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Abstract- Nature apparently has succeeded in evolving 
biomechanics and creating neural mechanisms that 
allow living systems like walking animals to perform 
various sophisticated behaviors, e.g., different gaits, 
climbing, turning, orienting, obstacle avoidance, 
attraction, anticipation. This shows that general 
principles of nature can provide biological inspiration 
for robotic designs or give useful hints of what is 
possible and design ideas that may have escaped our 
consideration. Instead of starting from scratch, this 
article presents how the biological principles can be 
used for mechanical design and control of walking 
robots, in order to approach living creatures in their 
level of performance. Employing this strategy allows us 
to successfully develop versatile, adaptive, and 
autonomous walking robots. Versatility in this sense 
means a variety of reactive behaviors including memory 
guidance, while adaptivity implies online learning 
capabilities. Autonomy is an ability to function without 
continuous human guidance. These three key elements 
are achieved under modular neural control and 
learning. In addition, the presented neural control 
technique is shown to be a powerful method of solving 
sensor-motor coordination problems of high complexity 
systems. 
 
Keywords – Neural control, Biomechanics, Reactive 
behavior, Memory-guided behavior, Predictive behavior 
 
1. INTRODUCTION 
 
Living creatures like walking animals impress observers 
with the elegance and smoothness of their movements. 
They can perform versatile behaviors including reactive, 
proactive, and memory-guided behaviors (Fig. 1). They 
can even learn to adapt themselves to environmental 
changes in order to survive. All these sophisticated 
behaviors are basically driven by internal and external 
stimuli through interactions with the environment. From 
this point of view, during the last few decades several 
roboticists have begun to actively look into biological 
systems as blueprints for the design of multi 
sensori−motor robotic systems, in particular walking 
robots, to approach their levels of performance. 
However, the achievements of complexity level 

comparable to that of the biological systems in artificial 
agents (i.e., robots) are still far from being realized or 
implemented. This is due to the fact that complex motor 
behavior requires combining information from a 
multitude of sensors while simultaneously providing 
coordinated outputs to a large number of motor units. To 
be efficient, this needs to include not only reactive 
(mostly used in existing walking robots) but also 
(anticipatory) predictive mechanisms.  
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Fig. 1: Spectrum of artificial and biological behaviors where the high 
intensity (dark) area implies a high degree of adaptation and 
complexity of behavior and control but loosely coupled perception-
action processes, and vice versa for low intensity. Each behavior level 
is driven by neural control coupled with biomechanics.  Note that here  
we divide complex behaviors of biological and artificial systems into 
three major classes: reactive behavior, proactive behavior, and 
memory-guided behavior (delayed responses). Beyond the memory-
guided behavior we find ourselves at the level of goal-directed 
behavior which will not be concerned here. Reactive behavior has a 
tight coupling between perception and action where the information 
from sensor activation patterns directly trigger reactions, resulting in 
immediate responses. In contrast, proactive behavior involving learning 
of a temporal association of subsequent cues allows animals to react to 
an early cue (predictive signal) instead of a later cue (reflex-triggering 
signal), leading to accelerated responses. Memory-guided behavior 
involving short-term memory (STM) is the development of behavior 
beyond reactive and proactive behaviors. Animals and robots have to 
memorize states, environmental conditions, or other information to 
fulfill a task, even in the temporal absence of essential sensory 
information. In other words, they have to remember the stimulus in 
order to keep on performing or to later use the stimulus information 
after a delay as an internal drive to fulfill their task. These behaviors 
lead to indirectly coupled perception-action processes. 
 



The diverse researches in the domain of biologically-
inspired walking robots have been ongoing for over 20 
years [1, 2]. Most of them have focused on the 
mechanical design to achieve animal-like properties and 
perform efficient locomotion [3, 4]. Others have 
concentrated on the generation of locomotion based on 
engineering technologies [5] as well as biological 
principles [6, 7]. While impressive in their own right, the 
versatility (behavioral repertoire) of these systems is 
much smaller. Typically they are not adaptive (learning 
capabilities) and most of them still fail to be autonomous 
(function without continuous human guidance). 
 
To tackle this highly challenging robotic field we have 
developed walking robots including their mechanics and 
neural sensori−motor control based on a modular 
concept and an incremental synthetic process. As a 
result, we have now successfully produced diverse 
biologically-inspired complex behaviors (Fig. 1) 
including versatile reactive behaviors, predictive 
behaviors (or called proactive behaviors), and memory-
guided behaviors for our walking robots. Thus, the 
purpose of this article is to present our achievements 
where biological systems have been used as blueprints 
for structural, control, and behavior designs.  
 
