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a b s t r a c t

In the early 1950s, von Holst and Mittelstaedt proposed that motor commands copied within the central
nervous system (efference copy) help to distinguish ‘reafference’ activity (afference activity due to self-
generatedmotion) from ‘exafference’ activity (afference activity due to external stimulus). In addition, an
efference copy can be also used to compare it with the actual sensory feedback in order to suppress self-
generated sensations. Based on these biological findings, we conduct here two experimental studies on
our biped ‘‘RunBot’’ where such principles together with neural forward models are applied to RunBot’s
dynamic locomotion control. Themain purpose of this article is to present themodular design of RunBot’s
control architecture and discuss how the inherent dynamic properties of the different modules lead to
the required signal processing. We believe that the experimental studies pursued here will sharpen our
understanding of how the efference copies influence dynamic locomotion control to the benefit ofmodern
neural control strategies in robots.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks have become a versatile tool in many appli-
cations like pattern recognition, function approximation and
others. Until recently networks, however, have not been used so
often for the control of machinery (e.g., robots). The difficulty
in relaying network output to the end-effectors in a coordinated
way and the complex structure of motor control networks may
explain why they are still not much used for solving complex
motor control problems so far. Recently, a few studies suggested,
however, that small networks can be very powerful for addressing
such problems. Theworks of Ijspeert et al. [1], Bem et al. [2], Meyer
et al. [3] have shown that in robots complex movement patterns
like swimming and walking can be controlled and coordinated
by neural network activity. The employed machines (lamprey or
salamander like robots) are this way able to produce undulatory
movements navigating through their environment. In our own
studies, we have used an adaptive neural network to control a
dynamic biped robot, called ‘‘RunBot’’ [4,5]. This machine is able to
walk and learn to adapt its posture and gait parameters to different
terrains, e.g., when walking up a slope.
While this shows the power of network control, at least one

important problem has so far not been addressed: all moving
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system are – on the sensor side – faced with noise. This could be
random noise from various sources in the environment (external
noise) and also disturbances which are introduced by the ego-
motion (internal noise). For example, every step stimulates our
own vestibular system in an unwanted way. Both noise sources
mask other more relevant stimulus events and lead to reduced
performance of the sensor system.
The brains of animals have developed strategies to compensate

for these noise sources and the goal of this study is to show
that these strategies can also be copied efficiently into robots
allowing the machines to ignore external as well as internal noise.
More than that: as internal noise is repetitive while walking it is
predictable. This leads to the situation that the robot can recognize
the disturbance. The comparison between the expected internal
noise and the one actually measured can be used as an error signal
which drives network learning as will be shown below. To this end
we will employ the idea of ‘‘efferent copies’’.
Around the mid-20th century, von Holst and Mittelstaedt [6]

demonstrated in animal models that motor commands are copied
within the central nervous system (CNS). These copies help to
distinguish ‘reafference’ (afference activity due to self-generated
motion) from ‘exafference’ (afference activity due to changes in
the external world). They can be also used for comparison with
the actual sensory feedback in order to subtract self-generated
sensations for maintaining stable perception. Similarly, Sperry [7]
presented evidence which supported this idea. He showed that
sensory areas receive discharge patterns (efference copy) with
respect to the expected sensory feedback. In the early 1960s, Held
[8] indicated that efference copies and the reafference generated

0921-8890/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
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by self-motion cannot be directly compared due to the different
dimensionality between motor commands and sensory feedback.
Therefore, he proposed a neural structure that transforms an
efference copy signal into an expected sensory input to be able
to compare it to the actual incoming sensory signal. This neural
transformation mechanism is known as ‘‘internal model’’ [9].
As described by Kawato [10], internal models or internal loops
of biological systems are classified into three types: inverse
internal model (the system calculates a motor command from a
desired trajectory/state information), forward internal model (the
system predicts sensory consequences from efference copies), and
integrated internal model (the system integrates both inverse and
forward models).
Based on the biological findings described above, several robot

experiments have been performed applying efference copy and
internal model concepts employing these ideas for arm control
[11], visuo-acoustic coordination [12] as well as leg control [13,
14] (see the Discussion section for details). These studies show
that the efference copy principle together with an appropriate
internal model can be successfully applied to a wide range of
robot control problems. The work presented here extends this
line of research to problems in dynamic walking control. In the
present study we conduct two experiments on ‘‘RunBot’’: (1) The
first experiment shows that an efference copy can be applied
to eliminate external and self-generated sensory noise. Normally
such perturbations destabilize the activation parameters for the
gait and cause unstable walking. This can be successfully avoided
by using an efference copy signal. (2) In the second experiment, we
demonstrate that the robot can detect a slope by the deviation of
its own gait from the normal gait-pattern observed on flat ground.
This deviation signal can be used for learning the new parameter
set, applicable to slope walking.
The employed networks in general consist of three compo-

nents: a network for basic walking, a learning control network as
well as an efferent copy and internal model building network. In
total this leads to a somewhat higher complexity of the network
structure. As compared to the original control network of RunBot
[4] the three modules, however, can be understood one by one,
which makes network design simple. Thus, the main purpose of
this article is not only to present the applications of the efference
copy for dynamic locomotion control. In addition to this, some
emphasis is put on the modular design and the aspect how the
inherent dynamic properties of the different modules lead to the
required signal processing.
In the following section, we give a general overview of the Run-

Bot system. Afterwards mechanical setup of RunBot and adaptive
reflex neural locomotion control forming the system’s basic be-
havior are presented in brief where the complete descriptions can
be found in our previous publications [4,5]. Sections 3 and 4 show
experimental studies for the application of the efference copy for
improving locomotion control and determining terrain condition
changes which is the main contribution of the article. Discussion
and conclusions are provided in Section 5.

2. RunBot system

The RunBot system (see Fig. 1) [5] uses the design principle of
multiple nested loops to couple its mechanics with adaptive reflex
neural locomotion control through an environment. Employing
this hierarchical architecture, RunBot exhibits the self-stabilizing
and passive properties [4] reflected by its mechanics. It can stably
walk with different speeds regulated through its reflexive neural
control [4]. Furthermore, it can adapt its gaits to different terrains
by means of a neural learning process using adaptive neural
control [5]. An overview of the mechanical setup and adaptive
reflex neural locomotion control are provided in the following, for
more details see [5].

