on predefined analytical models and control
laws. This has led to some well-performing systems, e.g., [12]–
[15]. However, the drawbacks are the dependence on predefined
knowledge and the difficulty of developing models and control
laws, which restricts the design process to experts. In addition,
these systems do not, or only in a limited way, provide means
for individualization. By contrast, imitation learning [16] aims
at extracting a policy for a given task by using examples
provided by a teacher. This reduces the amount of required
a priori knowledge and the need for explicit programming and
thus facilitates human computer interaction. A famous example
of imitation learning for driving is the Autonomous Land Vehi-
cle In a Neural Network (ALVINN) system [17]–[20], where
the steering actions of a human driver were associated with
concurrent visual input from a camera via a neural network.
Velocity control was handled by the driver. Further imitation
learning work by Pasquier and Oentaryo describes the learning
of several driving skills with a fuzzy neural network [21]. The
algorithms for lane following were tested in simulation. Similar
work with helicopter flying was reported in [22]. A novel form
of inverse reinforcement learning [23] was introduced in [24]
and applied to learning particular driving styles from example
data obtained from simulation.

The European-Union funded project Dynamic Interactive
Perception-action LEarning in Cognitive Systems (DIPLECS)
[25] reports similar goals to ours. However, DIPLECS does
not aim at building a complete system. Research conducted by
Motorola [26] aims at building an adaptive driver support sys-
tem using machine learning tools. Its architecture was partially
implemented in a prototype system built upon a simulator.

In addition to lateral control (steering), new generations of
driver assistance systems will contain support for longitudinal
control (velocity) during curve negotiation, e.g., [27]. Current
(non-imitation-based) methods usually do not take the street
trajectory into account but assist with simpler aspects such as
detecting an obstacle in front (e.g., Adaptive Cruise Control
systems using radar or laser for obstacle detection), known
speed limits (e.g., Intelligent Speed Adapters and Limiters
[28]), or leading vehicles (e.g., [29]). Focusing on curve ne-
gotiation and based on imitation learning are [21], [30], and
[31], which all employ fuzzy neural networks trained on human
control data.

Our work, unlike similar approaches, describes the realiza-
tion of a complete system implemented in a real car that learns
the prediction of action plans, i.e., sequences of steering and
acceleration actions, together with a method for IMO detection.
Our research differs from others because we use data obtained
from real car driving and not from a simulator. (Most of the
presented algorithms were first tested on a robot platform, as
reported in [32].) By contrast to the implicit mapping between
sensory input and actions achieved with the neural network in
the ALVINN project, our lazy learning approach [33] realized
by the PAR allows the preservation of human interpretable

MARKELIĆ et al.: DRIVING SCHOOL SYSTEM: LEARNING BASIC DRIVING SKILL FROM TEACHER IN REAL CAR 1137

Fig. 2. System integration in the car. (a) Mounting for the stereo camera
system. (b) Fixation of the computer in the trunk. (c) Installation of the monitor
in the car.

information processing at all stages. Although storage inten-
sive, it is a highly beneficial concerning error analysis.

III. SUBMODULES AND METHODS

A. Hardware

The used car is a Volkswagen Passat provided by the
DRIVSCO partner Hella KGaA Hueck & Co (Lippstadt,
Germany). The following sensory data are accessed via the
Controller-Area Network (CAN)-bus: steering angle, which
describes the steering wheel’s position with values between
[−360◦ (left steering), 360◦ (right steering]; velocity in kilo-
meters per hour; longitudinal acceleration with values between
[−10 m/s2, 10 m/s2]; and curve radius measured by a gyroscope
with values between [−15000 m, 15000 m]. Furthermore, a
camera stereo rig is mounted behind the windscreen, as shown
in Fig. 2(a). We use two color Pulnix TM1402CL cameras,
which deliver 1280 × 1024 raw Bayer pattern images at a fre-
quency of 20 Hz. A Global Positioning System (GPS) receiver
is added to allow the visualization of driven routes, for which
we used Google Maps (c.f. Fig. 6). All computations are carried
out on a personal computer (PC) with an Intel Core i7-975 3.33-
GHz quad-core processor with simultaneous multithreading
enabled and 12-GB random access memory. The used graphics
cards are an NVIDIA GTX295 for computation and a smaller
one for displaying purposes. The PC is kept in the car’s trunk,
as shown in Fig. 2(b), and the system output is displayed on a
screen next to the steering wheel, as shown in Fig. 2(c).

B. System Architecture

The backbone of this work is its realization as a multi-
threaded pipelined real-time system where shared memory is
used for interprocess communication. Due to the complexity
of the pipeline structure and the involvement of multiple CPU
cores and multiple GPUs in its computation, we have developed
our own modular architecture. By simplifying the coordinated
use of the heterogeneous computational resources in modern
computers, this architecture allows independent development
of the individual processing stages. To our knowledge, no
such CPU/GPU pipeline framework combining task and data
parallelism exists, allowing a stage to share data with multiple
other stages, e.g., the output of the preprocessing stage is used
by both ”lane detection” and ”dense vision,” as shown in Fig. 3.
The system structure from Fig. 1 is realized by the architecture
shown in Fig. 3. Each information processing entity is referred
to as a stage and runs in a thread as indicated. All stages are
connected through a pipeline where communication is realized

Fig. 3. Realization of the DRIVSCO system. Boxes denote processing stages,
and the dashed frames indicate individual parallel threads. Arrows denote the
information flow, with the exception that the display stage connects to all
stages. The “PAR,” “dense vision,” and “IMO detection” are key parts of this
system. The notation t − 1 indicates an earlier time frame.

Fig. 4. One tab of the system GUI showing the detected lanes in the current
image on the left and a history of prediction and steering angles of 2 s on the
right, along with the computed egomotion. Thresholds are shown in gray.

by shared memory buffers, where processes can be written to
and read from. The processing time of each individual stage
is below 50 ms, and the entire system works at a camera
rate of 20 Hz. The “preprocessing,” “dense vision,” and “IMO
detection” stages involve massive computations but achieve a
frequency of 20 Hz through the use of two GPUs, whereas
all other processes run on the CPU. The “CAN-bus capture”
stage is triggered every 50 ms and makes the relevant car
CAN-bus data available to other processes. During the “image
capture” stage, raw camera data are received, and white level
calculations are performed to control the camera’s shutter time.
The images are then undistorted, rectified, and downsampled to
640 × 512 pixels during the “preprocessing.” The boxes “lane
detection,” “dense vision,” and “IMO detection” are explained
in Sections III-C–III-E in detail. In addition, a special display
unit is integrated, which connects to all buffers in the pipeline,
allowing the user to view the output of any stage, including
the generated warning signals by means of a graphical user
interface (GUI). A screenshot of this GUI is shown in Fig. 4.