In the following section, we will give a short overview 
of the biological systems in term of their diverse 
behaviors together with neural mechanisms. Afterwards 
we will describe the development of our walking robots 
where their performances are often being presented 
alongside the structural elements from which they 
mainly derive. Finally, we will give a discussion and 
conclusions. 
 
2. BIOLOGICAL BACKGROUND 
 
Animals or even insects can perform diverse behaviors 
including reactive behaviors [8-12], memory guidance 
[13], and complex action planning [14, 15]. They enjoy 
complete freedom to control their actions within the 
environment to which they have been adapted. Solving 
these tasks basically results from coupling biomechanics 
with neural control. 
 
Biomechanics: 
Animals use their biomechanically optimized legs (Fig. 
2(a)) to support their body during standing, walking, 
turning, climbing, or other behaviors. In some insects, 
the leg structure is specialized for particular functions, 
e.g., digging, grasping, prey capture or jumping. 
Furthermore, the legs allow increased dynamic stability 
and minor disturbance rejection through a mechanical 
feedback loop (self-stabilization) [16, 17] while walking 
over irregular terrain. They also enable them to perform 
a variety of motion patterns (walking in different 
direction, climbing) while spending minimal energy 
during locomotion. In addition to the legs, body 

geometry and structure play a role in locomotion as well 
[17]. In general, the body of invertebrates (e.g., 
cockroach) is subdivided in segments (Fig. 2(b)) while 
the body of vertebrates consists of muscles propagating 
along a backbone (musculature, Fig. 2(c)). These body 
structures allow more flexible and faster motions and aid 
in climbing.  
 
 

 
 
Fig. 2: (a), (b) Biomechanical legs of a cockroach and the orientation 
of the legs around its trunk (modified from [18]). The segmental body 
allows a cockroach to climb over large obstacles. It can bend its trunk 
downward at the joint between the first (T1) and second (T2) thoracic 
to keep the legs close to the top surface of the obstacles for an optimum 
climbing position and even to prevent unstable actions. (c) Axial 
musculature of an aquatic salamander, Necturus maculosus (modified 
from [19]). This muscular structure enables the salamander to perform 
more flexible and faster motions and aids in climbing. Generally, 
during locomotion on land, its trunk bends to one side causing an 
increase in the step length of the two diagonally opposite lifted limbs 
which are pushed forward while the other two limbs are pushed 
backward simultaneously.  
 
Neural locomotion control and reactive behaviors: 
Besides biomechanics, neural control generates 
appropriate natural movements by combining 
information from a multitude of external stimuli 
covering different sensor modalities and from internal 
stimuli (e.g., memory induced). These circuits finally 
provide coordinated outputs to motor neuron pools. 
 
In many animals, the coordination of movement patterns 
is believed to be mediated by networks of neurons called 
central pattern generators (CPGs) [20-22] at the level of 
the spinal cord of vertebrates or the sensori−motor 
ganglia of invertebrates [23, 24]. Above the spinal cord 
or local ganglia level, there are neural circuits in higher 
brain centers allowing the animals to react, memorize, 
and learn. These lead to reactive and proactive behaviors 
including ability to plan their actions in advance 
(prediction). Different reactive behavioral responses are 
commonly found, such as orientating toward (positive 
tropism [10, 11, 25]) or away (negative tropism [8, 26, 
27]) from a stimulus. For instance, female crickets 



perform phonotaxis during courtship, that is they turn 
toward the direction of the calling of a male [10]. 
Negative tropism can be found in, for example, an 
obstacle avoidance behavior during navigation or 
exploration in insects [8]. They try to turn away from an 
obstacle perceived by their sensing systems (e.g. hairs, 
antennae). 
 