Mechanics 

Hardware (Mechanical Setup of RunBot) Environment

Adaptive reflex neural locomotion control

Software (Adaptive neural control)

Software (Reflexive neural control) 

Fig. 1. The RunBot system. It is divided into three levels (Mechanics, Reflexive
neural control, and Adaptive neural control) organized as a hierarchical structure
and coupled via the environment.

2.1. Mechanical setup of RunBot

RunBot is a planar dynamic biped robot (see Fig. 2). It consists
of four actuated joints: left hip, right hip, left knee and right
knee. Each joint is driven by a modified servo motor where
the built-in Pulse Width Modulation (PWM) control circuit is
disconnected, while its built-in potentiometer is used to measure
the joint angles (S). RunBot has no actuated ankle joints, resulting
in very light feet and efficiency for fast walking. Its feet were
designed having a small circular form (4.5 cm long). Each foot is
equipped with a ground contact sensor (G). A mechanical stopper
is implemented on each knee joint to prevent it from going into
hyperextension. Approximately seventy percent of the robot’s
weight is concentrated on its trunk and the parts of the trunk
are assembled in a way that its center of mass is located forward
of the hip axis. In addition, it has an upper body component
(UBC), which can be actively moved to shift the center of mass
backward or forward for walking on different terrains, e.g., level
floor versus up or down a ramp. It leans backwards during walking
on a level floor (see Fig. 2b) and this position is also suitable for
walking down a ramp [15]. On the contrary, it will lean forwards
(reflex action) when RunBot falls backwards or after it successfully
learned to walk up a ramp (see Fig. 2b). The corresponding reflex
is controlled by an accelerometer sensor (AS) functioning as its
simple vestibular system. The AS is installed on top of the right
hip joint. In addition, one infrared (IR) sensor is implemented at
the front part of RunBot pointing downwards to detect a ramp.
Here, the IR sensor serves as a simple vision system, which can
distinguish between a level floor with black color and a painted
ramp with white color (see Fig. 2b). This sensory signal is used
for adaptive control. All sensory and motor signals are converted
through an AD/DA converter board (USB-DUX1) with the update
frequency of 250 Hz.
We constrain RunBot in the sagittal plane by a boom of one

meter length. RunBot is attached to the boom via a freely rotating
joint in the x-axis, while the boom is attached to the central column
with freely rotating joints in the y and z axes (see Fig. 2a). The
mechanical design of RunBot has the following special features that
distinguish it from other powered biped robots and that facilitate
high-speed walking and exploitation of natural dynamics: (a)
small, curved feet allowing for rolling action; (b) unactuated,
hence light, ankles; (c) lightweight structure; (d) light and fast
motors; (e) proper mass distribution of the limbs; and (f) properly
positioned mass center of the trunk. Utilizing all these properties,
RunBot can perform self-stabilization of gaits and it also exhibits
passivewalking characteristics reflected by the fact that during one
quarter of its step cycle all motor voltages remain zero [4].

1 http://www.linux-usb-daq.co.uk.
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a b

Fig. 2. (a) The planar dynamic robot RunBot. UBC, upper body component; IR, infrared sensor; AS, accelerometer sensor; G, ground contact sensor. (b) Schematic set-up of
the RunBot system. Leg sensors consist of joint angle and ground contact switch sensors, leg motors are the motors of the left and right hip and knee joints. The detection
range of the IR sensor for slope sensing is shown in the lower figure where the thick dashed ray of the IR sensor (1) indicates that the sensor gives a high output signal while
the thin dashed ray (2) means a low signal. Hence the sensor responds more strongly to the white color. NB,F , body flexor (leaning backwards); NB,E , body extensor (leaning
forwards).

2.2. Neural locomotion control

The neural locomotion control (see Fig. 1) consists of two main
structures: the adaptive and reflexive neural control circuits. All
neurons in the circuits aremodeled as rate-coded neuronswith the
standard sigmoid transfer function. They are simulated on a Linux
PC with an update frequency of 250 Hz.

2.2.1. Reflexive neural control
The reflexive neural control is based on several reflex mecha-

nisms. It is composed of two submodules. One is for leg control
and the other is for UBC control. Both leg and UBC controls are in-
dependent but they are indirectly coupled through the mechanics
of RunBot (see Figs. 2 and 3).
The leg control, simulated as mono-synaptic connections,

contains motor neurons (N), which are linear and can send their
signals unmodified to the motors (M) (see Figs. 3 and 4). There
are several local sensor neurons (proprioceptor), which, by their
conjoint reflex-like actions, trigger different gaits, e.g., slow and
fast. These local sensor neurons can be classified into three loops:
joint control, intra-joint control and leg control. Joint control arises
from angle sensors S at each joint (Local 1, see Fig. 3), which
measure the joint angle and influence only their target motor
neurons. Intra-joint control is achieved from sensors A (Local 2,
see Fig. 3), which measure the anterior extreme angle (AEA) at the
hip and trigger an extensor reflex at the corresponding knee. Leg
control comes from ground contact sensors G (Local 3, see Fig. 3),
which drive the motor neurons of all joints.
The UBC control represents a long-loop reflex, which is

indirectly modulated by its AS through the adaptive neural control
network (see Fig. 3). In general situations like when walking on
flat terrain, the AS is inactive and the flexor body motor neuron
NB,F is activated to lean the body backwards (see Fig. 2b) while the
extensor motor neuron NB,E is inhibited. This situation is reverted
when a strong signal from the AS exists, which happens only when
RunBot falls backwards, e.g., RunBot tries to walk up a ramp. This

will trigger a leaning reflex of the UBC. More detailed descriptions
of all neuron models together with the neural network structures
and the discussion of their parameters can be found in [5].

