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Abstract

This article describes modular neural control structures for different walking machines utilizing discrete-time neurodynamics. A simple neural
oscillator network serves as a central pattern generator producing the basic rhythmic leg movements. Other modules, like the velocity regulating
and the phase switching networks, enable the machines to perform omnidirectional walking as well as reactive behaviors, like obstacle avoidance
and different types of tropisms. These behaviors are generated in a sensori-motor loop with respect to appropriate sensor inputs, to which a
neural preprocessing is applied. The neuromodules presented are small so that their structure–function relationship can be analysed. The complete
controller is general in the sense that it can be easily adapted to different types of even-legged walking machines without changing its internal
structure and parameters.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Walking animals are able to move around not only on flat
terrains but also on rough terrains and even to perform a
variety of walking patterns1 [6]. They can adapt themselves
to environmental changes in order to survive. They even
show several fascinating behaviors, like reflexes, fixed action
patterns,2 and taxes [4]. Neurobiologists suggest that solving
these tasks basically results from coupling the appropriate
biomechanics [19,24] with neural control [17,71]. For instance,
cockroaches and stick insects can walk forward, backward,
and in lateral directions [33,56] because of their appropriate
biomechanical legs [66]. Neural control [66], on the other
hand, plays a role in generating different walking behaviors
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1 Here, we describe walking patterns as the direction of motions,
e.g., forward, backward, turn left and right, and so on. It is sometimes referred
to as walking behaviors or walking modes. All these terms mean exactly the
same thing.

2 The action perseveres for longer than the stimulus itself.

with respect to environmental stimuli and walking situations.
Therefore, during the last few decades several roboticists have
begun actively to look to the biological sciences for the
constructions and the controller design of robotic systems in
particular walking machines to approach the animals in their
levels of performance.

From this point of view, most previous studies in the
domain of walking machines have paid attention on the
construction of such machines to have animal-like properties
[5,40] and perform efficient locomotion [7,13,43]. Others have
focused on the generation of locomotion based on engineering
technologies [16,64] as well as biological principles [17,21,
40]. In general, all these machines were solely designed for
the purpose of motion without responding to environmental
stimuli. That is, most of them can traverse over uneven
terrain, walk with different gaits, or perform omnidirectional
walking. However, in this research area, only a few works
have shown physical walking machines which can react to an
environmental stimulus with standard walking behavior using
different approaches [3,16,26,35]. This shows that less attention
has been paid to walking machines performing various reactive
behaviors with a variety of walking patterns. In other words,
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Fig. 1. (a) The physical leg with three DOF of the AMOS-WD06. (b) The physical six-legged walking machine AMOS-WD06. (c) Top view.

contributions developing embodied control techniques for
sensor-driven behaviors of many-degrees-of-freedom systems
are rare.

The goal of this article is to present a novel approach
to tackle this challenging problem. We have developed our
walking machines together with their neural control, in a
stepwise manner during the last three years [28,49,50]. They
were designed and constructed on the basis of biological
investigations, e.g., leg and body structures [47], and can now
perform various reactive behaviors including several kinds of
walking patterns (omnidirectional walking) under a sensor-
driven neural controller. However, the rationale behind this
article is not only to demonstrate biologically inspired walking
machines with sensor-driven omnidirectional locomotion and
versatile behaviors but also to investigate the analyzable neural
mechanisms underlying this approach in order to understand
their inherent dynamical properties.

Adapting a modular approach, the sensor-driven neural
controller was mainly built from a combination of neural
control and preprocessing modules. Neural control here serves
as a locomotion generator while preprocessing is used to
trigger various reactive behaviors corresponding to sensory
inputs. This modular architecture is then considered as a
major advantage, compared to many other controllers which
were developed for walking machines, for instance, using
genetic algorithms [10,75] or evolutionary techniques [26,42,
58]. In general, these controllers were too complex to be
mathematically analyzed in detail, in particular if they consist
of a massive recurrent connectivity structure. Furthermore,
most of them [10,26,42,58,75] have been created for a specific
type of walking machines. Applying such controllers to other
machines may require the modification of the network’s
internal parameters or structure. In contrast, the neural control
developed here can be successfully applied to a physical six-
as well as to an eight-legged walking machine having different
morphologies, and it is also able to generate different walking
modes without altering its internal parameters or structure. The
walking patterns are basically generated by using the discrete-
time dynamics of a simple 2-neuron oscillator network. While,
the steering is done via velocity regulating networks (VRNs)
and a phase switching network (PSN). The controller has the
capability to prevent the walking machines from getting stuck
in corners or deadlock situations by applying hysteresis effects
provided by the recurrent structure of the neural preprocessing

modules. By a simple modification of the neural preprocessing,
it is possible to manually operate the machines via a joystick
or to generate another kind of a reactive behavior, e.g., sound
tropism (positive tropism) [49].

The article is organized as follows. First we describe the
technical specifications of the walking machines together with
their physical simulator. Second, we present the modular
neural controller together with its subnetworks (modules)
for generating omnidirectional walking and controlling reflex
behavior of the machines. Third, we illustrate the performance
of the modular neural control. Then, we analyze the neural
structures and finally we show the result of the versatile reactive
behaviors, followed by discussion and conclusions.

2. Walking machine platforms: AMOS-WD06 and -WD08

In order to explore the performance of neural control
in physical systems, two walking machines with different
morphology are employed. Both walking machines consist of
many active joints and different kinds of sensory systems.

The six-legged walking machine AMOS-WD06 consists of
six identical legs. Each leg has three joints (three DOF): the
thoraco-coxal (TC-)joint enables forward (+) and backward
(−) movements, the coxa-trochanteral (CTr-)joint enables
elevation (+) and depression (−) of the leg, and the femur–tibia
(FTi-)joint enables extension (+) and flexion (−) of the tibia
(see Fig. 1(a)). The morphology of this multi-jointed leg is
modeled on the basis of a stick insect leg [17] but the tarsus
segments are ignored. The length of the tibiae, which are
attached to the FTi-joints, is proportional to the dimension of
the machine. With a new design of the tibia part, each of them
contains a spring damped compliant element to absorb impact
force as well as to measure ground contact during walking.

The body of the AMOS-WD06 consists of two parts: a
front part where two forelegs are installed and a central body
part where two middle legs and two hind legs are attached.
The front and central parts are formed as narrow as possible
with maximum symmetry to ensure optimal torque from the
supporting legs to the center line of the trunk and to keep
the machine balanced to ensure stability of walking. They are
connected by one active backbone joint which can be activated
to rotate around the lateral or transverse axis (pitch axis). This
backbone joint is inspired by the invertebrate morphology of the
American cockroach’s trunk (see [47] for details). In addition,
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Fig. 2. The physical eight-legged walking machine AMOS-WD08. (a) Front view. (b) Top view.

a tail with two DOF rotating in the horizontal and vertical
axes is implemented on the back of the trunk. This actively
moveable tail, which can be manually controlled, is used to
install a mini wireless camera for monitoring the environment
while the machine is walking. All leg and tail joints are driven
by analog servomotors while the backbone joint is driven by a
digital one. The size of the walking machine is 30 cm wide,
40 cm long, 12 cm high without its tail. The weight of the
fully equipped robot (including 21 servomotors, all electronic
components, sensors, and a mobile processor) is approximately
4.2 kg. This machine has six foot contact sensors for recording
and analyzing the walking patterns and seven infrared (IR)
sensors for eliciting reactive behaviors, e.g., obstacle avoidance
and escape response. One pair of the IR sensors is located at the
front part (IRF R,F L ), more two pairs are fixed at the tibiae of
the two front (IRR1,L1) and two middle legs (IRR2,L2), and the
rest of them is installed at the rear part (IRR P ) (see Figs. 1(b)
and 1(c)). Additionally, one upside-down detector sensor (UD)
is implemented beside the machine trunk (see Fig. 1(c)). It is
applied to trigger a self-protective reflex behavior when the
machine is turned into an upside-down position.

The eight-legged walking machine AMOS-WD08 consists
of eight identical legs, each with three joints (3 DOF). They
are built from a construction kit.3 The configuration (compare
Fig. 1(a)) and functionality of its legs are similar to those of the
AMOS-WD06 except its tibiae where the spring element has
not been yet implemented. The chassis of the AMOS-WD08 is
designed following a scorpion body contour but the tail part is
ignored (see [74] for details). It is constructed from only one
part where all legs are orientedly attached (see Fig. 2). All leg
joints are driven by microdigital servomotors. The size of the
walking machine is 25 cm wide, 35 cm long, 10 cm high. The
weight of the fully equipped robot (including 24 servomotors,
all electronic components, sensors, and a mobile processor) is
approximately 2.7 kg. Each of the AMOS-WD08 joints has a
potentiometer sensor for detecting the actual angle position.
In addition, it has a photoresistor sensor in each foot tip for
measuring the ground contact.