Predictive behaviors and memory guidance: 
In addition to reactive behaviors, animals can learn to act 
in advance of a future situation, rather than solely 
reacting. Rodents can learn the danger-predicting 
meaning of predator bird calls through a temporal 
association of cues which are an aversive stimulus 
(reflex signal) and the acoustic stimulus (predictive 
signal) [28]. As a consequence, they will react to the 
predictive signal, which they can detect earlier, for a safe 
escape. In general this mode of learning concerns 
presentations of a neutral stimulus (predictive signal) 
along with a stimulus of some significance (reflex 
signal). Once these two stimuli become associated, 
animals begin to perform a behavioral response to the 
predictive signal instead of the reflex signal. The fruit 
flies Drosophila melanogaster [14, 29] also demonstrate 
key aspects of predictive behavior where they always 
reposition their legs during the approach of a looming 
visual stimulus (predictive signal). This behavior, which 
effectively plans the direction of takeoff, occurs 
approximately 100 ms earlier than all previously 
identified components of the escape response, and it is 
not reflexively coupled to flight initiation because a fly 
can prepare for an escape without taking off. More 
complex behaviors like memory guidance (also called 
delayed responses) involving short-term memory (STM) 
have been reported in some insects and mammals. For 
instance, cockroaches use their cercal filiform hairs 
(wind sensitive hairs) to elicit the so-called “wind-
evoked escape behavior” [8], i.e., they run away from a 
wind puff to their cerci generated by a lunging predator. 
Another kind of memory guidance is also evident in the 
flying cricket Teleogryllus oceanicus. It uses sound 
sensitive organs to elicit “auditory-evoked escape 
behavior” [26] involving a fast movement away from 
abrupt, intense (loud), and unexpected stimuli. In 
general, such escape behaviors last longer than the 
stimulus itself. Once the actions have been activated, 
they will be performed even if the activating stimulus is 
removed to ensure safe escape from the attack. Thus, 
these actions reflect not only reactive responses but also 
simple memory-guided behaviors (internal drive) known 
as fixed action patterns [30]. 
 
3. BIOLOGICALLY INSPIRED WALKING 
ROBOTS 
 
Inspired by biomechanics of animals (mentioned in Sect. 
2) we have developed different types of animal-like 
walking robots: four, six, and eight legs (see Figs. 3, 4 

and 5, respectively). They have been employed as 
hardware platforms for studying the coordination of 
many degrees of freedom, for performing experiments 
with neural controllers, and for the development of 
artificial perception-action systems employing embodied 
control techniques. Moreover, such robots are more 
attractive compared to wheeled robots because they can 
behave somewhat like animals and they are still a 
challenge for locomotion control due to their complex 
sensori−motor coordination. 
 
The salamander-like robot AMOS-WD041: 
 
The AMOS-WD04 [31, 32] is a four-legged walking 
robot inspired by a salamander (Fig. 3). Each leg is 
designed to have two joints (two degrees of freedom 
(DOF)) based on the basic principle of movement of a 
salamander leg. The upper joint of the legs, called the 
thoracic joint can move the leg forward (protraction) and 
backward (retraction) and the lower one, called the basal 
joint, can move it up (elevation) and down (depression) 
(see [31, 32] for more details of the leg configuration). 
The robot was constructed with a backbone joint which 
can rotate around a vertical axis (Fig. 3). It facilitates a 
more flexible and faster motion2 as a salamander. The 
backbone joint is also used to connect the trunk, where 
two hind legs are attached, with the front part where two 
forelegs are installed. This robot has two infrared sensors 
to detect obstacles and two mini-microphone sensors to 
detect sound. These sensors are used to drive obstacle 
avoidance behavior and phonotaxis. 
 

 
 
Fig. 3: (a) The locomotion of a salamander (from left to right). An open 
circle in each photo represents to a backbone joint which connects the 
first segment (1) to the second segment (2) and makes an active 
bending movement of a trunk for locomotion (Courtesy of J.S. Kauer 
(Kauer Lab at Tufts University)). (b) The four-legged walking robot 
AMOS-WD04. 
 
The cockroach-like robot AMOS-WD06: 
 
The AMOS-WD06 [31, 33] is a six-legged walking 
robot inspired by the cockroach Blaberus discoidalis 
                                                            
1 Advanced MObility Sensor driven-Walking Device. 
2 To see an advantage of activating this active backbone joint during 
locomotion, we refer the reader to a video clip at 
http://www.manoonpong.com/AMOS/SalamanderLikeWalking.mpg. 
  



(Fig. 4). Each leg has three joints (three DOF, see Fig. 
2(a)): the thoracal-coxal (TC-) joint enables forward and 
backward movements, the coxal-trochanteral (CTr-) joint 
enables elevation and depression of the leg, and the 
femoral-tibial (FTi-) joint enables extension and flexion 
of the tibia (see [31] for more details of the leg 
configuration). The morphology of this multi-jointed leg 
is modeled on the basis of a cockroach leg but the 
trochanteral-femoral joint and the tarsal segments are 
ignored. Furthermore, to mimic biomechanical 
properties of the cockroach leg, we installed a spring 
damped compliant element in each tibia part of the robot. 
By doing so, these spring legs enable the robot to 
perform better self-stabilization and absorb a large 
impulse at touchdown. The body of the AMOS-WD06 
consists of two parts: a front part where two forelegs are 
installed and a central body part where two middle legs 
and two hind legs are attached. They are connected by 
one active backbone joint which can be activated to 
rotate around the lateral or transverse axis (pitch axis) 
similar to the cockroach. It aids the robot to effectively 
climb over obstacles3 (Fig. 4). This walking robot has a 
multitude of sensors: six foot contact sensors, six 
reflexive optical sensors, seven infrared sensors, two 
light dependent resistor sensors, one upside-down 
detector sensor, one gyro sensor, one inclinometer 
sensor, one auditory-wind detector sensor, and one 
current sensor. All these sensors are used to generate a 
broad behavioral repertoire including foothold searching, 
elevator reflex (swinging a leg over obstacles), self-
protective reflex (standing in an upside-down position), 
obstacle avoidance, auditory- and wind-evoked escape 
responses, phototaxis (turn towards a light source), 
climbing over obstacles, and five different gaits. 
 