It shows a current image with detected lanes on the left,
and a history and prediction of steering angles of 2 s on the
right. The prediction is plotted in blue, and the actual human
steering is plotted in red. In addition, the computed egomotion
from the IMO detection stage is displayed in green. The gray
dashed boundaries around the prediction indicate predefined
threshold values used to issue a warning if exceeded by the

1138 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

actual driving. In this case, the “unexpected driving” button
below the displayed lane detection image is flashed. The system
can also conveniently be used in an offline mode to replay
recorded scenes, which is important for error analysis. Note
that this display is designed for R&D purposes and should be
simplified for a real driver assistance system.

C. Dense Vision

The visual cues used for the IMO detection are computed
during the “dense vision” stage (see Fig. 3). Dense vision
algorithms process the visual signal in its entirety, as opposed
to sparse vision algorithms that only operate on interest points
such as edges or corners. The cues used here are dense disparity
(the horizontal difference in image location for corresponding
pixels in the rectified left and right image) and optical flow (the
2-D image motion of each pixel). The algorithms used rely on
the phase of quadrature pair Gabor filter responses [34] [see
Fig. 5(b)], which were extracted at multiple orientations and
scales, to establish correspondences. The GPU implementation
[35] of a phase-based algorithm [36] is used to compute optical
flow [see Fig. 5(c)]. This algorithm integrates the temporal
phase gradient across orientation and gradually refines its esti-
mates by traversing a Gabor pyramid from coarser to finer lev-
els. The optical flow is computed for the left video stream only.
The dense disparity algorithm [see Fig. 5(d)] is very similar
to the optical flow algorithm but operates on phase differences
between the left and right image, as opposed to temporal phase
gradients. These aspects are described in more detail in [37].

D. IMO Detection and Warning

Recent (offline) approaches for the detection of IMOs have
achieved very good results using model-based techniques [38],
[39]. However, limitations include the difficult detection of
distant IMOs since they occupy only small patches in the image
and are thus difficult to match and, further, objects for which no
model is provided cannot be detected. Here, we use a model-
free mechanism that is more general in the sense that it will
respond to any sufficiently large (11 × 11 pixels) moving
object. The IMO detection component combines dense vision
cues (optical flow and stereo; see Section III-C) in real time to
compute egomotion (the rotation and translation of the camera)
and independent motion (the parts of the image that move with
respect to the static environment) to detect an IMO in front.

The whole process is complex and cannot be described in
detail in this paper. See [40] for further information. Here,
we will give only a short overview summarized in Fig. 5.
A nonlinear instantaneoustime model [41] is used to extract
egomotion from the optical flow. To obtain optimal estimates,
an iterative minimization procedure that relies on M-estimation
is used [42] for outlier compensation. A total of 32 different
initializations are explored to deal with local minima. The
data-intensive parts of the algorithm entirely run on the GPU.
Independent motion is detected by evaluating the depth/flow
constraint [43] at each pixel. Deviations from this constraint
point to inconsistencies between the optical flow, disparity, and
egomotion and result from noise or independent motion. The

Fig. 5. Real-time IMO detection. Multiorientation multiscale Gabor filter
responses (B) are extracted from the stereo image pair (A) and used to
compute dense optical flow (C) and stereo disparity (D). The horizontal and
vertical optical flow is color coded from −15 (dark red) to +15 pixels (dark
blue), and the stereo disparity is color coded from −50 (dark red) to +20
(dark blue) pixels. Combined with egomotion (E, which is extracted from the
optical flow, not shown), these cues allow the extraction of independent motion
(F, likelihood increases from blue to red). This independent motion signal is
gathered in a fixed region of the image (G), and when it exceeds a threshold,
a warning is issued.

deviations are assigned to independent motion if they comply
with a 3-D translation model in a local region surrounding the
pixel [see Fig. 5(f)]. To detect a moving vehicle in front, the
(pixelwise) independent motion signal is accumulated inside a
fixed region in the image [see the blue rectangle in Fig. 5(g)].
A warning is issued when more than 30% of the pixels within
this box are considered independently moving.

E. Lane Detection and Filtering

A large number of lane detection algorithms have been
reported, which can roughly be divided into feature- and model-
based methods (see, e.g., [2]). The former detect street lanes
bottom-up, i.e., based on certain low-level features such as in-
tensity gradients, edges, and color, e.g., [44], whereas the latter
aim at identifying image parts corresponding to a predefined
lane or street model, e.g., [45] and [46]. Both approaches have
known advantages and disadvantages: feature-based methods
can detect arbitrary shapes but might add erroneously detected
image parts into the returned street detection. The more re-
stricted model-based methods are more robust to disturbances
such as occlusions, noise, and shadows. However, they are
restricted to predefined lane shapes, making them less flexible.
To detect lanes in incoming image frames, we employ a simple
and fast (real time, i.e., 20 Hz) feature-based algorithm, which
works similar to contour tracers used in computer vision: First,
edges and pixel orientations are computed by using standard

MARKELIĆ et al.: DRIVING SCHOOL SYSTEM: LEARNING BASIC DRIVING SKILL FROM TEACHER IN REAL CAR 1139

computer vision techniques (Canny and Sobel operator [47],
[48]). Second, line segments are constructed by joining nearby
edge pixels with similar orientations. Then, nearby line seg-
ments are further joined, resulting in longer lines. Thus, a list
of lines that might contain small interruptions is obtained. The
parametrization of a lane can be shown in Fig. 7(a). The left and
right lanes are expected to be the longest of these lines, starting
in a particular area at the bottom of the image. During initializa-
tion, this area is manually determined and further tracked using
a Kalman filter [49]. This is very simple and requires almost no
a priori knowledge or initial image preprocessing, i.e., it works
on raw intensity images containing street lanes from a single
camera. Implementation details are given in [50]. To correct
against false positives, we apply an additional filter that uses
3-D information to verify if the detected lane is on the ground
plane. This is achieved by using the computed dense stereo map
(see Section III-C), which attaches 3-D information to each
point of the extracted lane in the form of disparity values. There
is a linear relationship between disparity values and horizontal
image coordinates, and the filter checks whether the extracted
lane fulfills this criterion. Since the disparity contains noise, we
use RANdom SAmple Consensus (RANSAC) [51] to fit a line
to the disparity data of the extracted lane. If an estimate with
slope in a tolerable range can be fitted, we believe that the lane
is on the ground plane. Otherwise, it is rejected.