3 http://www.ais.fraunhofer.de/˜breitha/projects/RoboKit/RoboKit.html.

The control of both walking machines is kept on a simple but
powerful board, the Multi-Servo IO-Board (MBoard),4 which is
able to control up to 32 motors, and which has 36 analog sensor
inputs and a size of 125 mm × 42 mm. The MBoard can be
interfaced with a personal computer (PC) or a personal digital
assistant (PDA) via an RS232 serial connection at 57.6 kbits/s.

The testing of the neural controllers however was first
performed using a physical simulation environment “Yet
Another Robot Simulator” (YARS) implemented on a 2 GHz
PC with an update frequency of 25 Hz. The simulator is
based on the Open Dynamics Engine (ODE) [72]. It provides
a defined set of geometries, joints, motors and sensors which is
adequate to create the AMOS-WD06 and -WD08 in a virtual
environment. The basic features of the simulated walking
machines are closely coupled to the physical ones, e.g., weight,
dimension, motor torque and so on. The simulated walking
machines with their virtual environment are shown in Fig. 3.
The simulator is precise enough to reflect the corresponding
behavior of the physical walking machines. This simulation
environment is also connected to the Integrated Structure
Evolution Environment (ISEE) [38,39] which is a software
platform for evolving and developing neural controllers. After
test on the simulator, a developed neural controller is applied to
the physical walking machines to demonstrate walking in real
environments.

3. Modular neural control

Modular neural control for generating omnidirectional
walking of the machines and controlling the protection reflex
(see Fig. 4) consists of three subordinate networks or modules
(colored boxes in Fig. 4): a neural oscillator network, several
velocity regulating networks (VRNs), and a phase switching
network (PSN). The neural oscillator network, serving as a
central pattern generator (CPG), generates periodic output
signals. These signals are provided to all CTr-joints and FTi-
joints only indirectly passing through all hidden neurons of the
PSN. TC-joints are regulated via the VRNs. Thus, the basic
rhythmic leg movement is generated by the neural oscillator

4 http://www.ais.fraunhofer.de/BE/volksbot/mboard-content.html.
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Fig. 3. The simulated walking machines in their environment. (a) Simulated AMOS-WD06. (b) Simulated AMOS-WD08.

Fig. 4. Modular neural control for omnidirectional locomotion and the reflex behavior of walking machines. There are three different neuron groups: input, hidden
and output. Input neurons I are the neurons used to control walking direction (I2,3,4,5) and to trigger the protection reflex (I1). Hidden neurons H are divided
into three subgroups or modules (CPG, VRNs, and PSN) having different functionalities (see text for details). Output neurons, here called “motor neurons”,
(T Ri, j , T L i, j , C Ri, j , C L i, j , F Ri, j , F L i, j ) directly command the position of servo motors. Abbreviations are: B J = a backbone joint, T R(L) = TC-joints
of right (left) legs, C R(L) = CTr-joints of right (left) legs, F R(L) = FTi-joints of right (left) legs. Indexing variables i and j are for odd and even numbers,
respectively. They define the leg position on each side (see text for details and compare Fig. 5). All connection strengths together with bias terms are indicated by
the small numbers except some parameters of the VRNs given by A = 1.7246, B = −2.48285, C = −1.7246. Note that dashed arrows indicate additional neurons
which can be added depending on the number of legs.

Fig. 5. (a) The movements of the CTr- and FTi-joints of the right front leg (R1) with the remaining legs of both machines performing the same (front view). (b)
The location of the motor neurons on the AMOS-WD06 and the movements of the TC-joints. (c) The location of the motor neurons on the AMOS-WD08 where the
movements of the TC-joints are similar to those of the AMOS-WD06.
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network and the steering capability of the walking machines
is realized by the PSN and the VRNs in accordance with
the given input parameters I . All networks are described
in detail in the following sections. The structure of this
controller and the location of the corresponding motor neurons
on the walking machines (AMOS-WD065 and -WD08) are
shown in Figs. 4 and 5. The developed controller is universal
in the sense that it can be easily adapted to different
types of even-legged walking machines with three-degree-of-
freedom legs, e.g., four, six, and eight legs, without changing
the internal structure and its parameters (dashed frame in
Fig. 4) except only adding or reducing the number of
output (motor) neurons (T R, T L , C R, C L , F R, F L (dashed
arrows in Fig. 4)) depending on the number of legs. For
instance, applying the controller for the six-legged walking
machine we set i = 1 and 3, and j = 2 (compare Figs. 4
and 5); i.e., the controller drives 18 motor neurons which
are T R1, C R1, F R1 (TC-, CTr- and FTi-motor neurons of
a right front leg), T R2, C R2, F R2 (a right middle leg),
T R3, C R3, F R3 (a right hind leg), T L1, C L1, F L1 (a left front
leg), T L2, C L2, F L2 (a left middle leg), and T L3, C L3, F L3
(a left hind leg). The connection strengths together with the
bias terms targeting to the adding motor neurons (dashed
arrows in Fig. 4) are similar to depicted motor neurons
(T Ri, j , T L i, j , C Ri, j , C L i, j , F Ri, j , F L i, j , see Fig. 26 for
the complete network). In case of the eight-legged walking
machine, we set i = 1 and 3 and j = 2 and 4 (compare
Fig. 5 and see Fig. 27 for the complete network) while setting
i = 1 and j = 2 is for four legs. Note that applying
the controller to four-legged walking machines may require
additional control together with an appropriate sensor system,
e.g., posture control [2,41,43], for balance and dynamically
stable locomotion. Nonetheless, using this modular neural
controller, only one gait can be obtained where the diagonal
legs are paired and move together, i.e., a trot gait for four legs
and a tripod gait for six legs.

All neurons of the network, updated with frequency of
25 Hz, are modeled as discrete-time non-spiking neurons. The
state and output of each neuron are governed by Eqs. (1) and
(2) [47], respectively:

ai (t + 1) =

n∑
j=1

Wi j o j (t) + Bi i = 1, . . . , n, (1)

oi = tanh(ai ) =
2

1 + e−2ai
− 1, (2)

where n denotes the number of units, ai their activity, Bi
represents a fixed internal bias term together with a stationary
input to neuron i , Wi j the synaptic strength of the connection
from neuron j to neuron i , and oi the neuron output. Input units
are configured as linear buffers.

5 Describing the controller driving the machine also with the backbone joint
will go beyond the scope of this article. Thus, the motor neuron controlling the
backbone joint B J is not activated; i.e., the backbone joint functions as a rigid
connection. However, it can be modulated by the periodic signal via the PSN
or VRNs to perform an appropriate motion, e.g., helping the machine during
climbing over obstacles.

Fig. 6. The 2-neuron oscillator network.

3.1. Neural oscillator network

The basic locomotion and rhythm of stepping in fast walking
animals, e.g., cockroaches [22,23], mostly relies on a CPG,6

while their peripheral sensors are used to control walking
behaviors [11,67]. By contrast, in slow walking animals
(e.g., stick insects), sensory feedback plays a critical role in
shaping the final motor pattern which is originally generated
by CPGs located at each leg joint [17,66]. According to a
principle of biological locomotion control, the basic rhythmic
movements of the legs of our walking machines will be
generated by a CPG.

The concept of CPG controllers for legged locomotion has
been studied in various works [7,40,44,52]. For instance, Beer
et al. [12] used a set of six coupled pacemaker (oscillator)
neurons where each drives one of the six legs. Kimura et al. [43]
used a CPG network constructed with four neural oscillators
where each single oscillator consisting of two mutually
inhibiting neurons based on a continuous-time oscillator, called
Matsuoka Neural Oscillator [53]. His CPG network has been
applied to control a four-legged walking machine where each
leg of the machine is driven by one of the neurons. Others
use one oscillator for each degree of freedom (DOF) of the leg
joints [14,70].

Here the model of a CPG is realized by using the discrete-
time dynamics of a simple 2-neuron network [61]. The network
consists of two neurons with full connectivity (see Fig. 6).

Its parameters are selected in accordance with the dynamics
of the 2-neuron system [61] staying near the Neimark–Sacker
bifurcation where the quasi-periodic attractors occur. They are
empirically adjusted through the Integrated Structure Evolution
Environment (ISEE) to acquire the optimal periodic output
signals for generating locomotion of the walking machines [28,
50]. In Fig. 7, we show examples of periodic output signals
having different frequencies resulting from different weights.
Additional investigation of the network can be seen at [47].

Fig. 7 shows that such a network has the capability to
generate various sinusoidal outputs depending on the weights.
Increasing W11, W22 and W12 but decreasing W21 in a
proportional way, the system dynamics still stays near or
beyond the Neimark–Sacker bifurcation [61], resulting in an
increased frequency of the sinusoidal outputs of the network.
Correspondingly, the amplitude of the signals will also slightly
increase.