 
 
Fig. 4: (a) The cockroach Blaberus discoidalis climbs over a large 
obstacle. It bends its trunk downward at the joint between the first (1) 
and second (2) thoracic to keep the legs close to the top surface of the 
obstacles for an optimum climbing position and even to prevent 
unstable actions (modified from [34]). (b) The six-legged walking 
robot AMOS-WD06. 
 
The scorpion-like robot AMOS-WD08: 
 
The AMOS-WD08 [35, 36] is an eight-legged walking 
robot inspired by the scorpion Pandinus cavimanus (Fig. 
5). Its leg configuration is similar to that of the AMOS-
                                                            
3 To see the use of this active backbone joint in autonomous climbing 
over obstacles, we refer the reader to a video clip at 
http://www.manoonpong.com/AMOS/AMOSclimbing.mpg. 
 

WD06 except its tibiae where the spring element has not 
yet been implemented. The chassis design of the AMOS-
WD08 follows the scorpion body contour but the tail 
part is ignored (Fig. 5). It is constructed with only one 
part where all legs are orientedly attached (Fig. 5(b)). In 
contrast to the AMOS-WD04 and -WD06 consisting of 
various exteroceptive sensors, the AMOS-WD08 has 
only proprioceptive sensors: potentiometer sensors for 
detecting the actual angle position of leg joints and 
photoresistor sensors in foot tips for measuring the 
ground contact. In general this robot has been designed 
to serve as a platform to investigate a role of 
proprioceptive sensing in locomotion [35]. 
 

 
 
Fig. 5: (a) The scorpion Pandinus cavimanus (Copyright 1996 by R. 
David Gaban [37] and reproduced with permission). (b) The eight-
legged walking robot AMOS-WD08. Dashed lines show a body 
contour. 
 
The control of all three walking robots is kept on a 
simple but powerful board, the Multi-Servo IO-Board 
(MBoard), which at a size of 125 mm × 42 mm can 
control up to 32 motors and has 36 analog sensor inputs. 
The MBoard can be interfaced with a personal computer 
(PC) or a personal digital assistant (PDA) via an RS232 
serial connection at 57.6 kbits/s. The neural controllers 
however are first tested using a physical simulation 
environment “Yet Another Robot Simulator” (YARS) 
[38]. After the test on the simulator, the developed 
neural controllers are applied to the physical walking 
robots to evaluate their behaviors in real environments. 
 
4. NEURAL CONTROL AND LEARNING  
 
Inspired by the principles of locomotion control 
including behavior generation and learning capability of 
animals (cf. Sect. 2), we have developed neural 
sensori−motor control and learning mechanisms for our 
walking robots (cf. Sect. 3) in a stepwise manner during 
the last years [31-33, 36, 39-42]. They now enable the 
robots to perform complex animal-like behaviors, i.e., 
versatile reactive, proactive (adaptive) and memory-
guided behaviors (level I, II, and III, respectively, in Fig. 
1). These neural mechanisms implemented using neural 
networks [31] can be divided into three main 
neuromodules (Fig. 6) having different functions. The 
first module is called the “modular neural locomotion 
control”. It is based on central pattern generators (CPGs) 