As indicated by the entry “generate lane expectation” in
Fig. 3, a final feedback mechanism aids the stability of the lane
detection by generating lane expectations based on the human
behavior. The velocity and steering angle of the car is used to
derive its rigid body motion, which is then used to predict the
position of a detected lane one frame ahead.

The expected lane is then used for filtering the lane detection
in the following frame by comparing both and rejecting the
detection if it differs too much from the prediction.

F. PAR

The PAR serves as the system’s memory. It stores its
(driving) experience and retrieves it at a later stage. The idea is
based on the assumption that a human executes a stereotypical
driving behavior according to the street trajectory that he or
she sees. A straight street ahead will be followed by straight
steering for a while and probably some acceleration. A sharp
turn will cause the driver to decelerate and to steer accordingly.
To let the system learn this, we store a description of the street
ahead, together with sequences of human driving data that he
or she issued after having observed that street. This is the train-
ing phase. Next follows the retrieval phase, during which the
system can use incoming street trajectory descriptions to query
the PAR (similar to a pattern-matching process) and obtain
adequate driving sequences. The fact that we use sequences,
instead of single step actions, allows us to compute an expected
human driving behavior that reaches, to some extent, into the
future, i.e., we predict future sequences of human driving ac-
tions. To demonstrate the system’s use for driver assistance, we
issue warnings if the actual human driving data differs too much
from the computed expected driving. In the following, we ex-
plain what data we use and then formalize the individual steps.

Fig. 6. Tracks on which training data were recorded. (a) s03 (1 km). (b) s05
(2 km). (c) s06 (1 km). (d) Long tour between Lippstadt and Beckum (69 km).

Data, Default Driving, and Preprocessing: We use a data
set from a single driver recorded and provided by Hella KGaA
Hueck & Co2. It consists of three repeatedly driven tours to
which we refer as s03, s05, and s06 [c.f. Fig. 6(a)–(c)] and
a track that we denote “long tour” [see Fig. 6(d)], which was
driven twice.

Steering and acceleration are the data predicted from the
car CANbus (see Section III-A). Due to trends and a too high
variance found in general in the velocity data, we used the
acceleration signal, which we found to be more predictable.

The goal is to learn the default human behavior concerning
steering and acceleration for lane following in context-free sit-
uations. By this, we mean driving without additional traffic and
without special situations, such as intersections. This requires
filtering the original driving data to clean it from context-
afflicted situations, which can be achieved by using the IMO
detector to identify and exclude situations with IMOs in front,
as well as by using inconsistencies in the lane detection to
identify and exclude situations such as intersections. Hence,
PAR entries for lane following are based on context-free driving
examples.

In addition to the acquisition of context-free situations, we
also remove action sequences that are obvious outliers as
described in the following. In Fig. 7(b) and (c), 15 steering
and acceleration signals from the same track and driver are
shown, along with their means plotted in black. We observe a
much higher variance in the acceleration data than for steering,
which is quantified by the mean signal-to-noise ratio (SNR, we
compute E[|µ|/σ], with µ being the mean and σ the standard
deviation), where a high SNR indicates good predictability of
a signal and a low SNR indicates a bad one. For the shown
data, we obtain an SNR value for steering of 7.43 and accel-
eration of 0.62. By removing outliers (which are detected by
an automatic procedure during which the individual signals are
compared with the mean), the latter can be increased to 1.3. In
Fig. 7(d), black signals are those acceleration signals found to

2Parts of this set are available at the webpage [52].

1140 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

Fig. 7. (a) Extracted street boundaries described by polylines and the corner
points. The vectors of the corner points (c0l/r , c1l/r , . . .) for the left and right
lanes constitute the visual state description. (b) Steering and (c) acceleration
signals from 15 runs from the same track and driver. The mean is plotted in
black. “SNR” refers to signal-to-noise ratio. (d) The sequence closest to the
mean is shown in red. Black signals are considered to be sufficiently similar.

be sufficiently similar, and the others (differently colored plots)
are those that were sorted out. The sequence closest to the mean
is plotted in red. We use these data for training the PAR, as
explained in Section III-F2.

Driving data assigned to similar situations are averaged dur-
ing training. Similarity is defined by the resemblance between
the left and right street lanes of the observed image, and one
already contained in the PAR, as well as a short sequence
of previous steering data. A formal definition is given in
Section III-F3. Hence, for tracks that are being driven multiple
times, the system defines the default human driving behavior
over the mean of the action sequences obtained from driving on
the same track, as shown by the black plot in Fig. 7(b). Note,
however, that learning starts with the first entry in the PAR,
and additional information just improves the performance of
the perception–action mapping. Single-example performance
is reliable for steering but remains restricted for acceleration
control (see Section V). Note that, as the curve shapes are fairly
similar, after some learning, the system is able to generalize into
unseen curves. This will be shown later (see Fig. 11).

Since the signals predicted by the PAR should correspond
to the default behavior of the human, i.e., the mean action
signal, we evaluate the performance of the PAR by comparing
its output against the human action sequence closest to the mean
signal, i.e., the red plot in Fig. 7(d) (which we do not include in
the training data).

PAR Training: The information stored as experience in the
PAR is a state vector s containing a description of extracted
left and right street lanes (vleft,vright) from a current image
frame It. Here, t denotes the time of the image observation.3

Because we found that only a description of the street ahead
is not sufficient to distinguish different driving situations from
each other, e.g., a straight street can lead to acceleration or no

3Time is measured in discrete time steps according to the camera’s image
capturing frequency.

acceleration, depending on the current velocity, we also store
a short sequence of previous steering (spast). We use a fixed
number of m = 50 discrete steering actions that preceded It.
Thus, the state vector is as given in (1). To each such state
vector, we assign sequences of future human driving actions
executed after the observation of It, which we refer to as sfut

and afut. The length of the sequences stored is supposed to
resemble the number of actions necessary to cover the part of
the street observable in It. Since we do not know exactly how
many actions this corresponds to, we use a fixed value n = 100,
which is 5 s of driving corresponding to 97 m at a speed of
70 km/h, which we consider reasonable for country road
driving. Thus, a PAR entry e is as given in the following:

s = {vleft,vright, spast}, state vector (1)

e = {s, sfut,afut} PAR entry. (2)

The action sequences spast/fut and afut

spast = [st1, st2, . . . , stm] (3)

sfut = [st, st+1, . . . , st+n] (4)

afut = [at, at+1, . . . , at+n] (5)

with s and a denoting single steering and acceleration signal
values (actions).