6 A group of interconnected neurons that can be activated to generate a
locomotor pattern without the requirement of sensory feedback [32,34,51].
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Fig. 7. (a)–(c) present the weight change of the network where W11 and W22 are equal. W11, W22, and W12 are increased every 50 time steps from A to K while
W21 is decreased. Note that the bias terms B1, B2 are set to 0.01 in all cases. (d) The output signal H1 of the network varies from low (A) to high (K) frequencies
according to the weight changes. The other output H2 having a similar pattern with the leading phase by π/2 is not shown. (e) Frequency analysis of the recorded
sinusoidal signal H1 shows that it consists of several frequencies where each period from A to K has different eigenfrequencies (zoom panel). (f) Comparison of the
walking speed with different frequencies of the sinusoidal signal.

One can utilize the modifiable frequency for walking speed
control. To compare the effect of the different frequencies with
the walking speed three parameter sets (A, F, K shown in Fig. 7)
are chosen for the AMOS-WD06. In this situation, the machine
will only walk forward with a tripod gait. The average speed
values for the different frequencies are displayed in Fig. 7(f).

For our purpose, the parameter set for the network controller
is given by B1 = B2 = 0.01, W21 = −0.4, W12 = 0.4 and
W11 = W22 = 1.5. It generates sinusoidal outputs that differ
in phase by π/2 with a frequency of approximately 0.8 Hz (see
Fig. 8). Note that this parameter set is used to acquire an optimal
walking speed of the machines during test of omnidirectional
locomotion control. However, we will make use of a sensory
signal to modify all weights of the network in a similar way
as shown in Fig. 7. As a consequence, walking speed of the
machines can be varied by one sensor signal described in
Section 6.1.

3.2. Velocity regulating network

Having established that the neural oscillator with appropriate
synaptic weights projecting to the motor neurons will generate
one type of walking pattern, e.g., forward motion with a
tripod gait [28], the next step is to change walking patterns,
e.g., from walking forward to backward as well as spot turning
to the left and right. The simplest way to achieve this is
to generate 180-degree-out-of-phase sinusoidal signals which
drive the TC-joints [1,76]. By doing so, we use a so-called
velocity regulating network (VRN). The network is taken
from [27] where it was partly constructed and partly trained
by using the backpropagation rule in [69]. It approximates a
multiplication function on two input values x, y ∈ [−1, +1]

(see [47] for details). For this purpose, the input x is the periodic
signal, either coming directly from the neural oscillator network
(see [50]) or through the PSN (see Fig. 4), to generate the

Please cite this article in press as: P. Manoonpong, et al., Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking
machines, Robotics and Autonomous Systems (2007), doi:10.1016/j.robot.2007.07.004



ARTICLE  IN  PRESS
P. Manoonpong et al. / Robotics and Autonomous Systems ( ) – 7

Fig. 8. (a) The sinusoidal output signals from the neural oscillator network where the parameter set is: B1 = B2 = 0.01, W21 = −0.4, W12 = 0.4 and
W11 = W22 = 1.5. The update frequency of the network is approximately 25 Hz. (b) The phase space with the quasi-periodic attractor of the oscillator network.

Fig. 9. (a) The VRN where bias terms B are all equal to −2.48285. (b) The output signal (H27) when the input y is set to +1 (solid line) and −1 (dashed line).

rhythmic leg movement and the input y is the input parameter
I or a sensory signal to control the corresponding walking
behavior. The output signal of the VRN will be used to directly
drive the TC-joints. Note that two VRNs are coupled with the
neural controller network where each of them drives the TC-
joints on each side (see Figs. 4 and 5). Fig. 9 presents the
network structure and its output signal which achieves 180-
degree phase shift, when the input y changes from −1 to +1
and vice versa.

Because the VRN behaves qualitatively like a multiplication
function, it has capability to increase or decrease the amplitude
of the periodic signal by the magnitude of the input y.
Consequently, it will affect the walking speed of the machines;
i.e., the higher amplitude of the signal the faster they walk (not
shown but see [47] for experiments).

3.3. Phase switching network

Combining the neural oscillator network and the VRNs
presented above will lead to neural control [50] that is able
to generate five different walking patterns (forward, backward,
turning left and right, and marching). These walking patterns
result from modifying the rhythmic signals at the TC-joints
by the two input neurons I4,5 (see Fig. 4) while the rhythmic
signals at the CTr-joints remain unchanged. At the same time,
all FTi-joints will be inhibited (flexed position) through I2
(see Fig. 4). Activating all FTi-joints by periodic signals, the

walking machines will perform at least three more walking
modes (e.g., forward/backward diagonal and lateral motions
to the right) according to the given inputs I4,5 (see Table 1
and Fig. 11). To enhance the walking capability (e.g., also
forward/backward diagonal and lateral motions to the left), one
possibility is to reverse the phase of the periodic signals driving
the CTr- and FTi-joints. That is, these periodic signals can be
switched to lead or lag behind each other by π/2 in phase in
accordance with the given input I3 (see Fig. 4).

To this end, a hand-designed feedforward network, called
phase switching network (PSN), is applied. The network
consists of four hierarchical layers with 12 neurons. First, the
periodic signals of the neural oscillator network are provided
to the PSN through two pairs of hidden neurons (H5,6 and
H7,8, see Fig. 10). The synaptic weights projecting to them are
calculated in the way that they should not change the periodic
form of their input signals and should keep the amplitude of
the signals as high as possible. Thus, we set these synaptic
weights to 0.5, which will convert the signals in the linear
domain of the sigmoid transfer function. The activation of
H5,6,7,8 is controlled by higher layer neurons H3,4 with large
inhibitory connections (i.e., −5.0). H3 (or H4) will inhibit its
target neurons (see Fig. 10) if it is activated, where its activation
will be controlled by the binary value of I3 (see Table 1).
As a result, one neuron of each pair (H5 or H6 and H7 or
H8) will be activated while the other will be inhibited. For
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Fig. 10. (a) The PSN. (b), (c) Output signals (H13,14) of the network when the input I3 is set to 0 and 1. For instance, if I3 is set to 0, H3 will be activated because
of its bias term while H4 will be deactivated. Thus, H3 will inhibit the activation of its targeting neurons H5,7. As a result, H13,14 of the network will generate the
periodic signals originally coming from H1,2 through H6,10 and H8,12. On the other hand, the periodic signals will go through other neuron paths if I3 is set to 1.

Table 1
Input parameters for the different walking patterns and the reflex behavior

Actions I1 I2 I3 I4 I5

Forward 0 1.0 1, 0 −1.0 −1.0
Backward 0 1.0 1, 0 1.0 1.0
Turn right 0 1.0 1, 0 −1.0 1.0
Turn left 0 1.0 1, 0 1.0 −1.0
Marching 0 1.0 1, 0 0.0 0.0
FDiR 0 0.0 0 −1.0 −1.0
BDiR 0 0.0 0 1.0 1.0
LaR 0 0.0 0 0.0 0.0
FDiL 0 0.0 1 −1.0 −1.0
BDiL 0 0.0 1 1.0 1.0
LaL 0 0.0 1 0.0 0.0
Reflex 1 0.0 . . . 1.0 1, 0 −1.0 . . . 1.0 −1.0 . . . 1.0

Abbreviations are: FDiR and BDiR = forward and backward diagonal motion
to the right, FDiL and BDiL = forward and backward diagonal motion to the
left, LaR and LaL = lateral motion to the right and the left. Note that marching
is an action where all the legs are positioned and held in a vertical position and
support is switched between the two tripods (for six legs) or the two tetrapods
(for eight legs).

instance, if H5 and H7 are activated, they will give periodic
outputs while H6 and H8 will give a constant value of −1.0
and vice versa. Therefore, we have to shift the signals of the
inhibited neuron, e.g., H6,8, from −1.0 to 0.0 before summing
them with the activated neuron, e.g., H5,7. This is done by
the hidden neurons H9,10,11,12 of the lower layer. The synaptic
weights together with the bias terms connected to them are set
in a way that the signals will be again converted in the linear
domain and the output signals of the inhibited neurons will be
shifted to minimally 0.0. That is, we again choose them as 0.5.
Finally, we amplify the output signals of H9,10 and H11,12 with
larger synaptic weights, i.e., 3.0, and combine them via the
output neurons H13,14. Additionally, we set the bias terms of
H13,14 to −1.35 to shift an offset of the resulting output signals
down. Note that one can optimize this network, for instance by
using backpropagation, but for our purposes of controlling the
machines, it is good enough. The resulting network together
with its output signals with respect to the given input I3 is
shown in Fig. 10.

It can be seen that the network switches the phase of the two
sinusoidal signals originally coming from the neural oscillator
network when I3 is changed from 0 to 1 and vice versa. By

applying this network property, the movements of the CTr- and
FTi-joints will be reversed corresponding to the modification
of I3. Consequently, the walking machines will change their
diagonal or lateral walking from the right to the left and vice
versa.