2.2.2. Adaptive neural control
RunBot’s task was to learn walking up a ramp and then

continue again on a level floor. The learning goal is to avoid the
leaning reflex and thereby learn to also change gait parameters
in an appropriate way to prevent RunBot from falling. We use
adaptive neural control to change the leaning action of the UBC by
learning and to also influence several other leg control parameters
for gait adaptation. This is accomplished by using six learner
neurons changing activation parameters of their target neurons
(see Fig. 4). Our learning algorithm (described in details later)
applies a correlation based differential Hebbian learning rule [16]
where the modification of all those parameters will be controlled
by two kinds of input signals: one is an early input (called
predictive signal) and the other is a later input (called reflex signal).
In general, we use the IR signal as a predictive signal while the
AS signal serves as a reflex signal (see Fig. 4). At the beginning,
the connections between the predictive signal and learner neurons
converge with zero strengths (dashed arrows in Fig. 4). In this
situation, parameters of the target neurons will be altered only
by the reflex signal (solid arrows between the reflex signal and
learner neurons in Fig. 4); i.e., the leaning reflex of theUBC together
with the gait adaptation will be triggered by the AS signal as soon
as RunBot falls. Hence, RunBot will begin to walk up the ramp
with a wrong set of gait parameters and an inappropriate posture
of the UBC. Thus, it will eventually fall leading to a signal at the
AS, which will change RunBot’s parameters but too late (when
it already lies on the ground). Due to learning the modifiable
synapses (ρ11 , . . . , ρ

6
1 , dashed arrows in Fig. 4), which connect

the predictive IR signal with the learner neurons (L1, . . . , L6), will
grow. Consequently, after 3–5 falls during the learning phase, gait
adaptation together with posture control of the UBC will finally be
driven by the predictive IR signal instead. Correspondingly, RunBot
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Fig. 3. Neural locomotion control (see text). Reflexive walking behavior arises from the interaction of three local sensorimotor loops (reflexive neural control) together
with the passive properties (mechanics). Additionally, adaptation is achieved by a learning mechanism. A gray arrow represents RunBot’s physical embodiment eliciting
its passive dynamic walking properties. IR, infrared sensor; AS, accelerometer sensor; S, joint angle sensor of hips and knees; A, stretch receptor for anterior extreme angle
(AEA) of the hips; G, ground contact sensor; NB,F , flexor body-motor signal; NB,E , extensor body-motor signal; NR,H,F , flexor leg-motor signal of the right hip; NL,H,F , flexor
leg-motor signal of the left hip; NR,H,E , extensor leg-motor signal of the right hip; NL,H,E , extensor leg-motor signal of the left hip; NR,K,F , flexor leg-motor signal of the right
knee; NL,K,F , flexor leg-motor signal of the left knee; NR,K,E , extensor leg-motor signal of the right knee; NL,K,E , extensor leg-motor signal of the left knee. In general, indices
are omitted below the last relevant level, e.g., NR applies to flexor and extensor of the hip and knee of the right leg.

Fig. 4. Adaptive neural control where the neural learning mechanism is shown in the solid frame (top left, L1 , see text for details). Note that all learner neurons have the
same learning mechanism. Connections between learner neurons and target neurons of the right leg, which are identical to those of the left leg, are not shown. ρ11 , . . . ,ρ

6
1 are

synaptic weights connecting the predictive IR signal with the learner neurons (L1, . . . , L6).

will adapt its gait together with leaning the UBC in time. The
used learning algorithm has the property that learning will stop
when the reflex signal is zero [16]; i.e., when RunBot does not fall
anymore. On returning to flat terrain, the IR output will get small
again and RunBot will change its locomotion and posture back to
normal for walking on a level floor.
Learning algorithm: In general, each learner neuron Ln requires

two input signals (u0, u1) with synaptic weights (ρ0, ρ1) (see solid

frame in Fig. 4). Here, we use the AS and the IR signals as u0 and
u1, respectively. Only ρ1 (dashed arrows in Fig. 4) is allowed to
change through plasticity while ρ0 (solid arrows connecting the
AS neuron with learner neurons in Fig. 4) is set to a positive value,
i.e., ρ0 = 1.0. The output activity v of Ln and the learning rule for
the weight change ρn1 are given by:

v(Ln) = ρn0u0 + ρ
n
1u1, n = 1, . . . , 6, (1)
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Fig. 5. (a) Walking path on which white spots are added at positions (1) and (3). They lead to a disturbance of the IR sensor. Note that the spots are empirically placed in
the way that the IR sensor generates the unwanted noise every second step; i.e., periodic noise. We therefore set the distance between each spot to 15 cm (see Fig. 14a).
Addingmore spots (high density), the sensors will give continuous noise whichmakes the system impossible to discern between a slope detection signal and this continuous
noise. (b, c) Raw sensor signals. Solid arrows in (b) depict the situation where RunBot detects a slope and dashed arrows in (c) where RunBot falls backwards. It falls over
backwards, as it has not yet learned to react to its IR input with a change in gait.

dρn1
dt
= µnu1

du0
dt
, n = 1, . . . , 6; (2)

where we here use only input signals and correlate them with
each other [16]. µn is the learning rate which is independently
set for each learner neuron. Here, the learning rate defines how
much gait and body leaning of RunBot will change after each fall.
It also implies to how fast the system can learn. For example, using
small values requires several falls until legs and body responses
are appropriately altered and vice versa for large values. One
could also consider the learning rate as the susceptibility for a
synaptic change, which in a biological agent will be defined by its
evolutionary development, which determines the agent’s ability
to learn a certain task. How and if these values could also be
influenced (possibly by mechanisms of meta-plasticity), changing
learning susceptibility, goes beyond the scope of this article. Thus
we empirically set it for thewalking experiments presented below.
In neurons with multiple inputs this learning mechanism can

be used to modify the synaptic strengths according to the order of
the arriving inputs. As a consequence, the predictive input will get
strengthened if the predictive signal u1 is followed by the reflex
input u0, where the reflex drives the neuron into firing. This rule
will lead to weight stabilization as soon as u0 = 0 [16], hence,
when the reflex has successfully been avoided. As a result, we
obtain behavioral and synaptic stability at the same time without
any additional weight control mechanisms.
All in all, through the tight coupling of the mechanics with

the adaptive reflex neural locomotion control, RunBot can au-
tonomously walk with a high speed (>3.0 leg length/s), self-
adapting to minor disturbances, and reacting in a robust way to
abruptly induced gait changes. At the same time, it can learn walk-
ing on different terrains, requiring only few learning experiences.
All these experimental results have been presented in [5].