[20-22] found in animals and here it is used to generate 
basic walking behaviors such as forward move, 
backward move, left turn and right turn. These walking 
behaviors are autonomously controlled by sensory 
signals. However, due to sensory noise and multiple 
sensor modalities, the signals need to be filtered, shaped 
and integrated through the second neuromodule called 
“neural sensory preprocessing” before activating the 
corresponding behaviors. The last neuromodule called 
“neural learning” is applied to allow the robots not only 
to react to environmental stimuli but also to adapt or to 
anticipate environmental changes. All neurons in the 
modules are modeled as standard additive non-spiking 
neurons. Their activity develops according to: 
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where n denotes the number of neurons and ai their 
activity. The variable Bi represents a fixed internal bias 
together with a stationary input of neuron i; Wij is the 
synaptic strength of the connection from neuron j to 
neuron i, and oj is the output of neuron j. In the neural 
sensory preprocessing and modular neural locomotion 
control units, the output neurons are given by the 
standard sigmoid transfer function oi(t) = σ(ai(t)) = 
(1+e−ai(t))−1 and the hyperbolic tangent transfer function 
oi(t) = σ(ai(t)) = tanh(ai(t)), respectively, while the 
output of the neural learning unit is governed by a linear 
transfer function. Input units, e.g., sensory neurons, are 
configured as linear buffers (see [31, 33, 36] for more 
details). 
 
In the following, we provide a more detailed account on 
the development process of the modular neural 
locomotion control followed by the neural sensory 
preprocessing and finally the neural learning. 
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Fig. 6: Diagram of neural mechanisms of the walking robots. The 
sensor signals are passed through the neural preprocessing unit into the 
modular neural locomotion control unit which directly drives the 
actuators. In addition, the neural learning acts as high level control. It is 
used for enabling the robots to adapt to different situations. This neural 
learning mechanism leads to the generation of the proactive behaviors. 
 
A basic original neural locomotion controller (Fig. 7) has 
been evolved through an evolutionary algorithm [39]. 
The result of which shows that only one oscillator 

consisting of two neurons with full connectivity (central 
pattern generator, CPG (gray frame, Fig. 7(b))) is 
enough for basic locomotion, but oscillations need to be 
post-processed to arrive at more complex behaviors. This 
oscillator has been tested first on the hexapod robot 
Morpheus (Fig. 7(a)).  
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Fig. 7: (a) The physical six-legged walking robot Morpheus; each leg 
has two DOFs. (b) The evolved neural control with only two hidden 
neurons (shaded area) and symmetric output weights to motor neurons 
(small black numbers). It performs as a quasi-periodic oscillator or a 
CPG, enabling an efficient forwards movement [39]. Note that the 
large circled numbers indicate motor neurons (corresponding to the 
numbered location of actuators in (a)). 
 
Based on the evolved neural locomotion control, the 
controller has been improved by adding the velocity 
regulating networks or VRNs (shaded box, Fig. 8) [31, 
32]. The VRNs are feedforward neural networks. Each 
VRN controls the two or three ipsilateral TC-joints4 on 
one side (Fig. 8). They are used to achieve more walking 
directions, like turning left and right as well as forwards 
and backwards movements (see experimental results at 
[31, 32]). Furthermore, the VRNs regulate walking speed 
of the robots by simply increasing or decreasing the 
amplitude of the periodic CPG signals. This improved 
neural locomotion control has been evaluated fist on the 
YARS physical simulation environment [38] and then 
successfully transferred to the four- (AMOS-WD04) and 
six- (AMOS-WD06) legged walking robots. For 
demonstration, we refer to a video clip at  
http://www.manoonpong.com/AMOS/ReactBehavior.mpg. 
 
After the developed neural locomotion control presented 
above has been successfully tested on the four- and six-
legged walking robots, the controller has been further 
enhanced by adding a phase switching network or PSN 
(shaded box, Fig. 9) [36]. The PSN is a generic 
feedforward network that reverses the phase of the 
periodic signals driving the CTr- joints and the FTi- 
joints5 of the six- (AMOS-WD06) and eight- (AMOS-
WD08) legged walking robots. As a consequence, these 
periodic signals can be switched to either lead or lag 
behind each other in accordance with a sensory input. 
The PSN has been implemented to basically allow for 
sideways walking, e.g., for obstacle avoidance. The 
combination of CPG, VRNs, and PSN leads to a great 
multitude of walking patterns including  
                                                            
4 The TC-joints enable forwards and backwards movement of legs. 
5 The CTr-joints enable elevation and depression of the leg and the 
FTi-joints allows the tibia of the leg to extend and flex. 
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Fig. 8: (a) Modular neural locomotion control of the four- (AMOS-WD04) and six- (AMOS-WD06) legged walking robots (Figs 3(b) and 4(b)). It 
consists of two modules: CPG and VRNs. All connection strengths and bias terms are indicated by the small numbers except the bias terms of the 
VRN given by B = −2.48285. The location of motor neurons Mi on the walking robots is depicted below. We refer the reader to [31, 32] for more 
details of the controllers.  
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Fig. 9: (a) Modular neural locomotion control of the six- (AMOS-WD06) and eight- (AMOS-WD08) legged walking robots (Figs 4(b) and 5(b)) 
after enhancement. It now consists of three modules: CPG, VRNs and PSN. All connection strengths and bias terms are indicated by the small 
numbers except some parameters of the VRN given by A = 1.7246, B = −2.48285, C = −1.7246. The location of motor neurons (FLi, CLi, TLi, FRi, 
CRi, TRi, BJ) on the walking robots is depicted below. We refer the reader to [31, 36] for more details of the controllers. 