3.4. Neural parameters for generating different walking
patterns

The integration of three different functional neural modules
described above gives the complete neural locomotion
controller. The synaptic weights of the connections between the
controller and the corresponding motor neurons together with
the bias term of each motor neuron are chosen intuitively. They
are adjusted through the YARS simulator to obtain an optimal
gait; i.e., a static gait where the diagonal legs are paired and
move synchronously. The actual parameters of the controller
together with its structure are depicted in Fig. 4. However,
all these synaptic weights and the bias terms can be changed
depending on hardware configuration, e.g., the position of
actuators.

This neural controller can generate different walking
patterns which are controlled by the four input neurons I2,...,5.
The connection weights between these input neurons and their
targeting neurons are shown in Fig. 4. In addition, the reflex
behavior7 will be triggered via the input neuron I1 which will
excite T R1- and T L1-joints and all CTr- and FTi-joints and
inhibit the remaining TC-joints (see Fig. 4).

Appropriate input parameter sets for the different walking
patterns and the reflex behavior are presented in Table 1 where
the first column describes the desired actions in accordance
with five input parameters shown in the other columns.

As shown in Table 1, this neural controller can produce at
least 12 different actions with respect to the given inputs. More
actions, e.g., turning in different radians or curve walking in
forward and backward directions, can be achieved by varying
I4 and I5 between −1.0 and 1.0 (see Fig. 11) while other input

7 Recall that if the walking machines are turned into an upside-down
position, they will perform a stable standing in this position by rotating their
CTr-, FTi-joints into the maximum elevation and extension positions. While,
all TC-joints will be turned into the minimum backward position except those
of the right R1 and left L1 front legs which will be turned into the maximum
forward position.

Please cite this article in press as: P. Manoonpong, et al., Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking
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Fig. 11. Plot of the input space (I4, I5, compare Fig. 4) which is classified into
four main areas. For input values in a dark square area (dabe), the walking
machines will perform spot turning to the left with different radians while a
white square area (e f ih) is for the right turn. In light grey triangle areas (gde
and geh), they will move forward in different curves to the left and the right and
dark grey triangle areas (ebc and ec f ) are for backward to the right and the left,
respectively. Additionally, if I4 and I5 are varied along the diagonal line (gec),
the machines will walk straight forward (ge) and backward (ec) with different
walking speeds.

parameters are fixed (I1 = 0, I2 = 1.0, and I3 = 1 or 0).
As a consequence, the amplitude of the periodic signals of the
left and right TC-joints is regulated. For all cases, I1 and I3 are
set as binary values (0 or 1) which affect all joints and switch
the phase of the two periodic signals, respectively. On the
other hand, I2 can vary between 0.0 and 1.0 which suppresses
the amplitude of the periodic signal of the FTi-joints; i.e., the

larger the value of I2 the lower the amplitude. As a result, the
walking machines will perform a very small step in the lateral
or diagonal direction or no step at all if I2 is set to 1.0. Setting
I2 to negative values might cause unstable walking.

4. Robot walking experiments with the modular neural
controller

In this section several experiments demonstrating the per-
formance of the modular neural network are described.
The first attempt was to observe omnidirectional walk-
ing behavior of the machines in the physical simulator
(YARS) where the results can be seen as a video clip
at http://www.nld.ds.mpg.de/˜poramate/RAS/OmniS.mpg. Af-
ter the test on the simulator the controller has been applied to
the physical walking machines (AMOS-WD06 and -WD08). It
shows that the simulated walking machines and the physical
walking machines behave similarly. We encourage readers to
watch the video clips of the real robot walking experiments at
http://www.nld.ds.mpg.de/˜poramate/RAS/OmniR.mpg.

Here we report the data of one leg of the AMOS-WD08
during performing different walking behaviors. All types of
walking behaviors have been carried out sequentially and with
continuous transitions. Note that all different walking behaviors
were generated through the input parameters I2,...,5 while I1
was set to 0 in all cases (see Table 1 and Fig. 11).

Figs. 12 and 13 show real-time data of the movements of
the TC-joint (T L1), the CTr-joint (C L1), and the FTi-joint
(F L1) of the left front leg and a gait diagram with respect to
each walking behavior. Note that all these data were obtained

Fig. 12. (a) The angle sensor signals of the TC-joint (T L1), CTr-joint (C L1), and FTi-joint (F L1) of the left front leg. Note that the signals of other joints having
similar patterns to those of the left front leg are not shown. At the beginning, a marching behavior (M) was given; i.e., the machine stepped in place, then a forward
behavior (F) was activated. After that we switched from a forward motion to a lateral motion to the right (LaR). Finally, the forward behavior and the lateral behavior
were simultaneously stimulated resulting in a forward diagonal walking to the right (FDiR). (b) Gait diagram with respect to the stimulated walking behaviors. It
shows two walking phases: the swing and stance phases. During the swing phase the foot has no ground contact and the ground contact sensor neuron has low
activation (≈−1.0). During the stance phase (gray blocks) the foot touches the ground and the neuron activation gets high (≈1.0).

Please cite this article in press as: P. Manoonpong, et al., Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking
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Fig. 13. (a) The angle sensor signals of the TC-joint (T L1), CTr-joint (C L1), and FTi-joint (F L1) of the left front leg. Note that the signals of other joints having
similar patterns to those of the left front leg are not shown. A marching behavior (M) was initially given, then a backward behavior (B) was activated. After that we
switched from a backward motion to a lateral motion to the left (LaL). At the end, the backward behavior and the lateral behavior were simultaneously stimulated
resulting in a backward diagonal walking to the left (BDiL). (b) Gait diagram with respect to the stimulated walking behaviors..

from the angle and foot contact sensor neurons where their
activations are between −1.0 and +1.0.

During marching in place the amplitudes of the TC- and
FTi-joints are 0.0 while the CTr-joints oscillate with a very
small amplitude (see T L1, F L1, and C L1 in Figs. 12(a) and
13(a)). For forward and back walking, the CTr-joints and
especially the TC-joints perform large amplitude oscillations
while the FTi-joints were inhibited to stay in the flexed position
(see F L1 in Figs. 12(a) and 13(a)). The differences between
forward and backward walking can be observed through the
phase difference of the TC- and CTr-joints; i.e., they differ
in phase by approximately π/4 during forward walking while
they are almost in antiphase (the phase shift between them is
180 degrees) when the machine walks backward (see T L1 and
C L1 in Figs. 12(a) and 13(a)). Activating the FTi- and CTr-
joints but suppressing the TC-joints cause the lateral walking
behavior. When the periodic signal (e.g., here the output of H13)
driving the FTi-joints leads another periodic one (e.g., here the
output of H14) driving the CTr-joints by π/2 in phase, the
walking machine performs a lateral walking behavior to the
right and vice versa for moving to the left (compare C L1 and
F L1 in Figs. 12(a) and 13(a)). In addition, the combination of
forward/backward and lateral motions enables the machine to
walk in the diagonal directions where all joints were activated
(see T L1, C L1 and F L1 in Figs. 12(a) and 13(a)).8

8 Note that the phase shifts of the right FTi- and CTr-joints during lateral
and diagonal walking are inverse to the left FTi- and CTr-joints presented in
Figs. 12(a) and 13(a).

In all walking behaviors, the machine walks with one gait
type where the diagonal legs are paired and move together;
e.g., R4, R2, L3 and L1 step in phase while the remaining
legs step out of phase (see Figs. 12(b) and 13(b)). With this
gait the eight-legged walking machine is always supported by
at least four legs while the six-legged walking machine has at
least three support legs called the tripod gait.

In Figs. 14 and 15, we show the experimental results
when the movement of the TC-joints was modified while the
movement of the CTr-joints remained unchanged and the FTi-
joints were inhibited. Changing the movement of TC-joints
of all left legs can switch between forward walking and spot
turning to the left (see Fig. 14). On the other hand, reversing
the movement of TC-joints of all right legs can change from
forward walking to spot turning to the right and vice versa (see
Fig. 14). Turning all TC-joints of both sides into the opposite
direction while the machine walks forward enables it to walk
backward. Additionally, decreasing or increasing the amplitude
of the movement of the TC-joints on the left or the right side
results in curve walking (see Fig. 15). Walking gaits during spot
turning and curve walking are similar to the one observed in the
forward/backward walking (see Figs. 12(b) and 13(b)).

In order to see the reaction of the TC-joints, the CTr-joints,
and the FTi-joints when the reflex behavior is triggered, we
initially let the walking machine perform forward diagonal
motion to the left (FDiL) where the oscillations of all joints
can be observed, the result of which is shown in Fig. 16. After
around 200 time steps, the reflex behavior was activated where
I1 was set to 1; i.e., the machine was turned in an upside-down
position. Accordingly, all TC-joints rotated into the minimum
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Fig. 14. The angle sensor signals of the TC-joint (T R1) of the right front leg and the TC-joint (T L1), CTr-joint (C L1), and FTi-joint (F L1) of the left front leg.
Arrows indicate the modification of the movement of the TC-joints, which allows the walking machine to perform forward (white area) and backward (dark gray
area) walking in a straight line as well as spot turning to left (T L) and right (T R) direction (light gray area). Note that the input parameters controlling each walking
behavior were given as shown in Table 1, e.g., T L was stimulated by setting I1 = 0, I2 = 1.0, I3 = 1, I4 = 1.0, I5 = −1.0.