3. Experiment 1: Efference copy for external and self-generated
sensory noise cancellation

As described above, RunBot uses IR (infrared eye) and AS
(vestibular) information for posture and gait adaptation during
walking up a painted slope. Due to the IR sensor characteristic,
the sensor responds more strongly to the white color (see Fig. 2b).
Thus, in our first experimental study on the application of the
efference copy for locomotion control, the walking path of RunBot
ismodified by addingwhite spots on its black level tracks (compare

Figs. 2b and 5a) in order to simulate disturbances to the IR sensor.
As a consequence, the IR sensor gives unwanted periodic noise
(see Fig. 5b, gray areas). In addition, RunBot’s ego-motion causes
the AS to produce self-generated sensory events (see Fig. 5c, gray
areas). These periodic perturbations will destabilize the activation
parameters for the gait and lead to a wrong set of gait parameters
as well as an inappropriate posture of the UBC. In other words,
after a few learning experiences for walking up the slope, RunBot
will perform upslope gait with leaning its UBC forwards during
walking on level floors (location (1) or (3) shown in Fig. 5a). As
a consequence, it will fall forwards before approaching a slope or
after leaving it (see Section 3.2 for experimental results).
To solve such problems, we need to filter the unwanted noise.

By doing so, we copy the periodic motor signals, transform them
into noise expectation through so-called neural forward models
(see Fig. 6). These expected sensory noise signals are fed into
compensator units (see Fig. 6) to subtract the unwanted noise from
the actual sensory feedback. Finally, we use neural postprocessing
units (see Fig. 6) to smooth and shape the compensated signals of
the IR and AS sensors in order to obtain appropriate correlations
for the learning mechanism. The details of this noise cancellation
process is described in the following.

3.1. Modeling noise cancellation circuits

To filter the unwanted noise of the IR signal, we copy all
extensor and flexormotor signals (NR, NL, efference copy) of the leg
joints (see Fig. 6). These motor signals are then transformed into
a noise expectation through the neural forward model (forward
model IR, see Figs. 6 and 7). This forward model is manually
constructed as a series of 12 hysteresis elements (see Fig. 7).2 Apart
from filtering the noise it shapes the motor signals to match to
the noise of the IR signal for subtraction afterwards. We create
a hysteresis by using a single neural unit with a ‘‘supercritical’’

2 Basically according to hysteresis effects, each recurrent neuronwill prolong the
activation time of its input signal, such that the more neurons are connected in a
series, the longer the activation time of the output will be. Thus the neuron number
of this forward model IR and other networks presented later is empirically set in
a way that each recurrent neuron extends the response time of its input to finally
match with the sensory noise for subtraction as well as to obtain a continuous and
smooth signal.
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Fig. 6. Adaptive reflex neural locomotion control with external and self-generated sensory noise cancellation circuits. It applies an efference copy for eliminating sensory
noise (compare Fig. 7).

Learning
control
circuit

NR,K,E

NR,H,F

NL,K,E

NL,K,E

RAW-AS

RAW-IR

Fig. 7. Noise cancellation circuits of IR and AS signals. Each circuit is composed of three subunits: forwardmodel, compensator, and postprocessing units. NR and NL indicate
motor signals of leg joints (efference copy). Note that one can optimize these noise cancellation circuits, for instance by using an evolutionary algorithm [18], but for the
purposes here, manual adjustment was sufficient.

self-connection (wSelf > 4) [17], modeled as a discrete-time, rate-
coded neuron with activity that develops according to:

ai(t + 1) =
n∑
j=1

Wijσ(aj(t))+Θi i = 1, . . . , n (3)

where n denotes the number of units, ai their activities, Θi
represents a fixed internal bias term together with a stationary
input to neuron i, andWij the synaptic strength of the connection
from neuron j to neuron i. The output of the neurons is given by
the standard sigmoid σ(ai) = (1+e−ai)−1. Input units are linearly
mapped onto the interval [0, 1].

The neural parameters of the forward model network were
empirically adjusted as follows. First we combined all motor
signals at the first recurrent neuron F1IR (see Fig. 7) and then we
adjusted the combined motor signals such that they will cross
forward and backward through the hysteresis domain [19,17] for
mainly filtering the noise of the motor signals. Hence, we set the
synaptic weight, connecting between all motor signals and the
recurrent neuron F1IR, to a positive value, i.e., 3.35, to amplify the
signals. Afterwards, we shifted the amplified signals by a negative
bias term, i.e., −6.3. Consequently, the modified signals sweep
over the input interval between−6.3 and−2.95. Finally, we tuned
the self-connection weight of the neuron to derive a reasonable
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Fig. 8. (a) Hysteresis effect between the input and output of the recurrent neurons F1IR and F1AS (see Fig. 7). The input varies between 0.0 and 1.0 while the output shows
high activation when the input increases to values above 0.97. On the other hand, it will show low activation when the input decreases below 0.165. Utilizing this hysteresis
property, high frequency motor noise is eliminated. In other words, these recurrent neurons F1IR and F1AS act as a low pass filter. (b) Raw motor signals. (c) Filtered motor
signals after passing through the recurrent neuron F1IR . Note that the raw and filtered motor signals at the recurrent neuron F1AS , having similar patterns to those of (b) and
(c), are not shown.
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Fig. 9. Hysteresis diagrams of different recurrent neural parameters. All hystereses have an input which varies between 0.0 and 1.0 while their output shows low and high
activations at different points. (a) Hysteresis loop of the recurrent neurons F2IR, . . . , F12IR , F2AS, . . . , F5AS , and P2IR, . . . , P13IR (see Fig. 7). The output shows high activation
when the input increases to values above 0.49 while it will show low activation when the input decreases below 0.015. We use this hysteresis property for prolonging the
activation time to obtain appropriate correlation of the signals, i.e., matching between the unwanted sensory noise and motor signals as well as correlating between the
reflex (noise free AS) and predictive (noise free IR) signals. (b) Hysteresis loop of the recurrent neuron P1IR (see Fig. 7). The output shows high activation when the input
increases to values above 0.71. On the other hand, it will show low activation when the input decreases below 0.57. This hysteresis effect is applied to smooth the output of
the compensator-IR. (c) Small hysteresis loop of the recurrent neuron P1AS (see Fig. 7). Its output gives high activation when the input increases to values above 0.9 and it
will show low activation when the input decreases below 0.88. This hysteresis effect is for smoothing the output of the compensator-AS.