turning with different radii or curve walking in forwards 
and backwards directions, forwards and backwards 
walking, diagonal walking, sideward walking, and their 
combinations (see experimental results at [36]). The 
controller has again been tested first on the YARS 
simulation [38] and finally verified on the six- and eight-
legged walking robots. For this demonstration, we refer 
the reader to video clips at  
http://www.manoonpong.com/AMOS/OmniS.mpg and 
http://www.manoonpong.com/AMOS/OmniR.mpg. 
 
In addition to the development of the modular neural 
locomotion control, we have developed the neural 
preprocessing module for different sensory signals (see 
Fig. 10). The preprocessing network is basically derived 
from a single recurrent neuron (Fig. 10(a)) and its 
combination (Figs. 10(b) and (c)). It shows an interesting 
neurodynamical property, namely the hysteresis effects 
[31, 36, 41] (Fig. 10(d)). This property is useful for 
filtering sensory noises and allows the robots to 
memorize a state (i.e., short-term memory) to perform a 
long-term task or to complete the task without 
continuous environmental feedback (Fig. 11). The 
combination of the neural sensory preprocessing network 
and the modular neural locomotion control leads to a so-
called sensor-driven neural controller or reactive 
behavior control (lower loop in Fig. 6). As a result, it 
generates versatile reactive behaviors, e.g., phototaxis 
(Fig. 12(a)) [40], phonotaxis (Fig. 12(b)) [31], obstacle 
avoidance (Fig. 12) [32]. It also produces memory-
guided behaviors such as auditory- and wind-evoked 
escape responses known as fixed action patterns6 (Fig. 
11) [31, 36, 41]. 
 
Although the developed neural preprocessing and control 
described above can autonomously generate various 
reactive behaviors including memory-guided behaviors, 
it still fails on adaptation since the link between sensory 
signals and walking patterns was pre-assigned. This 
results in a limited behavioral complexity. Furthermore, 
the controller can generate only one specific gait (typical 
tripod gait) while animals, like insects and cockroaches, 
use different gaits according to the environmental 
condition, e.g., for energy efficiency or danger 
avoidance. In order to obtain more complex behaviors 
including various gaits and adaptation, the controller has 
been modified by mainly replacing the original CPG 
oscillator (Figs. 7 and 9) with an adaptive neural chaos 
oscillator [33]. We also apply a neural learning 
mechanism based on a standard Widrow-Hoff rule [33] 
but keep other neural modules (VRN and PSN) 
unchanged (Fig. 9).  The adaptive neural chaos oscillator 

                                                            
6 This is a time-extended response pattern activated by a stimulus, i.e., 
the action lasts longer than the stimulus itself. The intensity and 
duration of the response are not controlled by the strength and duration 
of the stimulus (See http://www.manoonpong.com/ROBIO/ for video 
clips of the robot behavior and Section 2 for a comparison to animal 
behavior).   