Fig. 15. The angle sensor signals of the TC-joint (T R1) of the right front leg and the TC-joint (T L1), CTr-joint (C L1), and FTi-joint (F L1) of the left front leg.
Varying only amplitude of the TC-joints will provide different actions: marching in place (M), forward and backward curve walking to the left (F L , BL) and the
right (F R, B R). Here, the input parameters (I1 = 0, I2 = 1.0, I3 = 1) generating the different walking behaviors are fixed except I4 and I5. They were selected
from the plot of the input space (see Fig. 11) according to each desired walking behavior. They were set to I4 = −0.3 and I5 = −0.8 for F L , I4 = −0.8 and
I5 = −0.3 for F R, I4 = 0.3 and I5 = 0.8 for BL and I4 = 0.8 and I5 = 0.3 for B R.

position (compare Fig. 5) except T L1 and T R1 as well as
all CTr- and FTi-joints, which turned into maximum position
(compare Fig. 5). Note that we set T L1 and T R1 differently
from other TC-joints because this configuration makes the
walking machine stand stable in an upside-down position.

As demonstrated, the modular neural controller successfully
accomplishes omnidirectional walking as well as the reflex

behavior, which can be controlled through the five input neu-
rons. Additionally, the controller is effective. That is, without
any modifications of its internal parameters and structure, it can
be applied to walking machines having different morphologies,
e.g., different body structure and the orientation of their legs
(see Figs. 1 and 2). Despite such changes the controller still
enables them to perform almost the same desired behaviors. For
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Fig. 16. The angle sensor signals of the TC-joints (T L1,2), the CTr-joints (C L1,2), and the FTi-joints (F L1,2) of the left front L1 and middle L2 legs (compare
Fig. 5). Other joints having similar patterns are not shown. During the first period, the machine walked diagonally in the forward direction to the left and after around
200 time steps the reflex behavior was activated which inhibited the oscillations of all joints. Note that the input parameters I1,...,5 were set as described in Table 1
to produce the desired actions.

Fig. 17. Diagram of sensor-driven neural control. The controller acts as an
artificial perception–action system, i.e., the sensor signals go through the neural
preprocessing modules into the modular neural control module (compare Fig. 4)
which commands the actuators. As a result, the robot’s behavior is generated by
interacting with its environment in a sensorimotor loop.

a demonstration of this, we refer the reader to the video clip at
http://www.nld.ds.mpg.de/˜poramate/RAS/OmniR.mpg.

5. Sensor-driven neural control

The neural locomotion control described above utilizes
a modular concept. It is constructed with different small
neural modules, which generate various walking behaviors in
accordance with the given input parameters. Furthermore, on
the basis of this modular concept, the controller can be coupled
with other neural modules, e.g., neural preprocessing of sensory
signals. By coupling these two, we receive a so-called sensor-
driven neural controller. The diagram of the controller is shown
in Fig. 17 (see Fig. 28 for the complete network structure).

In order to create an effective sensor-driven neural controller,
we make use of the signals of the IR sensors and the UD sen-
sor implemented on the AMOS-WD06 (see Fig. 1). These sen-
sory data are used to provide environmental information for our
sensor-driven robot system. Nonetheless, the raw sensory sig-
nals require preprocessors to eliminate the sensory noise as well
as to shape the sensory data for activating the appropriate reac-
tive behavior. Thus, in the following sections, we will describe
the sensory preprocessing units together with their performance
followed by a demonstration of sensor-driven behaviors.

6. Neural preprocessing

We will now present four neural preprocessing units which
use the dynamic properties of recurrent neural networks. The
first unit (NP1) is used to preprocess the upside-down detector
(UD) signal, the output of which triggers the reflex action. The
second unit (NP2) does preprocessing of one IR sensor signal
where this sensor is mounted at the rear part (IRR P ) of the
walking machine. The output of this second unit regulates the
walking speed of the machine. The third unit (NP3) is applied
to the IR sensors implemented at the middle legs (IRR2,L2)
while the last unit (NP4) is for those installed on the front part
(IRF R,F L ) and at the front legs (IRR1,L1). The outputs of both
units serve to drive a reactive obstacle avoidance behavior. The
details of all these neural preprocessing units are described in
the following.

6.1. Neural preprocessing of the reflex and speed control
signals

We construct the neural preprocessing units of the UD and
IRR P signals in the same manner. Each of them is configured
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Table 2
The input–output characteristic for the XNOR network

INP3L2 INP3R2 oNP3

≈1.0 ≈1.0 ≈1.0
≈1.0 ≈0.0 ≈0.0
≈0.0 ≈1.0 ≈0.0
≈0.0 ≈0.0 ≈1.0

as a hysteresis element using a single neuron with a “super-
critical” self-connection (>4) [60]. The discrete dynamics of
the single neuron with a self-connection is given by:

aNPi (t + 1) = wNPiσ(aNPi (t)) + ΘNPi + CNPi VNPi

i = 1, 2, (3)

using a standard sigmoidal transfer function to yield the output:

oNPi = σ(aNPi ) =
1

1 + e−aNPi
, (4)

where i = 1 and 2 are applied for the neural preprocessing of
the UD signal and the IRR P signal, respectively. VNPi is the
output voltage signal of the sensor which is linearly mapped
onto the interval [0, 1]. ΘNPi stands for the threshold (bias
term), wNPi is a self-connection weight, and CNPi represents
a positive amplification factor of the input signal.

On the basis of its well-understood functionality [37,47,
60], the neural parameters (ΘNPi , wNPi , CNPi ) were manually
designed to obtain an appropriate hysteresis of each sensory
signal. First we set CNP1,NP2 to a high value, i.e., 6.0, to
amplify the raw sensory signals. Then we adjusted the amplified
signals such that they will cross forward and backward through
the hysteresis domain [60]. To do so, we chose ΘNP1,NP2 =

−6.0. Consequently, the amplified signals sweep over the input
interval between −6.0 and 0.0. Finally, we tuned the self-
connection weight of each neural preprocessor to derive a
reasonable hysteresis interval on the input space; i.e., wNP1 =

7.2, wNP2 = 8.6. The width of the hysteresis is proportional
to the strength of the self-connections (compare Figs. 18(e)
and 18(f)). This effect determines the duration of the response
to an environmental stimulus; i.e., the wider the hysteresis, the
longer the action perseveres (here, the reflex and fast walking
behaviors). The resulting neural preprocessors of both sensory
signals together with their hysteresis effect are presented in
Fig. 18.

We directly feed the output of the UD preprocessor oNP1 to
its target neuron I1 in the neural control module (Fig. 18(a)).
As a result, the walking machine will perform the reflex action
when oNP1 shows high activation (≈1.0; meaning that the
walking machine is turned into the upside-down position).
This reflex action will be deactivated when oNP1 shows low
activation (≈0.0; meaning that the walking machine is returned
into its normal walking position).

On the other hand, the output of the IRR P preprocessor oNP2
is used to modify all synapses of the neural oscillator network
following Eqs. (5)–(7):

w11,22 = 1.5 + 0.5oNP2, (5)

w12 = 0.4 + oNP2, (6)

w21 = −0.4 − oNP2, (7)

where w11,22, w12, and w21 are the connection weights between
the neurons of the oscillator network (Fig. 18(b)). Using this
sensor-modified synaptic mechanism, all connection weights
will be changed in accordance with the activation of the IRR P
signal. As a consequence, the walking speed of the machine will
be increased when oNP2 gets high activation (≈1.0; meaning
that there is an object approaching from behind the walking
machine) and vice versa. Due to the large hysteresis interval
(Fig. 18(f)), once the walking machine has been stimulated to
perform fast walking, it will keep to this action for a few steps
even if the activating stimulus is removed (e.g., the raw-IR
signal gradually decreases, see Fig. 18(d)). This way, predatory
escape behavior can be simulated. That is, without stimulus the
machine walks with normal speed (6.5 cm/s) but if a stimulus
is generated by the attack of a predator (e.g., humans or other
robots) from the rear, the machine will increase its speed (up to
25.6 cm/s) to escape.

6.2. Neural preprocessing of the walking pattern control
signals

Neural preprocessing of the six IR sensor signals
(IRF R,F L ,R1,R2,L1,L2), controlling walking patterns, consists of
two independent modules. One module (NP3) preprocesses the
data of IRR2,L2. The output signals of this module will activate
lateral walking and also control the direction to the left or the
right with respect to the sensory signals. The other module
(NP4) is for the IRF R,F L ,R1,L1 signals. Its outputs will make
the walking machine turn to avoid obstacles and prevent it from
getting stuck in a corner or a deadlock situation.