hysteresis interval (see Fig. 8a) on the input space; i.e., 8.8. This
hysteresis effect allows the output to show high (≈1.0) and low
(≈0.0) activations at different points (see Fig. 8a). By utilizing this
feature, the recurrent hysteresis neuron F1IR acts as a low pass
filter, which can eliminate unwanted motor noise (see Fig. 8).
After that, the output of the recurrent neuron F1IR is provided

to a series of single recurrent neurons F2IR, . . . , F12IR (see Fig. 7).
The structure of each single recurrent neuron was configured in
the same manner as the recurrent neuron F1IR but the neural
parameters were set differently. We chose them in the way that
they provide the hysteresis effect (see Fig. 9a) that will shape
the filtered motor signals to match the periodic noise of the IR
signal. As a result, the connection weight between neurons, the
bias term, and the self-connection weight are set as 6.0, −6.0,
and 9.0, respectively. Eventually, the output of each recurrent
neuron (F1IR, . . . , F12IR) is transmitted to subtract the unwanted
noise of the actual IR sensory feedback at a compensator unit
(compensator-IR, see Fig. 7) through a connection weight set to
−0.25. The compensator unit is simply modeled as a standard
additive neuron with a linear transfer function. Subsequently,
the compensator output is postprocessed at another series of
recurrent neurons. All neural parameters of this postprocessing
unit (postprocessing-IR, see Fig. 7) are set to similar values as
F2IR, . . . , F12IR, described above, except the first unit (P1IR). Its
neural parameters are given as: connection weight from the

compensator unit IR to this first neurons= 1.0, bias term=−5.25,
and the self-connectionweight= 6.5. This postprocessing unit will
smooth the signal at the recurrent neuron P1IR (see Fig. 9b for its
hysteresis effect) and through the remaining recurrent neurons
P2IR, . . . , P13IR it will derive the appropriate correlation with the
reflex signal for our learning mechanism. The final output of each
postprocessing neuron is then summed up at the neuron P14IR
before applying to the learning circuit as a predictive signal.
So far we have discussed the filtering process of the IR signal.

To cancel self-generated noise at the AS signal, we use the same
technique as above but here only the extensor knee-motor signals
of the left (NL,K,E) and right (NR,K,E) legs are copied. Then they
are transmitted to the neural forward model (forward model AS,
see Figs. 6 and 7). Here the forward model AS consists of five
recurrent neurons F1AS, . . . , F5AS (see Fig. 7). They are configured
similar to the ones of the forward model IR. As a consequence,
they lead to the same hysteresis phenomena (see Figs. 8a and 9a)
which are used to filter motor noise and also transform the motor
signals into the expected sensory noise signal in order to subtract
the unwanted noise from the actual AS sensory feedback (self-
generated sensation). The subtraction is done in the compensator
unit (compensator-AS) where the output of each recurrent neuron
is amplified and sent to this compensator-AS by means of a
connection weight of −6.5. Note that the compensator-AS is
modeled similar to the compensator-IR. Finally, the compensator
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a b

c d

Fig. 10. Real-time data of an adaptive walking experiment when the noise cancellation circuits were not applied to the control. (a), (b) Raw sensor signals. (c) Growing
synaptic strengths during the learning phase showing small glitches arising from the self-generated noise of the AS. (d) Right hip joint angle for all situations. The data was
recorded while RunBot was initially walking from a lower floor (light gray areas) to an upper floor (dark gray areas) through a ramp (gray areas). Arrows depict the situation
where RunBot falls backwards and white areas where RunBot was manually returned to the initial position. Dashed white arrows indicate the situation where RunBot’s gait
was disturbed. ∗means the situation at which RunBot falls forwards. Note that here RunBot performs a few steps before falling forwards while walking on the upper floor.
In this walking experiment we set the learning rate of each learner neuron Eq. (2) as µ1 = 10.0, µ2 = 7.0, µ3 = 10.5, µ4 = 0.14, µ5 = 3.0, µ6 = 10.0.

output is shaped at the recurrent neuron P1AS (postprocessing-
AS, see Fig. 7) before applying to the learning circuit as a reflex
signal. The neural parameters of this postprocessing unit are set as:
connection weight from the compensator-AS to its postprocessing
neuron= 1.0, bias term=−4.5, and self-connection weight= 5.5.
With these neural parameters, this postprocessing unit shows an
appropriate hysteresis loop (see Fig. 9c) for refining the signal
and providing proper correlation with the predictive signal for our
learning mechanism.

3.2. Results

Here we firstly show the experimental results where the
noise cancellation circuits were not applied to the control. As
a consequence, the sensory noises destabilize the activation
parameters for the gait after a few learning experiences because
the synaptic connections (ρ11 , . . . , ρ

6
1 , dashed arrows in Fig. 4)

between the IR signal and the sites of movement control get
strengthened. Once these connections are established, RunBot will
react to its IR input with a gait change as soon as it gives a
high activation value (either detecting the white slope or the
white spots on the floors). In addition, the weights also show
small glitches arising from the self-generated noise of the AS.
Such glitches lead to a weak correlation with the IR signal and to
minor weight changes (see Fig. 10). As a result, these perturbations
make RunBot change its gait and UBC posture and make it fall
forwards during walking (see Fig. 10). For this demonstration,
we refer the reader to the video clip at http://www.bccn-
goettingen.de/Members/CNgroup/runbot/efferencecopy.mpg.
On the other hand, when the noise cancellation circuits (see