is a simple chaotic two-neuron system controlled via an 
adaptive method for stabilizing unstable periodic orbits.  
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Fig. 10: Different types of neural sensory preprocessing. They act as 
simple short-term memories (STMs) for state memorization. (a) A 
single recurrent neuron [36]. (b) Two mutually inhibiting neurons with 
self-connection [36]. (c) A series of single recurrent neurons [41]. 
These neural preprocessing units receive inputs from sensors and 
provide outputs to drive different biologically inspired behaviors 
through the modular neural locomotion control (Figs. 8 and 9). Note 
that the small numbers in (a), (b), and (c) indicate connection strengths 
together with bias terms. (d) Example of hysteresis effect between the 
input and output deriving from the single recurrent neuron in (a). 
Although not shown, the other units in (b) and (c) have similar 
hysteresis patterns but with different loop sizes.  
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Fig. 11: Real time signals during the auditory-evoked escape behavior 
(cf. Sect. 2) of the AMOS-WD06 where a neural preprocessing unit 
shown in Fig. 10(c) is applied. (a) Raw input signal of an auditory 
sensor. (b) Preprocessed auditory signal (output signal from the neural 
preprocessing unit). (c) Foot contact sensor signal (FC) of the front 
right leg. It shows two walking phases: the swing and stance phases. 
During the swing phase, the foot has no ground contact where the 
sensor signal gives low activation (≈ −1.0). During the stance phase 
(gray blocks), the foot touches the ground and the signal gives high 
activation (≈ 1.0). During around 80-150 time steps, the AMOS-WD06 
performed the auditory-evoked escape behavior by increasing its 
walking speed up to 20 cm/s (as manifested through the high-frequency 
oscillation of the foot contact signal) while at other time steps it walked 
with its normal speed (≈ 6.5 cm/s). One can see that the AMOS-WD06 
still kept fast walking after a certain period of time after a stimulus has 
been removed at around 110 time steps (i.e., input (a) shows low 
activation). This is because the hysteresis effect of the neural 
preprocessing prolongs the activation time of the sensory signal. This 
action implies to the memory-guided behavior (level III, Fig. 1). 
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Fig. 12: Versatile biologically-inspired reactive behaviors (cf. level I, 
Fig. 1). (a) The phototaxis and obstacle avoidance behavior of the 
AMOS-WD06. It walked forwards at the beginning. At around 1.8 s, 
an obstacle was placed in front of it. The AMOS-WD06 then turned to 
the left to avoid the obstacle at around 4.6 s (obstacle avoidance 
behavior). After that, at around 8.3 s, a light source was provided. The 
robot turned towards the source at around 11 s. Eventually, it 
approached and stopped in front of the source. (b) The phonotaxis and 
obstacle avoidance behavior of the AMOS-WD04. At the first period, 
the source was switched off “Off” and the AMOS-WD04 was 
wandering around and avoiding obstacles if they were detected. The 
sound source then was switched on “On” to steer the AMOS-WD04 at 
around 29.2 s; consequently, it started to turn left and then walked 
forward and finally it stopped near the source at the end. For 
demonstration of these behaviors, we refer the reader to video clips at  
http://www.manoonpong.com/AMOS/PhotoTaxis.mpg and  
http://www.manoonpong.com/AMOS/ReactBehavior.mpg. 
 
It generates distinct periodic orbits of different periods if 
controlled, otherwise it exhibits chaotic behavior. The 
different periods serve as the CPG output patterns 
determining different gaits of the robots, while chaos is 
functionally used for self-untrapping from a hole in the 
ground. This control strategy can quickly and reversibly 
adapt to novel situations, e.g., different gaits (Fig. 13) 
and additionally enable learning and synaptic long-term 
storage of behaviorally useful motor responses [33]. This 
novel neural control provides a simple way to self-
organize versatile behaviors in autonomous walking 
robots (with many degrees of freedom). This has been 
verified on the AMOS-WD06. As a consequence, the 
robot can perform eleven basic behavioral patterns, e.g., 
orienting, taxis, self-protection, escaping, various gaits 

(Fig. 13), and their combinations. For demonstration of 
all these behaviors, we refer the reader to a video clip at  
http://www.manoonpong.com/AMOS/AMOSWD06.mpg. 
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Fig. 13: Examples of four different gaits observed from the motor 
signals of the CTr-joints. Black areas indicate ground contact or stance 
phase and white areas refer to no ground contact during swing phase. 
These gaits are similar to those found in insects [43]. 
 
Additionally it can learn to adapt its walking behavior to 
new situation to improve its performance. For example, 
it can learn to choose an energy saving gait during 
walking up a steep slope (Fig. 14). During learning 
(numbers 1 and 2 in Fig. 14) it randomly tries different 
gaits to find an appropriate one (number 3 in Fig. 14). 
And after learning (numbers 4, 5, and 6 in Fig. 14) it will 
directly select the right gait once it approaches the slope 
because the gait has been stored in a plastic synapse (ω, 
Fig. 14) as its long-term memory. Another kind of 
learning  behavior called “acoustic predator-recognition 
learning” has been also implemented on the robot. The 
robot learns the association of a predictive acoustic 
signal (predator signal) and a reflex infrared signal 
(immediate danger signal). As a consequence, after 
learning it performs fast walking behavior when 
“hearing” an approaching predator from behind, leading 
to safely escape from the attack7 [42]. These adaptations 
are referred to proactive behaviors (level II, Fig. 1).  
 