The neural preprocessing unit NP3 is designed as an XNOR
network.9 This neural network has two input neurons, two
hidden neurons, and one output neuron. All neurons are
modeled as a standard additive neuron (Eq. (1)) with the
standard sigmoidal transfer function (Eq. (4)). The network
was trained for 2000 time steps by using the backpropagation
algorithm where the learning rate was set to 0.7 (for more
details of this algorithm, see [54,68]). Here, the IR signals
(IRR2,L2) are linearly mapped onto the interval [0, 1] and
provided to the input neurons of the network. These sensory
signals have to be first filtered before feeding them to the
XNOR network. Therefore we again apply the hysteresis effect
of the recurrent neural network to eliminate sensory noise.
Thus, the input neurons of the XNOR network are configured
as the hysteresis elements which are similar to those shown
in Fig. 18(b). The modified XNOR network together with its
weights is shown in Fig. 19 and its desired output (oNP3)
corresponding to the given inputs (the filtered IR signals;
INP3L2 , INP3R2 ) is presented in Table 2.

We directly feed the output of this preprocessor (oNP3) to
its target neuron I2 in the neural control module (Fig. 19).
Consequently, the lateral walking pattern will be activated when
oNP3 gets low activation ≈ 0.0 meaning that one of the IRR2

9 It has function as an exclusive NOR gate.
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Fig. 18. (a) and (b) show recurrent neural preprocessing of the UD signal (dashed frame) and the IRR P signal (dashed frame), respectively. The output of the UD
signal preprocessor is fed to I1 while the output of the IRR P signal preprocessor is used to change the synaptic strength of the neural oscillator. (c) and (d) show
the input signals (Raw-UD, Raw-IRR P (solid line)) before preprocessing and the output signals (oNP1, oNP2 (dashed line)) after preprocessing. (e) and (f) show the
hysteresis effect between the input and output of the UD and IRR P signal preprocessors, respectively. The raw input of both signal preprocessors varies between
0.0 and 1.0 while their output gets low (≈0.0) and high (≈1.0) activations at different points. The UD output will show high activation when the input increases to
values above 0.54. On the other hand, it will show low activation when the input decreases below 0.26. For the IRR P output, it will show high activation when the
input increases to values above 0.49 while it will show low activation when the input decreases below 0.06.

and IRL2 sensors gives a high output signal ≈ 1.0 (compare
Table 2). Furthermore, the output signal of the hysteresis
element INP3R2 serves to control the lateral direction through I3
of the neural controller. That is, once the lateral walking pattern
is activated, the machine will walk laterally to the right as long
as the INP3R2 signal shows low activation ≈0.0; otherwise it
will walk laterally to the left (compare Table 1). Hence, the
machine will perform lateral walking to the right if there is
an obstacle at its left middle leg and vice versa. In special
conditions, e.g., detecting obstacles on both lateral sides during
walking forward, the IRR2 and IRL2 sensors will give high
output activations at the same time resulting in the inhibition of
lateral motions. The walking machine then continues to walk
forward.

The last neural preprocessing unit NP4, which will complete
the reactive obstacle avoidance behavior, is built based on
the minimal recurrent controller (MRC) [37,62]. It consists
of two mutually inhibiting neurons with self-connection (see
Fig. 20(a)). This controller has been originally developed for
controlling a miniature Khepera robot [55], which is a two
wheeled platform. Here, it serves as a neural preprocessor
for controlling the turning directions of the machine to avoid
obstacles and to escape from a corner and even a deadlock
situation.

All neurons of the preprocessing unit are modeled as
the standard additive neuron (Eq. (1)) with the hyperbolic
tangent transfer function (Eq. (2)). The connection weights
of the network were manually adjusted on the basis of their
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Fig. 19. Neural preprocessing unit NP3 of the IR signals IRR2,L2 (dashed
frame). It is created as an XNOR network with a self-connection at its input
neurons. As a result, the input neurons function as hysteresis elements, the
effect of which is similar to that shown in Figs. 18(d) and 18(f). The output of
the network oNP3 is fed to I2 and the output of one hysteresis element INP3R2
is connected to I3 (see text for details).

well-understood functionalities [37,47]. First, the weights from
the input to the output units were set to a high value to
amplify the sensory signals, i.e., 7.0. Then the self-connection
weights of the output neurons were manually tuned to derive a
reasonable hysteresis interval on the input space. Recall that the
width of the hysteresis is proportional to the strength of the self-
connections. In this case, the hysteresis effect determines the
turning angle in front of the obstacles for avoiding them, i.e.,
the wider the hysteresis, the larger the turning angle. Both self-
connections are set to 5.4 to obtain a suitable turning angle of
the AMOS-WD06. Finally, the recurrent connections between
output neurons were symmetrized and manually adjusted to
−3.55. Such inhibitory recurrent connections are formed as
a so-called even loop [59], which also shows hysteresis
phenomenon (see Fig. 20(c)). In general conditions, only one
neuron at a time is able to produce a positive output, while the
other one has a negative output, and vice versa. This guarantees
the optimal functionality for avoiding obstacles and escaping
from sharp corners. The resulting network and its hysteresis
effect are shown in Fig. 20.

The four IR sensor signals used as the inputs to the network
are mapped onto the interval [−1, +1], with −1 representing
“no obstacles”, and +1 “an obstacle is near”. Nonetheless, the
network has only two inputs (I 1NP4, I 2NP4) and no internal
neurons. Thus, one input I 1NP4 corresponds to the mean value
of the two left IR sensors (IRF L , IRL1) and the second input
I 2NP4 to that of the two right IR sensors (IRF R, IRR1). The set-
up parameters cause that the network can eliminate the noise
of the sensory signals. It can even determine the turning angle
as well as the turning direction. As a consequence, the walking
machine is able to avoid the obstacles and escape from corners
as well as deadlock situations. By applying o1NP4 and o2NP4
of the preprocessing network to their target neurons I5, I4 in
the neural control module, the behavior of the walking machine
can be autonomously switched; for instance, switching from
walking forward to turning left when there are obstacles on
the right, or vice versa. The network output also determines in

which direction the walking machine should turn in corners or
deadlock situations depending on which sensor side has been
previously active. In special situations, like walking toward a
wall, both sides (right and left) of IR sensors might get positive
outputs at the same time resulting in the reversion of the motor
signals of all TC-joints. The machine then walks backward.
During walking backward, the activation of the sensory signal
of one side might be still active while the other might be
inactive. Correspondingly, the walking machine will turn into
the opposite direction of the active signal and it can finally leave
from the wall.

7. Sensor-driven behaviors

In the previous section, the neural control and preprocessing
of walking machines have been reported. To demonstrate
their capabilities for controlling the reactive behaviors of the
walking machine in a real environment, several experiments
were carried out and performed on the six-legged walking
machine AMOS-WD06 with its mobile system.10

The first experiment was to show the reflex behavior together
with sensory-motor data. After that an escape behavior is
presented and followed by obstacle avoidance in different
situations. Note that, here, the limitation of the IR sensor system
in detecting objects with respect to different distances between
the sensors and an object as well as different object dimensions
is not explicitly described because it has been reported in our
previous work [50].

7.1. Reflex behavior

Reflex behavior [4] is rapid, stereotyped response which is
generally found in an animal. Such behavior is triggered by a
certain environmental stimulus and it remains as long as the
stimulus is given. Reflexes enable an animal to rapidly adapt
its behavior to unforeseen environmental changes. Reflexes are
usually applied for tasks such as postural control, withdrawal
from painful stimuli, and the adaptation of gait to rough terrain.

Inspired by this concept, we have implemented a protection
reflex on the AMOS-WD06 in a way that it will be triggered
as soon as the machine is turned into an upside-down position.
As a consequence, it stands still in this position as long as the
stimulus (UD signal) is presented. This reflex response together
with real-time sensory-motor data is shown in Fig. 21.

As shown in Fig. 21, the AMOS-WD06 walked forward at
the beginning (photo (1)). During walking forward, the CTr-
joints and the TC-joints performed periodic movements while
the FTi-joints were inhibited to stay in the flexed position. After
around 280 time steps, the walking machine was turned into
an upside-down position (photos (2) and (3)) resulting in the
inhibition of all joints. Then it was returned into its normal
walking position at around 420 time steps (photo (4)) and it
continued walking afterwards (photo (5)).