Fig. 6) described above are employed, the external and self-
generated sensory noises3 are eliminated (see Fig. 11). Thus Run-
Bot can successfully learn towalk up an eight-degree painted slope

3 Recall that the external noise occurs from responding of the IR sensor to white
spots placed on the level floors (see Fig. 5a) while the self-generated noise comes
from the AS due to RunBot’s ego-motion.

after 3–5 falls and stably adapts its gait for walking on different
terrains, i.e., level floors versus up the slope. For this demonstra-
tion, we refer the reader to the video clip at http://www.bccn-
goettingen.de/Members/CNgroup/runbot/efferencecopy.mpg.
After learning RunBot was also tested on the longer eight-

degree ramp (140 cm long) to show the robustness of the system.
As a result, it couldmanage to adaptivelywalk on this pathwithout
falling (see Fig. 12). This shows that the length of the slope does
not affect the stability of the system. In order to demonstrate more
learning performance of the system, we also configured the ramp
with different angles, e.g., four and twelve degrees. These different
slope angles certainly require different amounts of learning. That is
RunBot can manage to successfully walk up the four-degree ramp
after 2 falls (see Fig. 13a) while the steeper one requires a larger
UBC mass and 4 falls (see Fig. 13b).
Finally, to show the robustness of the noise cancellation

circuits (Fig. 7) when different environmental conditions are given
resulting in different kinds of IR sensory noise, we changed the
distance X between the white spots on the black level tracks of
RunBot (see Fig. 14). The performance of the circuits is shown in
Fig. 14. It can be seen that the noise cancellation circuits are robust
against such different kinds of IR sensory noise.

4. Experiment 2: Efference copy for slope detection

Due to gravitation, which exerts a different effect during
walking up a slope, RunBot’s forwards motion will be resisted.
Consequently, the gait period of its walking cycle will be enlarged.
This canbemeasured at themotor signals (see Fig. 15) because they
are basically derived from the proprioceptive feedback, i.e., foot
contact and joint angle sensors.
According to this effect, the experimental study here will show

the use of only themotor signals for discerning an unpainted slope
(see Fig. 15). This can replace the use of the IR signal, where the
slope needs to be painted as shown in the previous experiment.
However, before applying the motor signals as a predictive signal
to our learningmechanism (see Fig. 4), they need to be transformed
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Fig. 11. Real-time data of an adaptive walking experiment when the noise cancellation circuits were applied to the control. (a), (b) Raw sensor signals. (c), (d) Corrected
sensor signals showing a clear improvement. (e), (f) Right knee and hip joint angles for all situations. (g) Growing synaptic strengths during the learning phase. (h) Posture
of the UBC where 0 degree means learning backwards while 120 degrees means leaning forwards. The data was recorded while RunBot was initially walking from a lower
floor (light gray areas) to an upper floor (dark gray areas) through a ramp (gray areas). Arrows depict the situation where RunBot falls backwards and white areas where
RunBot was manually returned to the initial position. Note that in this walking experiment we set the learning rate of each learner neuron Eq. (2) as µ1 = 10.0, µ2 = 7.0,
µ3 = 10.5, µ4 = 0.14, µ5 = 3.0, µ6 = 10.0.

into a signal (called slope detection signal)which can appropriately
correlate with the reflex signal (AS). Hence a so-called slope
detection circuit is developed and employed for this purpose (see
Fig. 16) as described in the following.

4.1. Modeling a slope detection circuit

To obtain the slope detection signal derived from the efference
copy, we use here the knee flexor-motor signals of the right
NR,K,F and left NL,K,F legs and feed them into the motor signal
transformation circuit (see Fig. 17), which was empirically
constructed. It consists of 15 neurons M1, . . . ,M15 where the
neural parameters of M1, . . . ,M14 together with their function
are similar to those of the neural forward model IR. That is
the first recurrent neuron filters the motor noise while the rest
shape the motor signals by prolonging their activation time.

Eventually the output of each recurrent neuron is combined at
the neuron M15. Consequently, the pulse shaped motor signals
will become continuous and smooth. In other words, they show
continuous high activation (≈1) during walking on level floors
rather than spikes. But they will show a drop to about zero
of their continuous activation while walking on the slope due
to increasing the gait period of its walking cycle or they will
become completely deactivated if RunBot falls backwards on the
slope. Such a drop and/or deactivation enables the system to
recognize the slope. However we need to convert this into a
positive value for correlation with the AS signal in our learning
mechanism. Thus, a postprocessing unit is used to invert the signal
via neuron P1M. As a result, the drop and deactivation will turn
into a positive value (≈1) while the continuous high activation
will become zero. Subsequently, the recurrent neuronP2M enlarges
the response time of the inverted drop and deactivation signals.
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Fig. 12. Real-time data of an adaptive walking experiment on a 140 cm long slope. (a) Raw sensor signals. (b) Right hip joint angle during walking from a lower level (light
gray area) to an upper floor (dark gray area) through a long ramp (gray area). Note that in this walking experiment we set the learned weights according to the ones shown
in Fig. 11g.
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Fig. 13. (a) Growing synaptic strengths during learning to walk up a four-degree painted slope with 80 cm length (compare to Fig. 11g). Note that two steps of synaptic
changes imply two falls of RunBot. (b) Growing synaptic strengths during learning to walk up a twelve-degree slope (compare to Fig. 11g). Note that four steps of synaptic
changes imply four falls of RunBot. In both cases, the sensory signals and the changes of leg and bodymovements develop in a similar way as that shown in Fig. 11 while only
the amplitudes of the movements during walking on the different ramps are different due to the learned weights that convert to different values. Such that, in comparison
to the leaning motion of the legs and body for the eight-degree ramp, the legs and body lean less forwards for the four-degree ramp while they lean more forwards for the
twelve-degree ramp.
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Fig. 14. (a) Raw and preprocessed IR signals where the distance X between the white spots is 15 cm. (b) Raw and preprocessed IR signals where the distance X between the
white spots is 30 cm. (c) Raw and preprocessed IR signals where the distance X between the white spots is 60 cm. Note that when placing the white spots closer than 15 cm
to each other (high density), the sensors will give continuous noise which makes the system impossible to discern between a slope detection signal and this continuous
noise. The experimental setup is shown in the lower picture.
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Fig. 15. Observed flexor-knee motor signals of the left (NL,K,F) and right (NR,K,F)
legs during walking from a lower floor (1) to an eight-degree unpainted slope (2).
They show that the gait period of RunBot’s walking cycle is increased (gray areas in
windows) while walking on the slope. In this situation, RunBot walks a few steps
on the slope before it falls over backwards, as it has not yet learned to detect the
slope and react to it with a change in gait and its UBC posture. Note that for this
experiment we set its UBC posture in a more upright position (75 degrees) in order
to allow it to walk a few steps on the slope before falling backwards.