The descriptions of the left and right street lanes (vleft/right)
are linear approximations (polylines) of the extracted lanes
in image coordinates, which were obtained by applying the
Douglas–Peucker method [53]. We store this as vectors contain-
ing the corner points of the polylines, as visualized in Fig. 7(a).
Thus

vright = [c0r
, c1r

, . . . , clr] (6)

vleft = [c0l
, c1l

, . . . , cll] (7)

with ll and lr denoting the lengths of vleft and vright.
During the training phase, a new entry e [see (2)] is added

to the PAR if it represents new knowledge, i.e., if no entries
are already available containing similar information. An entry
is added if 1) there is no other entry already in the PAR, with
vleft and vright having the same lengths as those contained in
the probed entry (in other words, if a completely new street
trajectory is observed), or 2) if there are such entries but none
of them has a state vector similar to that probed for adding.
Two state vectors are similar if the differences between their
components are each below a fixed threshold, that is, if the
following are fulfilled:

ε_v ≤ thresh_v (8)

ε_spast ≤ thresh_spast (9)

where ε_spast is the summed squared difference between the
entries of spast of two state vectors, and ε_v = ε_vl + ε_vr and
ε_vl/r are the sums of the normalized, weighted, and summed

MARKELIĆ et al.: DRIVING SCHOOL SYSTEM: LEARNING BASIC DRIVING SKILL FROM TEACHER IN REAL CAR 1141

Euclidean differences between vleft and vright of two state
vectors, see

ε_vl/r =
1

ll/r

ll/r∑
i=0

ω[i]
√(

v[i]left/rightv∗[i]left/right

)2
(10)

where the star in v∗[i]left/right indicates that it is an entry
of another state vector, and ω is a weight vector with ω[i] ≥
ω[i + 1]. The weighting punishes differences between two
lanes close to the image bottom more than differences appear-
ing closer to the horizon.

The PAR is complete if a predefined number of entries is
reached, or the two cases in which entries are added to the
PAR do not occur no longer. Note that training is done offline
(hence, not during driving). This would also be desired in any
commercial system as the training procedure is demanding (due
to the removal of context-dependent scenes) and should thus
take place when the car is not operating.

PAR Retrieval: To retrieve information from the PAR, it is
queried with a current state vector, which is compared with all
PAR entries whose vleft and vright have the same lengths as
those in the queried state vector. The action sequences attached
to the most similar PAR entry are returned. Similarity is defined
by computing the differences between the single entries of two
state vector entries, i.e., ε_v, ε_spast, as previously defined, and
the most similar entry is that with the lowest overall differences.

Thus, the return parameters of a query are either 1) the
differences ε_v and ε_spast between the most similar PAR entry
and the query, and the action sequences sfut and afut assigned to
the most similar entry or 2) an indication that no match could be
retrieved. The latter occurs when either there was no entry that
the query could be compared with or the best found match was
unacceptable, i.e., the assigned differences exceeded predefined
thresholds.

Prediction of Action Sequences: Because the PAR is queried
every time step, sequences of driving behavior more or less
appropriate to the queried situation are obtained. The degree to
which the returned actions correspond to the queried situation
is indicated by the returned differences ε_v, ε_spast. Since it
is unlikely that identical state vectors are obtained multiple
times, even on the same track, a mechanism for generalization
is required. That is, the system must compute adequate driving
actions based on more or less appropriate PAR returns. We post-
pone this step until retrieval time as typical for lazy-learning
algorithms [33], [54]–[56], which are often used in imitation
learning (compare [16]). The final expected human driving
sequences are generated by keeping the latest k query results
for steering and acceleration, and simply averaging over values
belonging to the same time step (see the gray box in Fig. 8).
Assuming that these values are contained in a buffer gbuf

(see Fig. 8), a single predicted action is computed, as given in

at =
1

|gbuf |
|gbuf |1∑

i=0

gbuf [i]. (11)

Thus, every action command in the resulting prediction is a
linear interpolation between the examples learned before. This
is similar to the k-nearest neighbor algorithm, which uses k

Fig. 8. Gray lines are the PAR returns for steer, and the computed expected
human driving sequence is drawn in black. The gray rectangle indicates a vector
gbuf containing all action signals of a certain time step used for averaging
(see text).

Fig. 9. Algorithmic flow of the driving system Unified Modeling Language
(UML) activity diagram.

closest training examples to compute a value for the variable of
interest. Thus, the learning begins to work with one single entry
in the PAR and improves on repeatedly seen tracks just as a
human driver would. For a final smoothing, we apply a moving
average filter (window size = 10) on the resulting signal.

We implemented a simple warning mechanism to demon-
strate its use for driver assistance. A warning is generated if
the actual human steering deviates too much from the expected
driving given by the computed prediction and specified by a
threshold determined empirically based on the offline analysis
of the test drive sequences.

Fig. 4 shows an example of the actual driving, the prediction,
and the thresholds.

G. Algorithmic Flow

The algorithmic flow of the system concerning action predic-
tion is summarized in Fig. 9.

No output can be generated if lanes could not repeatedly
be detected or if they were repeatedly misdetected, i.e., other
items erroneously identified as a lane. Some critical cases can
be compensated by other mechanisms, e.g., the generated lane
expectation can be used in case of an undetected lane. If this
prediction is considered unreliable, the previous action plan can
be used for as long as it contains entries. In this case, the control
is open loop, and only single-action commands can be issued.
In the optimal case, the system returns a sequence of action
commands, as described in Section III-F4.

1142 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

TABLE I
COMPARISON BETWEEN THE PRESENCE OF AN ACTUAL LANE

MARKER IN THE SCENE AND THE OUTPUT OF THE DEVELOPED

LANE-DETECTION ALGORITHM

IV. RESULTS

The performance of the IMO detection is assessed in two
ways, which together demonstrate the range of situations that
the algorithm can handle. On one hand, simulated scenes are
used with precisely known parameters to allow a rigid quantita-
tive evaluation. On the other hand, several real-world scenes are
processed to assess the qualitative performance. We evaluate
the detection of two moving objects and the magnitude of their
speed in a demanding simulated scene and find that both objects
are detected with a density of more than 50%, compared with
all pixels that belong to the objects. The magnitude of the speed
is calculated with an accuracy of better than 98%. The qual-
itative performance was evaluated by applying the algorithm
to a diverse set of real-world driving situations involving both
country roads and complex urban environments. A variety of
moving objects (cars, bikes, and pedestrians) were successfully
detected, whereas the car itself underwent a wide range of
egomotion speeds and steering actions. Further information can
be found in [40].