10 The sensor-driven neural controller (see Fig. 28) was implemented on the
mobile processor unit (the PDA communicating with the MBoard via RS232
interface). During experiments, we use battery packs for powering the robot
system which can run up to 35 min.
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Fig. 20. (a) Neural preprocessing unit NP4 of the IR signals IRF R,F L ,R1,L1 (dashed frame). It receives the mean values of the left (I 1NP4) and right (I 2NP4)
IR signals and provides outputs (o1NP4 and o2NP4) which control the spot turning direction of the walking machine through the corresponding neuron I4,5 of the
neural control. (b) Mean sensory signals (I 1NP4 and I 2NP4) before preprocessing and output signals (o1NP4 and o2NP4) after preprocessing. Due to the inhibitory
synapses between two output neurons and the high activity of o1NP4, o2NP4 is still inactive although I 2NP4 becomes activated at around 75 time steps. At around
150 time steps, the switching condition between o1NP4 and o2NP4 occurs because I 1NP4 becomes inactivated, meaning “no obstacles detected” while I 2NP4 is
still active, meaning “obstacles detected”. (c) Different hysteresis domains of the input I 2NP4 for the output neuron o2NP4 of the network with I 1NP4 fixed. On the
other hand, if such a condition occurs for o1NP4, I 1NP4 will show the same hysteresis effect as I 2NP4 does.

From this experimental result, one can see that such a reflex
behavior can be simply activated by the UD signal through the
sensor-driven neural controller (see Fig. 28) as follows. At first
the raw-UD signal is filtered via the neural preprocessing unit
NP1 (see Fig. 18(a)) and then the filtered signal drives the reflex
behavior by inhibiting all motor neurons. The reflex behavior
presented here is used to protect the walking machine from
damage when it is turned into the upside-down position.

7.2. Escape behavior

Escape behavior can be described as a fixed action pattern
[4], which is a time-extended response pattern activated by a
stimulus. That is, the action perseveres for longer than the stim-
ulus itself. In contrast to the reflex behavior, such fixed action
patterns (here, the escape behavior) are usually more complex

and specific than reflexes. The intensity and duration of the re-
sponse are not controlled by the strength and duration of the
stimulus. In fact, once a fixed action pattern has been activated,
it will be performed even if the activating stimulus is removed.

Here, we reproduce such a behavior on the AMOS-WD06.
The escape behavior will be activated as soon as the IRR P

sensor detects an object. As a consequence, the AMOS-WD06
increases its walking speed, as if it escapes from an attack.
This action will be preserved for a few steps even if the
activating stimulus has already been removed. The simulated
escape behavior together with real-time sensory-motor data is
shown in Fig. 22.

As shown in Fig. 22, the AMOS-WD06 walked forward with
its normal speed (6.5 cm/s) at the beginning (photo (1)). During
walking forward, the CTr-joints and the TC-joints performed
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Fig. 21. (a) Raw-UD signal. (b) Preprocessed UD signal. (c)–(e) Motor neuron signals of the TC-joint (T L1), CTr-joint (C L1), and FTi-joint (F L1) of the left front
leg, respectively. Signals of other joints having similar patterns to those of the left front leg are not shown. A series of photos of the reflex behavior is shown below.
The video clip of this experiment can be seen at http://www.nld.ds.mpg.de/˜poramate/RAS/Reflex.mpg.

Fig. 22. (a) Raw-IRR P signal. (b) Preprocessed IRR P signal. (c) Foot contact sensor signal of the front left leg. (d), (e) Motor neuron signals of the TC-joint (T L1)
and the CTr-joint (C L1) of the left front leg, respectively. The signals of the FTi-joint (F L1) similar to the one shown in Fig. 21(e) and also of the other joints
having similar patterns to those of the left front leg are not shown. A series of photos of the escape behavior is presented below. The video clip of this experiment
can be seen at http://www.nld.ds.mpg.de/˜poramate/RAS/Escape.mpg.

periodic movements while the FTi-joints were inhibited to stay
in the flexed position. After around 230 time steps, there was
an attack by its predator, i.e., a human (photo (2)), leading to
high output activation of the IRR P sensor. As a consequence,
the AMOS-WD06 performed the escape behavior (photos (3)

and (4)) by increasing its walking speed up to 25.6 cm/s where
the periodic signals of the motor neurons as well as the foot
contact sensor signals oscillated at a higher frequency. Then it
returned to its normal walking speed at around 300 time steps
meaning that it was far enough from its predator (photo (5)).
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Fig. 23. (a) Raw-IRL2 signal (solid line) before preprocessing and the output signal (INP3L2 , dashed line) after preprocessing (compare Fig. 19). (b) The signals
controlling the lateral motions (cf. Section 6.2 and compare Fig. 19). (c)–(d) The motor neuron signals of the TC-joint (T L1), the CTr-joint (C L1), and the FTi-joint
(F L1) of the left front leg, respectively. The signals of other joints having similar patterns to those of the left front leg are not shown. A series of photos of the
obstacle avoidance behavior is shown below. Note that Amp. means the amplitude of neuron activation and FDiR stands for a forward diagonal walking to the right.
The video clip of this experiment can be seen at http://www.nld.ds.mpg.de/˜poramate/RAS/ObstacleAvoidance1.mpg.

From this experimental result, one can see that such an
escape behavior can be induced by the sensor-driven neural
controller (see Fig. 28) in the way that the raw-IRR P signal
is first preprocessed via the neural preprocessing unit NP2 (see
Fig. 18(b)). Then the preprocessed signal triggers the escape
behavior [29,31] by simply increasing the step frequency of
the walking machine where the step amplitude is also slightly
increased (compare Fig. 7(d)).

7.3. Obstacle avoidance behavior

Obstacle avoidance behavior is realized in most animals
because they need to do this in cluttered real environments for
example during foraging [47]. This behavior can be classified
as orientational responses [4] driving an animal away from a
stimulus (negative tropism).

Similarly, such a behavior has been implemented on the
AMOS-WD06 in order to enable it to avoid obstacles as well
as to protect it from getting stuck in corners or deadlock
situations during walking in an unknown environment. The
AMOS-WD06 will avoid obstacles as soon as one of the IR
sensors installed at its legs (IRR1,R2,L1,L2) and its front part
(IRF R,F L ) detects them. As a consequence, it will actively
perform spot turning, walking away in a diagonal direction or

even walking backward in response to the sensory inputs. Here
three different situations showing different obstacle avoidance
behaviors are illustrated in Figs. 23–25.

As shown in Fig. 23, the AMOS-WD06 walked forward at
the beginning (photo (1)). During walking forward, the CTr-
joints and the TC-joints performed periodic movements while
the FTi-joints were inhibited to stay in the flexed position.
After around 230 time steps, the obstacles were placed beside
the machine (photo (2)). Consequently, the activation of the
middle left sensor (IRL2) got high ≈1.0 causing a reduction
in the activation of the neural preprocessing output (oNP3,
cf. Section 6.2). As a result, the FTi-joints became activated
making the AMOS-WD06 perform forward diagonal walking
to the right (photos (3) and (4)). Finally, after avoiding the
obstacle it returned to normal forward walking at around 350
time steps.

Fig. 24 shows another kind of obstacle avoidance behavior
where the obstacles were placed on the left front at around
220 time steps (photo (2)). Consequently, the front left sensor
(IRL1) was active which made the TC-joints of all right legs
turn to the opposite direction leading to spot turning to the
right (photo (3)). During making a right turn, the IRL1 became
inactive for a few steps and then it was active again causing
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Fig. 24. (a) Mean sensory signal on the left side (I 1NP4, solid line) before preprocessing and output signal (o1NP4, dashed line) after preprocessing (compare
Fig. 20). (b) Raw-IRL2 signal (solid line) before preprocessing and output signal (INP3L2 , dashed line) after preprocessing (compare Fig. 19). (c) Signals controlling
the lateral motions (cf. Section 6.2 and compare Fig. 19). (d)–(f) Motor neuron signals of the TC-joint (T L1), the CTr-joint (C L1), and the FTi-joint (F L1) of the
left front leg, respectively. The signals of other joints having similar patterns to those of the left front leg are not shown. A series of photos of the obstacle avoidance
behavior is shown below. Abbreviations are: Amp. = the amplitude of neuron activation, T R = turn right, FDiR = a forward diagonal walking to the right. The
video clip of this experiment can be seen at http://www.nld.ds.mpg.de/˜poramate/RAS/ObstacleAvoidance2.mpg.

the AMOS-WD06 to walk forward for a few steps and then
to turn right again until around 310 time steps. After that it
performed a forward diagonal walking to the right (photo (4))
until around 380 time steps due to the middle left sensor (IRL2)
being high ≈1.0. Eventually, the AMOS-WD06 was able to
avoid the obstacles and continued to walk forward (photo (5)).

In a special situation shown in Fig. 25, e.g., the obstacles
were placed in front of the AMOS-WD06 (photo (2)), both front
sensors (IRF R,F L ) were almost simultaneously active. Thus
the TC-joints of all legs moved in the reverse direction which
caused the AMOS-WD06 to walk backward at around 150 time
steps. While walking backward the IRF L was still active but
the other was already inactive forcing the machine to turn to the
right until, eventually, it was able to avoid the obstacles (photos
(3)–(5)).