The resulting signal will be sent to the learning control circuit,
which allows RunBot to learn to walk up the unpainted slope. Note
that all neurons are modeled as additive neurons with a standard
sigmoid transfer function Eq. (3) except the neuron P2M which
has a linear transfer function with its output restricted to the
interval [0, 1].

4.2. Results

Fig. 18 shows experimental results where the motor signals
together with the slope detection circuit described above is em-
ployed (see Fig. 16) instead of using the IR signal for discerning
a slope. As a consequence, RunBot can successfully learn to walk
up an eight-degree unpainted slope after 2–5 falls. After that it
can stably adapt its gait and UBC for walking on different terrains,
i.e., level floors versus up the slope. For this demonstration, we re-
fer the reader to the video clip at http://www.bccn-goettingen.de/
Members/CNgroup/runbot/efferencecopy.mpg. Walking on differ-
ent angles of the slope will certainly require different amounts of
learning while the length of the slope will not disturb the stability
of the system (not shown but compare to Figs. 12 and 13).

5. Discussion and conclusions

Here, we concisely discuss and conclude some remaining issues
following the presented experiments while most of the relevant
discussion points have been described alongside the experimental
sections above. In this study, we have addressed the exploitation
of an efference copy together with internal models for dynamic
locomotion control in terms of sensory processing and terrain
determination. The first experiment has shown the relationship
between afference (sensory information) and efference (motor
command). That is a copy of the efference after modification
through neural forward models is used to subtract external
and self-generated sensory noise (sensory processing) in order

Fig. 16. Adaptive reflex neural locomotion control with noise cancellation and slope detection circuits. This control enables RunBot to detect an unpainted slope through
the change of its own motor signals rather than through the IR signal. As a result, it can successfully learn to walk up the slope by utilizing only AS and motor information.

Fig. 17. Slope detection circuit. It consists of two subunits: motor transformation and postprocessing units. In the postprocessing unit the neuron P1M performs as a signal
inverter while the recurrent neuron P2M with a linear transfer function acts as a low pass filter. NL,K,F and NR,K,F indicate motor signals of the left and right knee flexors,
respectively. Note that one can optimize this slope detection circuit, for instance by using an evolutionary algorithm [18], but for the purposes here, manual adjustment was
sufficient.
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Fig. 18. Real-time data of an adaptive walking experiment where RunBot detects an unpainted slope through its motor signals. (a) Raw AS signal. (b) Knee flexor-motor
signals of the right NR,K,F (solid line) and left NL,K,F (dashed red line) legs used for slope detection (see also in a zoom window). (c) Preprocessed AS signal (reflex signal). (d)
Slope detection signal (predictive signal). (e), (f) Right knee and hip joint angles for all situations. (g) Growing synaptic strengths during the learning phase. (h) Posture of the
UBC. It leans 75 degrees as an initial upright position, while 145 degrees means leaning forwards. In this experiment, RunBot can successfully walk up the slope after two
learning experiences. The data was recorded while RunBot was initially walking from a lower floor (light gray areas) to an upper floor (dark gray areas) through a ramp (gray
areas). Arrows depict the situation where RunBot falls backwards and white areas where RunBot was manually returned to the initial position. Note that in this walking
experiment we set the learning rate of each learner neuron Eq. (2) as µ1 = 14.0, µ2 = 3.5, µ3 = 5.25, µ4 = 0.07, µ5 = 1.5, µ6 = 5.0. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

to obtain perceptual stability for correctly guiding locomotion.
Furthermore, we have also shown that the employed forward
model IR is robust against different IR noise characteristics.
In the second experiment,we have demonstrated that efference

copy signals derived from a reflexive mechanism [5] are capable of
determining terrain condition changes, e.g., level floor versus up
a slope. Due to gravitation, which exerts a different effect during
walking up a slope, RunBot’s forwards motion will be resisted. In
other words, the gait period of its walking cycle will be enlarged
which can be measured at the motor signals.
In both walking experiments, leaning the UBC forward and

changing several gait parameters through a learning mechanism,
RunBot manages to walk on different slope angles, e.g., 4, 8 and
12 degrees. While a steep slope (12 degrees) requires a larger
UBC mass. On the other hand, walking down slopes can be also
achieved in the reverse way with an appropriate gait (not shown
here but see [15]). This is achieved by learning which is based on

simulated plasticity. Moreover, walking on different slope lengths
can be tackled where the length of the slope has no effect to the
stability of the system.
The employed dynamic locomotion controller of RunBot in

these experimental studies was modeled as artificial neural
networks using discrete-time dynamics. The networks consist of
three main components or modules: Reflexive network for basic
walking, adaptive network for learning capability, and internal
model building network4 for transforming efference copy signals
into desired sensory signals. All in all this leads to a certain higher
complexity of the control structure. The three modules, however,
can be understood one by one, which makes network design