The developed lane detection algorithm was evaluated on a
randomly chosen sample of each tour of the available data set,
which comprised a variety of country roads with both clear and
damaged lane markers (a total of 11.400 frames with humanly
detectable lane markers present in 11.055 frames). In 98.9%
of the 11.055 frames, a valid lane description was extracted.
In 5.6% of these cases, only the left marker and, in 8.5%,
only the right marker were detected. Both markers were found
in 84.8% of these cases. This information is summarized in
Table I. Examples of detected lanes are shown in Figs. 4, 7(a),
and 12.

To evaluate how well the action predictions match the human
default behavior, we use the provided data set.

After filtering it, as explained in Section III-F1, approxi-
mately 80 min of training data were obtained, resulting in a
PAR with 90 470 entries, which is adequate for evaluating the
system performance. First, we test the performance on a known
track, i.e., one that the system had seen before. For that, we train
the PAR with all runs but that closest to the mean, which we
consider to resemble the human default behavior, as explained
in Section III-F1, and we use for testing. The smoothed steering
and acceleration signals from the algorithm are plotted against
the signal generated by the human for s03, s05, and s06 in
Fig. 10. As an additional measure of similarity, we compute
the correlation coefficient of the two signals (human and pre-
diction). For steering and acceleration prediction, we obtain
0.99 and 0.81 for s03, 0.93 and 0.73 for s05, and 0.97 and
0.67 for s06. Thus, all predictions are very good. However, the

Fig. 10. Results for (left column) steering and (right column) acceleration
prediction for known tracks. “cc” denotes the correlation coefficient value
between the human-generated signal and the synthesized signal.

Fig. 11. Results for steering (left) and acceleration (right) prediction on an
unknown track.

steering signal is better approximated than acceleration, which
is as expected from the computed SNR in Section III-F1.

For testing the performance on an unknown track, we train
the PAR with all available data, except that from the track we
test for. The result is shown in Fig. 11. We chose s05, which
contains a very sharp turn (see Fig. 12), leading to two typical
phenomena, which are discussed here. The resulting steer and
acceleration predictions in comparison to the human signal are
shown in Fig. 11. The steering prediction is very close to the
human signal, but the acceleration is less reliable. In particular,
it can be seen from the plotted acceleration prediction in Fig. 11
that the sharp curve [which is entered around time step 200,
c.f., Fig. 12(a)] is accompanied by a deceleration in the human
signal (between time steps 220 and 380) and that this is nicely
reflected by the algorithm. However, before and after the decel-
eration part, the predicted signal considerably differs from the
human data.

This phenomenon results from the fact that street parts with a
lower curvature allow a great variance in the driver’s choice of
speed, depending on hard-to-access variables including “mood”
and “intention,” where curves, particularly sharp curves, sig-
nificantly restrict the driver’s behavior and thus make it more
predictable. We therefore conclude that acceleration prediction

MARKELIĆ et al.: DRIVING SCHOOL SYSTEM: LEARNING BASIC DRIVING SKILL FROM TEACHER IN REAL CAR 1143

Fig. 12. (a) Entering a sharp turn in s05 at t = 200. (b) Too-short detected
lanes (with the left lane shown in black and the right lane in white.

with the presented method is only useful for curve negotiation.
The second observation is that there are unwanted peaks in
the predicted acceleration curve. This happens because the
system sometimes hooks on to different but similar-looking
road segments in the PAR, as shown in Fig. 12(b). Although the
lanes are correctly extracted, the lookahead is not sufficient to
properly distinguish this situation from almost straight streets.
We found that our driver sometimes reacted to upcoming curves
up to 8 s before entering them, requiring the system to have
a similar lookahead to correctly predict the driver. Humans
can see this far and make out even very faint features of the
road layout, which leads to such early reactions; computer
vision systems, however, cannot. The detected lanes at such
distances and the detected lane segments will, for smooth and
less descriptive situations, remain ambiguous, leading to false
matches, which causes these peaks.

According to the algorithmic flow shown in Fig. 9, critical
cases are a frequently undetected street, as well as the case in
which the PAR did not contain a good-enough match. In these
cases, it is possible to work off a previously generated action
plan, but only as long such a plan is available. For the presented
tests, the street detection rates were high: 100% for s03, 96%
for s05, and 98% for s06. However, the case that no PAR match
was retrieved occurred relatively frequently: for s03, in 32%;
for s05, in 12%; and for s06, in 39% of all cases. For testing the
case of driving on an unknown street on s05, no PAR match was
retrieved in 39%. Despite these high rates, it can be seen from
Figs. 10 and 11 that, for the entire duration action, signals were
reliably produced. It is an important aspect of the system that
its ability to predict sequences adds considerable robustness to
its performance.

During the final review meeting of the DRIVSCO project,
the system was observed by three independent international
reviewers (see [57]). The driver from which the training data
were obtained, i.e., who taught the system, drove the first
20 min of the long tour and back, where “back” corresponds to
an unknown track situation as curves are inverted. All compo-
nents were shown to reliably work together at the desired speed.
The lane detection worked even under challenging weather
conditions where sunshine after rain caused reflections. (A TV
report of this is available online [58].).

V. DISCUSSION AND CONCLUSION

We have presented the DRIVSCO system, which learns basic
human driving (steering and acceleration control for lane fol-
lowing) by observing the driver. We have evaluated its imitation
performance on known and unknown tracks and shown it to

reliably work for steering and, in the case of curve negotiation,
for acceleration prediction as well. In addition, we have imple-
mented a method for vision-based data-driven IMO detection.
By using visual, i.e., passive, information, our system does not
invade the environment and does not suffer from interference
problems, which may be the case with active systems, e.g., laser
range finders. By taking a data-driven approach, our system
does not rely on predefined models, which makes it widely
applicable.

We have demonstrated the use of the system output (steering
and IMO detection) for supporting the driver. A domain in
which this system may have future potential is that of intel-
ligent driver assistance systems, which automatically adapt to
individual driver behavior.