As demonstrated, the sensor-driven neural controller (see
Fig. 28) is suitable to successfully solve the obstacle avoidance
task. Additionally, the controller can even protect the machines
from getting stuck in corners or deadlock situations. This
is demonstrated in a video clip at http://www.nld.ds.mpg.de/
∼poramate/RAS/AllObstacleAvoidance.mpg. Thus, due to this
functionality, the walking machines can autonomously perform
exploration. We encourage readers to see more demonstration

showing all reactive behaviors at http://www.nld.ds.mpg.de/
∼poramate/RAS/AMOSWD06MedleyDemo.mpg.

8. Discussion and comparison with other walking control
techniques

Here, we briefly discuss some remaining issues concerning
the walking machines and their controller, because most of
the relevant discussion points have been treated in the above
sections. The proposed walking machines were designed with
different morphologies analogous to walking animals. They
were constructed in a straightforward way as mechatronic
systems consisting of several sensors and actuators. They
were also simulated in a physical simulation environment with
the intention to develop and test neural controllers before
implementation in the physical walking machines.

The complete sensor-driven neural controller of the walking
machines was modeled with an artificial neural network
using discrete-time dynamics. Part of it was developed by
realizing dynamical properties of recurrent neural networks.
The controller was designed as a modular structure composed
of two main modules: the neural locomotion control and the

Please cite this article in press as: P. Manoonpong, et al., Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking
machines, Robotics and Autonomous Systems (2007), doi:10.1016/j.robot.2007.07.004

http://www.nld.ds.mpg.de/~poramate/RAS/ObstacleAvoidance2.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AllObstacleAvoidance.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg
http://www.nld.ds.mpg.de/~poramate/RAS/AMOSWD06MedleyDemo.mpg


ARTICLE  IN  PRESS
20 P. Manoonpong et al. / Robotics and Autonomous Systems ( ) –

Fig. 25. (a) Mean sensory signals on the left side (I 1NP4, solid line) before preprocessing and output signal (o1NP4, dashed line) after preprocessing (compare
Fig. 20). (b) Mean sensory signals before (I 2NP4, solid line) and after (o2NP4, dashed line) preprocessing on the right side (compare Fig. 20). (c), (d) Motor neuron
signals of the TC-joints of the right (T R1) and left (T L1) front legs, respectively. Abbreviations are: Amp. = amplitude of neuron activation, T R = turn right. The
video clip of this experiment can be seen at http://www.nld.ds.mpg.de/˜poramate/RAS/ObstacleAvoidance3.mpg.

Fig. 26. The modular neural control of the six-legged walking machine AMOS-WD06. Parameters are A = 1.7246, B = −2.48285, C = −1.7246.

neural sensory preprocessing networks. The neural locomotion
control, based on a CPG, generates omnidirectional walking
and drives the reflex behavior while the neural preprocessing
networks filter sensory noise as well as manage the sensory data
for activating an appropriate reactive behavior. This kind of the
sensor-driven neural controller is different from many others
which have been developed for walking machines.

Several successful physical walking machines employ
classical control, like posture control [46,64], subsumption

architecture [18,16], and other AI control algorithms [8,9,
36]. The mammal-like machine BISAM [41] uses a method
combining aspects of classical — (joint trajectory control)
and biologically inspired reflex-based control for locomotion
behavior robust against disturbances and applicable on rough
terrain. Similarly, such reflex-based techniques have been also
applied to other robots, e.g., the TEKKEN robot [43], the
RHex robot [45], the Scorpion robot [44], and the TITAN-
VIII robot [73], in order to give the controller the flexibility
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Fig. 27. The modular neural control of the eight-legged walking machine AMOS-WD08. Parameters are A = 1.7246, B = −2.48285, C = −1.7246.

to handle also rough terrain and even a slip area [73]. In
contrast to BISAM, their basic walking patterns were generated
by a kind of central pattern-generating system in analogy to
the CPGs found in animal locomotion. One impressive work
on biologically inspired locomotion control has been recently
reported by Ijspeert et al. [40]. There, a CPG model consisting
of several nonlinear oscillators together with classical PD
control was employed to modulate three locomotion modes
(swimming, serpentine crawling, and walking) in a salamander-
like robot, Salamandra robotica. On the other hand, the Terry
I and II hexapod robots have no central oscillator controlling
their leg movement. Instead, they use a combination of
classical control and distributed artificial neural networks called
“Walknet” [21] inspired by stick insect locomotion. For the
generation of advanced locomotion control, Bongard et al. [15]
presented an active process that allows a robot to generate
successful motor patterns for locomotion, before and after
damage, through autonomous and continuous self-modeling
(internal model). This algorithm was tested on a starfish-like
walking machine where the machine was able to perform
forward motion adaptively changing its gait to compensate for
simulated injuries. In other words, if the machine has been
damaged, it could sense the problem and attempt to compensate
for this by generating a new walking behavior.

Although these described controllers are mainly designed for
locomotion control, most of them do not serve for generating
omnidirectional walking or even for producing various reactive
behaviors, e.g., escape and obstacle avoidance behaviors.
However, if omnidirectional walking behavior is taken into
account for locomotion controller design, as presented in
[20,25,44,63], then obtaining different walking patterns, such
as forward, backward and diagonal motions, is achieved by
changing the control from outside rather than autonomously
using the corresponding sensory inputs. Furthermore these
omnidirectional locomotion controllers rely on non-neural
implementations.

Compared to many of these approaches, we emphasize
here the embeddedness and generalization abilities of our
sensor-driven neural controller. That is, it can be implemented
on the mobile processor (PDA or microcontroller) of the
walking machines and it can be applied to a physical six-
as well as to an eight-legged walking machine generating
omnidirectional walking and a variety of reactive behaviors
without altering internal parameters or the structure of the
locomotion controller (compare Figs. 26 and 27). Because
the design comprises independent modules one can simply
replace the neural preprocessing modules of the UD and IR
signals with other types of signal processing units to acquire
different reactive behaviors, e.g., auditory signal processing for
generating sound tropism [49]. Such a sensor-driven neural
controller can even be modified for manual operation, e.g., by
receiving input signals from a joystick. In addition, the speed
control mechanism for escape behavior is also comparable with
those found for walking animals where the step amplitude is
slightly increased and the step frequency is varied [30,57,65].
However, there is one restriction of using this controller which
is that only one gait can be generated where the diagonal legs
are paired and move together.

9. Conclusions

Two different types of physical walking machines were
presented together with their physical simulations. The design
of their morphologies was based on biological principles. Such
robot systems can serve as hardware platforms for studying
the coordination of many degrees of freedom, for performing
experiments with neural controllers, and for the development
for artificial perception–action systems.

In this study, (omnidirectional) locomotion of the walking
machines is generated by modular neural controllers consisting
of three different functional modules: the neural oscillator
network, the velocity regulating network, and the phase
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Fig. 28. The sensor-driven neural control of the six-legged walking machine AMOS-WD06. Parameters are A = 1.7246, B = −2.48285, C = −1.7246.

switching network. The neural oscillator network acts as a CPG
for basic rhythmic leg movements and is able to change also
the walking speed. The generation of different walking patterns
is done by the velocity regulating and the phase switching
networks. As a result, this modular neural control can produce
at least 11 different walking patterns and a self-protective reflex
by using five input neurons. The proposed modular neural
control can easily be adapted to control other kinds of walking
machines without changing the internal network structure and
its parameters. We want to emphasize that the controller not
only works for the six- and eight-legged walking machines
presented here but it can be applied equally efficient to other
even-legged robots.

Furthermore, integrating the neural preprocessing of sen-
sor signals provides an effective sensor-driven behavior control
based completely on neural network techniques. The prepro-
cessing obtained by a small recurrent neural network, which
is robust against sensory noise by utilizing hysteresis phenom-
ena. In addition, the sensor-driven neural controller has been
implemented on the embedded system (mobile processor) of
the six-legged walking machine. Thus, the machine can au-
tonomously perform the desired behaviors, reflex, escape and
obstacle avoidance, with respect to corresponding sensory in-
puts. More demanding tasks will be related to the use of addi-
tional sensors, like photoresistor sensors, to enable the machine

to perform also other kinds of positive or negative (photo-)
tropisms. We also aim to implement a reflexive neural mecha-
nism [48] to obtain more robust locomotion which enables also
walking on rough terrain.
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Appendix. The modular neural network of the six- and
eight-legged walking machines

The modular neural network has been described in the
sections above. Here we present the complete network structure
together with its parameters. The network shown in Fig. 26
is used to control omnidirectional locomotion and the reflex
behavior of the six-legged walking machine AMOS-WD06
while the one shown in Fig. 27 is constructed for the
eight-legged walking machine AMOS-WD08. In addition, the
complete structure of the sensor-driven neural control of the
AMOS-WD06 is exemplified in Fig. 28.
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