4 Here we call the noise cancellation circuits (see Fig. 7) and the slope detection
circuit (see Fig. 17) as the internal model building network.
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analyzable. In addition to this, we have shown that hysteresis
effects of a single recurrent neuron could be utilized for designing
forward model, motor signal transformation, and postprocessing
units (internal model building units). Although most units consist
of several single recurrent neurons in series (see Figs. 7 and 17),
they give understandable and analyzable network characteristics
which can be applied to other applications [20–23] requiring high
and low output activations at different points on the input space
(hysteresis effects, see Figs. 8 and 9). If desired, all manually
adjusted parameters of these units can be optimized by an
evolutionary algorithm [18] or entire units can be constructed
as feedforward neural networks by an error back-propagation
technique [24]. However, it is important to note that, in principle,
the single recurrent neuron used here, e.g., the neuron F1IR,
performs as a nonlinear low-pass filter which eliminates high
frequency noise; i.e., here motor noise (see Fig. 8b), while the
motor signal, which contains much lower frequencies can pass
through. This way this neuron can be designed to have any cutoff
frequency below the motor noise frequency but above the motor
signal frequency. The cutoff frequency of this nonlinear filter
neuron is mainly derived from its self-connection weight [23]
and we find that the neural parameter, which control this (self-
connection weight), can be adjusted within large intervals making
any fine tuning unnecessary to obtain appropriate nonlinear low-
pass filters in certain frequency ranges (see [23] for the parameter
analysis).
To a certain extent the experimental studies pursued here

sharpen our understanding of how the efference copy influences
the dynamic locomotion control. They also emphasize how
biological findings (efference copy and internal models) can be
beneficially used in robotic systems. To date, efference copy and
internal model concepts have been applied to a number of robot
control problems in different approaches. For example, Namiki
et al. [11] presented a hierarchical parallel control architecture
for high-speed visual servoing (arm motion control system with
visual perception). The architecture is based on an interaction
model between efferent and afferent signals in a motor control
network used for a parameter adaptation mechanism. As a
consequence, it allows the robot to perform high-speed tracking,
grasping, handling, and collision avoidance tasks. Russo et al.
[12] simulated phonotaxis (auditory orientation towards sound
sources) and an optomotor reflex (a visual capability compensating
for external disturbances to maintain a straight trajectory) on
a robot. The smooth integration of auditory and visual stimuli
is achieved via a forward model. It takes acoustically driven
motor command signals (efference copy) and tries to predict
the reafferent visual signal such that the optomotor reflex is
inhibited during phonotaxis behavior. In the domain of walking
robot control, Lewis and Bekey [14] used innate internal models
to transform an efference copy from a central pattern generator
(CPG) unit into the sensory expectation. This expected sensory
information is compared with the actual sensory feedback and
an adaptive rule then modifies the CPG to coordinate the limbs
of a quadruped robot. Dürr et al. [13] purposed a neural three-
joint leg control mechanism for a hexapod robot for leg searching
movement. In addition, they also provided a generalized form
of their mechanism where the internal model and the efference
copy are applied for central pattern control. Compared to many of
these approaches, here we focus on showing the usefulness of the
efference copy and internal model in dynamic locomotion control
which, to the best of our knowledge, has not been investigated
so far.
Although our approach cannot be directly related to how

biological systems solve similar tasks, there is ample evidence
suggesting that biological systems use efference copy and internal
model mechanisms to maintain stable perception as well as to

perform fast, robust, and adaptive behavior [25–28]. For example,
as described in [6], flying insects can discern self-generated
sensation (i.e., rotation of the visual field caused by tracking a
target) from external sensation due to changes in the external
world (i.e., visual rotation due to air disturbances). This could
be done by using motor outputs transformed into the expected
visual inputs to suppress the self-generated sensation. In male
grasshoppers, an auditory interneuron activity (G-neuron) is
inhibited during stridulation (making a shrill sound by rubbing
hind legs and wings) [29]. This is because proprioceptive feedback
and efference copy signals of the hind legs act together to switch-
off the interneuron response during stridulation. In crickets,
interneurons sensitive to movement of the antennae give less
activation during active motion by the cricket itself [30]. Another
classic example is that moving our eyes causes the image on the
retina to move, but we obtain stable image perception because
the image movement is predictable from the eye movement
command [31] (but see [32]). Furthermore, Cullen and Roy [33]
showed that in primates vestibular signals arising from self-
generated head motions are inhibited by an internal model
mechanism for perceptual stability and accurate behavior control.
Finally, we would like to discuss our locomotion control

network (see Figs. 6 and 16) with respect to the general concept
of internal models [10,34]. Internal models or internal loops,
systems that imitate the behavior of a biological process, have
appeared as an important theoretical concept in motor control.
They are generally divided into two main categories [10,34]:
inverse internal model and forward internal model. In addition,
the combination of inverse and forward internal models is called
integration ofmultiple internalmodels. The inverse internalmodel
is a system that transforms a desired trajectory/state information
into a motor command for generating movements. Such a model
can be described as a controller. By contrast, the forward internal
model is a system that predicts the next state (state estimation)
and/or sensory consequences (expected sensory feedback) from
the current state and motor command (efference copy). In other
words, it can be viewed as a predictor. The integration of multiple
internal models proposes that multiple pairs of inverse and
forward internal models are tightly coupled as functional units.
Additionally, from neurophysiological and biological studies, it is
known that in movement control forward and inverse models
involve the dynamics of themotor systemchanging under different
conditions. Thus it has been suggested that the internal models
must be adaptable and learnable by, e.g., supervised learning [35],
feedback-error-learning [36], direct inverse modeling [37], and
auto-imitatively adapting inverse modeling [38,39].
Compared to the different types of the internal models

described above, the reflexive neural network of our robot can be
implicitly understood as the inverse model that calculates motor
commands from sensory inputs rather than desired trajectories.
Note that the RunBot system does not use any trajectory control,
instead only a pure sensor-driven mechanism is employed [5]. On
the other hand, the internalmodel building network is comparable
to the forward internal model that estimates sensory feedback
(see experiment 1) and walking state (see experiment 2) from
motor commands. This internal network was designed as a non-
adaptable networkwhere amotor learningmechanism is executed
separately in the adaptive neural network,5 which results in
locomotor adaptation; i.e., adaptive walking on different terrains.
More demanding taskswill be the improvement on themechanical
design of RunBot by integrating elastic and passive joint properties
with novel types of motors including a spring mechanism to
imitate muscle properties for better self-stabilization through
mechanical feedback, called ‘‘preflexes’’ [40].

5 Recall that the learning algorithm applies a correlation based differential
Hebbian learning rule.
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