In contrast to most related work, DRIVSCO is an integrated
system implemented on a real car, in real time, realized by
a multithreaded parallel CPU/GPU architecture that uses data
from real driving—not simulation. The learning algorithm is
deliberately simple and, thus, is easy to understand and im-
plement. In the early stages of the project, different methods
based on feedforward and radial-basis-function networks have
been tested, however not achieving the performance of the lazy
learning approach presented here. Furthermore, lazy learning
offers the advantage that all information remains human inter-
pretable, which is convenient for error analysis, as opposed to
learning algorithms, which transform information into subsym-
bolic knowledge, which is, for example, the case with neural
networks. The system predicts sequences of expected human
behavior, as opposed to a moment-to-moment control. This
makes it 1) more stable, e.g., in case of unreliable or lacking
sensory input, it can use predictions as a fall-back plan, and
2) it allows for proactive control, i.e., warnings can be issued
based on the predicted behavior, instead of the current one.

The system has been specifically designed for motorways
and country roads, hence driving situations with limited con-
text. The extraction of context-free situations is demanding;
therefore, the training of the system is performed offline. To
apply imitation learning to more difficult driving situations
(e.g., city) appears currently infeasible, as driving decisions
are, in these cases, far too diverse and state-action descriptions
would become too complex. Furthermore, we observed that
acceleration signals are nondescriptive when driving in uncrit-
ical situations (e.g., straight road) because drivers follow their
mood. This strongly contributes to the high variance observed
in the acceleration data. As a consequence, longitudinal control
(or warning) becomes only useful whenever a driver is forced
to drive with less leeway (e.g., in front of sharp curves).
This notion is important when considering the psychological
acceptance of individualized driving aids. One of their central
features must be to not interfere with the driver unless nec-
essary. Hence, in uncritical situations, systems should remain
silent, and acceleration should remain in the hands of the driver.

To improve the presented system, one should furthermore
consider to extend the system’s lookahead beyond that of
machine vision. This could be achieved, for example, by in-
tegrating GPS information and digital maps.

One interesting aspect concerning industrial applications is
the potential use of this system for night driving support. Under

1144 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

bad illumination conditions, the human’s sensing process is ob-
viously limited; however, by using infrared light, the system’s
sensing is less affected, given that the lane detection process is
adequately adapted to the new circumstances. Thus, the system
can use its knowledge about driving acquired during the day
to support the human in the more difficult situation of night
driving.

REFERENCES

[1] S. Mammar, S. Glaser, and M. Netto, “Time to line crossing for
lane departure avoidance: A theoretical study and an experimental set-
ting,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 2, pp. 226–241,
Jun. 2006.

[2] J. McCall and M. Trivedi, “Video-based lane estimation and tracking for
driver assistance: Survey, system, and evaluation,” IEEE Trans. Intell.
Transp. Syst., vol. 7, no. 1, pp. 20–37, Mar. 2006.

[3] A. Amditis, M. Bimpas, G. Thomaidis, M. Tsogas, M. Netto, S. Mammar,
A. Beutner, N. Möhler, T. Wirthgen, S. Zipser, A. Etemad, M. Da Lio, and
R. Cicilloni, “A situation-adaptive lane-keeping support system: Overview
of the safelane approach,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3,
pp. 617–629, Sep. 2010.

[4] L. Li, F. Y. Wang, and Q. Zhou, “Integrated longitudinal and lateral
tire/road friction modeling and monitoring for vehicle motion control,”
IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1, pp. 1–19, Mar. 2006.

[5] E. Bertolazzi, F. Biral, M. D. Lio, A. Saroldi, and F. Tango, “Supporting
drivers in keeping safe speed and safe distance: The saspence subpro-
ject within the European framework programme 6 integrating project
prevent,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 525–538,
Sep. 2010.

[6] P. Ulleberg and T. Rundmo, “Personality, attitudes and risk perception as
predictors of risky driving behaviour among young drivers,” Safety Sci.,
vol. 41, no. 5, pp. 427–443, Jun. 2003.

[7] F. I. Kandil, A. Rotter, and M. Lappe, “Driving is smoother and more
stable when using the tangent point,” J. Vis., vol. 9, no. 1, pp. 1–11,
Jan. 2009.

[8] K. A. Brookhuis, D. de Waard, and W. H. Janssen, “Behavioural im-
pacts of advanced driver assistance systems an overview,” Eur. J. Transp.
Infrastructure Res., vol. 1, no. 3, pp. 245–253, 2001.

[9] A. Lindgren and F. Chen, “State of the art analysis: An overview of
advanced driver assistance systems (ADAS) and possible human factors
issues,” in Proc. Human Factors Eco. Aspects Saf. Swedish Netw. Human
Factors Conf., 2007, pp. 38–50.

[10] J. F. Coughlin, B. Reimer, and B. Mehler, “Driver wellness, safety & the
development of an awarecar,” AgeLab, Mass Inst. Technol., Cambridge,
MA, 2009.

[11] S. Hoch, M. Schweigert, F. Althoff, and G. Rigoll, “The BMW surf
project: A contribution to the research on cognitive vehicles,” in Proc.
Intell. Veh. Symp., 2007, pp. 692–697.

[12] E. D. Dickmanns and V. Graefe, “Dynamic monocular machine vision,”
Mach. Vis. Appl., vol. 1, no. 4, pp. 223–240, 1988.

[13] M. A. Turk, D. G. Morgenthaler, K. D. Gremban, and M. Marra, “VITS-
a vision system for autonomous land vehicle navigation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 10, no. 3, pp. 342–361, May 1988.

[14] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L. E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler,
A. Nefian, P. Mahoney, “Stanley: The robot that won the darpa grand
challenge,” J. Robot. Syst., vol. 23, no. 9, pp. 661–692, Sep. 2006.
[Online]. Available: http://dx.doi.org/10.1002/rob.v23:9

[15] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, J. Dolan,
D. Duggins, D. Ferguson, T. Galatali, C. Geyer, M. Gittleman,
S. Harbaugh, M. Hebert, T. Howard, A. Kelly, D. Kohanbash,
M. Likhachev, N. Miller, K. Peterson, R. Rajkumar, P. Rybski, B. Salesky,
S. Scherer, Y. Woo-Seo, R. Simmons, S. Singh, J. Snider, A. Stentz,
W. Whittaker, and J. Ziglar, “Tartan racing: A multi modal approach to
the DARPA urban challenge,” Defense Advanced Res. Projects Agency,
Arlington, VA, DARPA Tech. Rep., 2007.

[16] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[17] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in Neural Information Processing Systems 1.
San Mateo, CA: Morgan Kaufmann, 1989.

[18] D. A. Pomerleau, “Neural network based autonomous navigation,” in
Proc. NAVLAB, 1990, pp. 558–614.

[19] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural Comput., vol. 3, no. 1, pp. 88–97, 1991.