It is important to note that the presented neural network 
has four significant characteristics: (1) transferable, (2) 
generic, (3) neural and biological justifiable, and (4) 
robust.  
Transferable: The CPG, PSN and VRN components so 
far have been successfully used in the four-, six- and 
eight-legged robots without changing its internal 
structure and parameters. Thus they do not require fine 
tuning and are transferable [32, 36]. 
Generic: Only few components (CPG, PSN, VRN) are 
required to achieve the very rich functionality presented. 
As suggested by their names, each module serves a 

                                                            
7 See a video clip at 
http://www.manoonpong.com/ICONIP09/AMOSLearning.mpg. 



general purpose (e.g., “phase switching”) regardless of 
the robot’s specific embodiment (see “transferable”). 
Neural and biological justifiable: The used networks 
(CPG, PSN, VRN) are directly related to similar 
functionalities in the networks of animals. For example, 
it is known that the basic locomotion and rhythm of 
stepping in many walking animals relies on CPGs (cf. 
Sect. 2). There is also strong evidence for phase 
switching functionality (i.e., PSN) from a study of 
Pearson and Iles [44] who have reported this property in 
inter-segmental neurons in a cockroach. More recent 
evidence suggests that neurons in a stick insect, which 
are active at stance-phase, receive synaptic input that 
modifies their activity according to the walking speed of 
the animal. This input seems specific to only these 
neurons [45] and it arises via local pre-motor inter-
neurons, which could be represented by the VRN inter-
neurons suggested by the presented network. 
Robust: The neural circuitry is not sensitive to changes 
of parameters and can be adjusted within large intervals, 
making any fine tuning unnecessary [36]. In addition, 
synaptic strengths can be substantially varied and even 
synaptic connections can be completely cut leading to 
graceful degradation of the agent’s functionality.  
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Fig. 14: Learning experiments demonstrating proactive behavior. In 
general the robot is preprogrammed to walk on flat terrain with a tripod 
gait while it needs to learn to find an appropriate gait by itself for other 
terrains (e.g., upward slope). From the experiments it shows that during 
learning the synaptic weight ωs of the slope sensor ss in a neural 
learning network [33] grows, whereas any uncorrelated synapse, for 
example ωg from the gyro sensor sg, remains unaffected. This means 
that only the relevant synapses learn. The output of the learning neuron 
(not shown but see [33]) follows these changes and determines 
different gaits. As soon as the energy-saving wave gait is selected, the 
error, which is the different between actual energy uptake during 
walking on the slope and the (low) energy uptake during walking on 
the flat terrain, drops to zero such that learning stops. As a result, the 
synapses are stabilized and thereby the gait is fixed. As the synaptic 
values remain stored, the next time the robot encounters this slope, the 
inclination sensor will immediately be triggered leading to the same 
output and again to the selection of the wave gait. Note that m shows a 
motor signal representing different gaits during the experiments. For 
this demonstration, we refer the reader to a video clip at  
http://www.manoonpong.com/AMOS/ProactiveBehavior.mpg. 

5. DISCUSSION AND CONCLUSIONS 
 
In this section, we conclude our accomplishments and 
discuss some remaining issues concerning the 
development of our animal-like robots while most of the 
relevant discussion points have been treated in the 
sections above. 
 
Here, we employ biological principles to build our 
walking robots as well as their neural controllers. The 
controllers are systematically synthesized based on a 
modular structure such that the neuromodules are small 
and their structure-function relationship can be analyzed. 
This modular architecture is considered as a major 
advantage compared to many other controllers which 
were developed for walking robots, for instance, using 
genetic algorithms [46, 47] or evolutionary techniques 
[48-50]. In general, these controllers were too complex 
to be mathematically analyzed in detail, in particular if 
they consist of a massive recurrent connectivity 
structure. Most of them [46-50] have been created for a 
specific type of walking robots. Applying such 
controllers to other robots may require a modification of 
the network’s internal parameters or structure.  
 
In contrast, the neural controllers developed here can be 
successfully applied to physical four-, six- and eight-
legged walking robots having different morphologies. 
They are also able to generate versatile reactive 
behaviors, simple memory-guided behaviors, and 
proactive behaviors (level I, II, and III in Fig. 1) without 
altering their internal parameters or structure of the CPG, 
VRN, and PSN. We believe that the developed 
neuromodules can serve as useful building blocks 
(generalizable and transferable) for other module-based 
neural control. This study also suggests that the 
employed modular neural design with an incremental 
synthetic process may be a way forward to solve 
coordination problems in other complex motor tasks, 
such as adaptivity and motor planning for active 
prosthetic and orthotic devices or in other autonomous 
robotic systems.  
 
Taken together, our approach leads to a deeper 
understanding of the general control, memory, plasticity 
and predictive principles in embodied neural 
sensori−motor function. In other words, it sharpens our 
understanding of how such a problem can be solved in 
not only reactive (mostly used in existing robots) but 
also adaptive self-organizing ways. This achievement 
can be viewed as a stepping stone towards true 
“Autonomous Intelligent Systems” in complex 
environments. 
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