[20] M. Arbib, “Neural network vision for robot driving,” in The Handbook
of Brain Theory and Neural Networks. Cambridge, MA: MIT Press,
1999.

[21] M. Pasquier and R. J. Oentaryo, “Learning to drive the human way: A
step towards intelligent vehicle,” Int. J. Veh. Auton. Syst., vol. 6, no. 1/2,
pp. 24–47, Dec. 2007. [Online]. Available: http://dx.doi.org/10.1504/
IJVAS.2008.016477

[22] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,” in
Proc. Mach. Learn., 1992, pp. 385–393.

[23] A. Y. Ng and S. Russel, “Algorithms for inverse reinforcement learning,”
in Proc. ICML, 2000, pp. 663–670.

[24] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. 21st Int. Conf. Mach. Learn., 2004, p. 1.

[25] Official Diplecs Website, 2010. [Online]. Available: http://www.
diplecs.eu/

[26] C. H. Hwang, N. Massey, B. W. Miller, and K. Torkkola, “Hybrid intelli-
gence for driver assistance,” in Proc. FLAIRS, 2003, pp. 281–285.

[27] R. Freymann, “Driver assistance technology to enhance traffic safety,” in
Motion and Vibration Control. Berlin, Germany: Springer-Verlag, 2008,
pp. 71–81.

[28] K. Brookhuis and D. de Waard, “Limiting speed, towards an intelligent
speed adapter (ISA),” Transp. Res. F, Traffic Psychol. Behav., vol. 2, no. 2,
pp. 81–90, Jun. 1999.

[29] A. Tahirovic, S. Konjicija, Z. Avdagic, G. Meier, and C. Wurmthaler,
“Longitudinal vehicle guidance using neural networks,” in Proc. CIRA,
2005, pp. 685–688.

[30] D. Partouche, M. Pasquier, and A. Spalanzani, “Intelligent speed adapta-
tion using a self-organizing neuro-fuzzy controller,” in Proc. IEEE Intell.
Veh. Symp., 2007, pp. 846–851.

[31] H. Kwasnicka and M. Dudala, “Neuro-fuzzy driver learning from
real driving observations,” in Proc. Artif. Intell. Control Manag., 2002,
pp. 81–89.

[32] I. Markelic, T. Kulvicius, M. Tamosiunaite, and F. Wörgötter, “Antici-
patory driving for a robot-car based on supervised learning,” in Proc.
ABiALS, 2008, pp. 267–282.

[33] D. W. Aha, Ed., “Editorial,” in Lazy Learning. Norwell, MA: Kluwer,
1997, ser. Artificial Intelligence Review, pp. 7–10.

[34] J. Daugman, “Uncertainty relation for resolution in space, spatial fre-
quency, and orientation optimized by two-dimensional visual cortical
filters,” J. Opt. Soc. Amer. A, Opt. Image Sci. Vis., vol. 2, no. 7, pp. 1160–
1169, Jul. 1985.

[35] K. Pauwels and M. Van Hulle, “Realtime phase-based optical flow on
the GPU,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Workshop
Comput. Vis. GPU, 2008, pp. 1–8.

[36] T. Gautama and M. Van Hulle, “A phase-based approach to the estimation
of the optical flow field using spatial filtering,” IEEE Trans. Neural Netw.,
vol. 13, no. 5, pp. 1127–1136, Sep. 2002.

[37] S. Sabatini, G. Gastaldi, F. Solari, K. Pauwels, M. Van Hulle, J. Diaz,
E. Ros, N. Pugeault, and N. Krüger, “A compact harmonic code for early
vision based on anisotropic frequency channels,” Comput. Vis. Image
Understanding, vol. 114, no. 6, pp. 681–699, Jun. 2010.

[38] B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool, “Coupled ob-
ject detection and tracking from static cameras and moving vehicles,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10, pp. 1683–1698,
Oct. 2008.

[39] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool, “Dynamic 3d
scene analysis from a moving vehicle,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Minneapolis, 2007, pp. 1–8.

[40] K. Pauwels, N. Krueger, M. Lappe, F. Woergoetter, and M. van Hulle, “A
cortical architecture on parallel hardware for motion processing in real-
time,” J. Vis., vol. 10, no. 10, pp. 1–21, Aug. 2010.

[41] T. Zhang and C. Tomasi, “On the consistency of instantaneous rigid
motion estimation,” Int. J. Comput. Vis., vol. 46, no. 1, pp. 51–79,
Jan. 2002.

[42] F. Mosteller and J. Tukey, Data Analysis and Regression: A Second
Course in Statistics. Reading, MA: Addison-Wesley, 1977.

[43] W. Thompson and T. Pong, “Detecting moving-objects,” Int. J. Comput.
Vis., vol. 4, no. 1, pp. 39–57, 1990.

[44] M. Bertozzi and A. Broggi, “Real-time lane and obstacle detection on the
system,” in Proc. IEEE Intell. Veh., 1996, pp. 213–218.

MARKELIĆ et al.: DRIVING SCHOOL SYSTEM: LEARNING BASIC DRIVING SKILL FROM TEACHER IN REAL CAR 1145

[45] E. Dickmanns, Dynamic Vision for Perception and Control of Motion.
Berlin, Germany: Springer-Verlag, 2007.

[46] M. Aly, “Real time detection of lane markers in urban streets,” in Proc.
IEEE Intell. Veh. Symp., Jun. 4–6, 2008, pp. 7–12.

[47] J. F. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[48] I. Sobel and G. Feldman, A 3 × 3 Isotropic Gradient Operator for Image
Processing. Hoboken, NJ: Wiley, 1973.

[49] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Trans. ASME, J. Basic Eng., vol. 82, no. 1, pp. 35–45, 1960.

[50] I. Markeli, “Teaching a robot to drive—A skill learning inspired
approach,” Ph.D. dissertation, Georg-August Univ. Göttingen, Göttingen,
Germany, 2010.

[51] M. A. Fischler and R. C. Bolles, “Random sample consensus: A para-
digm for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[52] Eisat Website, 2010. [Online]. Available: http://www.mi.auckland.ac.nz/
EISATS

[53] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica, Int. J. Geogr. Inf. Geovis., vol. 10, no. 2, pp. 112–122,
Dec. 1973.

[54] L. Bottou and V. Vapnik, “Local learning algorithms,” Neural Comput.,
vol. 4, no. 6, pp. 888–900, Nov. 1992.

[55] J. C. Santamaria, R. S. Sutton, and A. Ram, “Experiments with rein-
forcement learning in problems with continuous state and action spaces,”
Adapt. Behav., vol. 6, pp. 163–217, 1997.

[56] W. D. Smart and L. P. Kaelbling, “Practical reinforcement learning
in continuous spaces,” in Proc. 17th Int. Conf. Mach. Learn., 2000,
pp. 903–910.

[57] Future and Emerging Technologies (FET), Newsletter, Jan. 2010. [Online].
Available: ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/fet/fet-nl-06_en.pdf

[58] TV Report About the Drivsco System (in German), 2009.
[Online]. Available: http://www1.ndr.de/mediathek/index.html?media=
ndsmag2340

Irene Markelić received the B.Sc. and M.Sc. de-
grees in computer science from the University of
Koblenz-Landau, Koblenz, Germany, in 2002 and
2005, respectively, and the Ph.D. degree in computer
science from Georg-August-University Göttingen,
Göttingen, Germany, in 2010.

She is currently a Postdoctoral Researcher with
the Institute of Physics 3, Georg-August-University
Göttingen. Her research interests include computer
vision, developmental robotics, cognitive skill learn-
ing in humans and robots, and data mining.

Anders Kjær-Nielsen received the B.Sc. and M.Sc.
degrees in computer systems engineering, in 2004
and 2007, respectively, from the University of South-
ern Denmark, Odense, Denmark, where he is cur-
rently working toward the Ph.D. degree with the
Mærsk McKinney Møller Institute.

His research interests include real-time process-
ing, computer vision, embedded systems, and field-
programmable gate arrays.

Karl Pauwels received the M.Sc. degree in commer-
cial engineering, the M.Sc. degree in artificial intelli-
gence, and the Ph.D. degree in medical sciences from
the Katholieke Universiteit Leuven (K.U.Leuven),
Leuven, Belgium.

He is currently a Postdoctoral Researcher with
the Laboratorium voor Neuro- en Psychofysiologie,
Medical School, K.U.Leuven. His research interests
include dense optical flow, stereo and camera motion
estimation, video stabilization, and real-time com-
puter vision.

Lars Baunegaard With Jensen received the B.Sc.
and M.Sc. degrees in computer systems engineering
in 2004 and 2007, respectively, from the University
of Southern Denmark, Odense, Denmark, where he
is currently working toward the Ph.D. degree with
the Mærsk McKinney Møller Institute.

His research interests include real-time computer
vision and graphics processing unit computing.

Nikolay Chumerin received the M.Sc. degree in
mathematics and educational science and the Higher
Educational Certificate of teacher in mathematics
and computer science from Brest State University,
Brest, Belarus, in 1999. He is currently working
toward the Ph.D. degree with the Laboratorium
voor Neuro- en Psychofysiologie Medical School,
Katholieke Universiteit Leuven (K.U.Leuven),
Leuven, Belgium.

His research interests include biologicallyinspired
computer vision, machine learning, and brain com-

puter interfacing.

Aušra Vidugiriene received the B.Sc. and M.Sc.
degrees in computer science in 2003 and 2005, re-
spectively, working on language technologies, from
Vytautas Magnus University, Kaunas, Lithuania,
where she is currently working toward the Ph.D.
degree.

Her research interests include signal processing
and analysis of driver’s behavior.

Minija Tamosiunaite received the Engineer
Diploma from Kaunas University of Technology,
Kaunas, Lithuania, in 1991 and the Ph.D. degree
from Vytautas Magnus University, Kaunas, in 1997.

Her research interests include machine learning
and applications in robotics.

Alexander Rotter received the Diploma degree
in electrical engineering and the Diploma de-
gree in industrial engineering from Fachhochschule
Sdwestfalen, Iserlohn, Germany, in 2002 and 2007,
respectively.

He is currently with the Advanced Development
Department, Hella KGaA Hueck & Co., Lippstadt,
Germany. His research interests are vision-based
driver-assistance systems, including object and lane
detection, and emergency braking systems in com-
bination with distance measurement sensors, and

vision-based driver-assistance systems, object detection, and emergency brak-
ing systems, in combination with distance measurement sensors.

1146 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

Marc Van Hulle received the M.Sc. degree in elec-
trotechnical engineering (electronics) and the Ph.D.
degree in applied sciences from the Katholieke Uni-
versiteit Leuven (K.U.Leuven), Leuven, Belgium,
the Doctor Technics degree from Queen Margrethe
II of Denmark, Odense, in 2003 from the Danmarks
Tekniske Universitet (DTU), Lyngby, Denmark, and
the Honorary Doctoral degree from Brest State Uni-
versity, Brest, Belarus, in 2009.

He is currently a Full Professor with K.U.Leuven
Medical School, where he heads the Computational

Neuroscience Group of the Laboratorium voor Neuro- en Psychofysiologie. In
1992, he was with the Brain and Cognitive Sciences Department, Massachusetts
Institute of Technology, Boston, as a Postdoctoral Scientist. His research in-
terests include computational neuroscience, neural networks, computer vision,
data mining, and signal processing.

Norbert Krüger received the M.Sc. degree from
Ruhr-Universität Bochum, Bochum, Germany, and
the Ph.D. degree from the University of Bielefeld,
Bielefeld, Germany.

He is currently a Professor with Mærsk McKinney
Møller Institute, University of Southern Denmark,
Odense, Denmark. He is a partner in several
European Union and national projects PACO-PLUS,
Drivsco, NISA, and Handyman. He is leading the
Cognitive Vision Laboratory, which focuses on com-
puter vision and cognitive systems, particularly the

learning of object representations in the context of grasping. He has also been
working on computational neuroscience and machine learning.

Florentin Wörgötter received the Ph.D. degree
from the University of Essen, Essen, Germany,
in 1988.

He worked experimentally on visual cortex before
he turned to computational issues at the California
Institute of Technology, Pasadena, from 1988 to
1990. After 1990, he became a Researcher with the
University of Bochum, Bochum, Germany, where he
was concerned with experimental and computational
neuroscience of the visual system. Between 2000 and
2005, he was a Professor of computational neuro-

science with the Department of Psychology, University of Stirling, Stirling,
U.K., where his interests strongly turned toward “learning in neurons.” Since
July 2005, he has been leading the Department for Computational Neu-
roscience, Bernstein Center, Georg-August-University Göttingen, Göttingen,
Germany. His research interests are information processing in closed-loop
perception-action systems, including aspects of sensory processing, motor
control, and learning/plasticity. These approaches are tested in walking and
driving robotic implementations. His group has developed the RunBot, which
is a fast and adaptive biped walking robot.

