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Abstract— In this paper, we explore the dynamic walking
capability of the planar biped robot RunBot with a now added
active upper-body component. Originally, the robot was designed
and built to perform fast walking especially on a flat floor. Its
locomotion is driven by so-called neural reflexive control. This
controller does not employ any kind of position or trajectory-
tracking control algorithm. Instead, it enables RunBot to exploit
its own natural dynamics during critical stages of its gait
cycles. The actual gait pattern is determined by the set of
neural control parameters, like gain and activation thresholds.
Thus, different gait patterns can be induced by changing these
parameters. These walking patterns, cooperating with an added
active-upper body component, allow RunBot to walk on different
terrains, e.g. flat floor, up and down slopes between 0 and 7.5
degrees. The transition phase of each gait was experimentally
tuned. As a result, RunBot can continuously walk on the three
different terrains. During walking experiments, gait switching
was manually triggered while the active body was controlled to
lean either forward or backward according to the slope.

Index Terms— Biped robot, Reflexive neural control, Dynamic
walking, Active body component

I. INTRODUCTION

Research in the domain of dynamic walking of biped robots
has been ongoing for over 10 years [1], [2], [3] because, by
this, one hopes to reach human-like performance and energy
efficiency while walking. Additionally, such robotic systems
can serve as platforms for study human locomotion [4], [5].
However, the difficult problem faced by these systems is not
only their design but also how to control them, especially when
wanting a dynamic change of the walking pattern allowing the
robot to continuously walk on different terrains [6], [7], [8].
Thus, the rational behind this paper is to explore the dynamic
walking capability of the planar biped robot RunBot [9] with
a now added active upper-body component (see Fig. 1).

The following section describes the technical specifications
of RunBot with its active-upper body component. Section
3 explains the neural model of the reflexive network for
locomotion control as well as the neural model for active body
control. The experiments and results are discussed in section

4. Conclusions and an outlook on future research are given in
the last section.

II. THE BIPED ROBOT RUNBOT

RunBot is a planar biped robot [9] which is 23 cm tall, foot
to hip joint axis (see Fig. 1). Each leg consists of two degrees
of freedom: hip and knee joints. Each hip joint is driven by a
modified RC servo motor producing a torque up to 5.5 kg.cm
while the motor of each knee joint produces a smaller torque
(3 kg.cm) but has fast rotating speed with 21 rad/s. The built-
in servo control circuits of the motors are disconnected while
the built-in potentiometer is used to measure the joint angles.
A mechanical stopper is implemented on each knee joint to
prevent it from going into hyperextension similar to human
kneecaps. RunBot has no actuated ankle joints resulting in
very light feet and being efficient for fast walking. Its feet
were designed having a circular form 4.5 cm long [9] similar
to passive biped robots [1], [3]. Each foot is equipped with a
switch sensor to detect ground contact. This mechanical design
of RunBot has some special features, e.g. small curved feet
and a properly positioned center of mass that allow the robot to
perform natural dynamic walking during some stage of its gait
cycles [9]. Hip and knee joints are driven by output signals of
the reflexive neural controller through a DA/AD (USB-DUX1)
board. Sensory signals are also digitized using this board for
the purpose of feeding them into the controller.

To extend its walking capabilities for walking up and down
slopes one servo motor with a fixed mass, called the active
upper body component, is implemented on the top of its hip
joints for balance. The active body has the total weight of
50 g. It will be controlled to lean forward (see Fig. 1, right)
during walking up to a slope of 7.5 degrees while it will be
controlled to lean backward (see Fig. 1, left) during walking
on a flat floor and down a shallow slope of 3.5 degrees. The
active component is manually controlled by a switch sensor via
a servo controller board2. In addition, keyboard signals are also

1http://www.linux-usb-daq.co.uk/.
2http://www.ais.fraunhofer.de/BE/volksbot/mboard-content.html.
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Fig. 1. The planar robot RunBot with its active-upper body component.
Left: The three orthogonal axes of the boom indicated by curved arrows rotate
freely. Right: The active upper-body component.

used to switch between different walking patterns according
to the terrain conditions. However, these signals are going to
be replaced by sensor signals, e.g. accelerometer signals in the
future. RunBot is constrained sagitally by a boom of one meter
length. It is attached to the boom via a freely-rotating joint in
the x axis while the boom is attached to the central column
with freely-rotating joints in the y and z axes (compare Fig. 1,
left). Thus, the motions of RunBot are only constrained on a
circular path. This set-up has no influence on dynamics of
RunBot in the sagittal plane.

III. REFLEXIVE NEURAL CONTROLLER

The reflexive neural controller [10] of RunBot for gener-
ating locomotion follows a hierarchical structure. It consists
of two levels: top and bottom. The bottom level (see Fig. 2,
dashed frames) is the reflex neural circuit local to the joints,
including motor neurons and angle sensor neurons involved
in joint reflexes. The top level (see Fig. 2, dashed frames) is
a distributed neural network consisting of hip stretch recep-
tors, ground contact sensor neurons and inter-neurons which
command the motor neurons.

In addition, two extra motor neurons together with angle
sensor neurons are added to control movements of the active
body which will improve the walking capability, e.g. walking
up and down slopes. Their activations are controlled by switch
sensor neurons (see Fig. 2, solid frame). In case of walking up
the slope, the active body will be controlled to lean forward
(extensor movement) while in a normal walking condition (on
a flat floor) and walking down the slope it will be controlled
to lean backward (flexor movement) (compare Fig. 3).

All neurons are modelled as non-spiking neurons simu-
lated on a Linux PC, and communicated to the robot via
the USB-DUX board at the update frequency of 250 Hz,
except the neurons involved in active body control which
are independently simulated on the servo controller board.
The directions of the extensor (flexor) movements and the
thresholds of the sensor neurons are illustrated in Fig. 3. At
the bottom level, the functions of the thresholds of the sensor-
neurons (ΘES,h, ΘFS,h, ΘES,k, ΘFS,k see Figs. 2 and 3)

Fig. 2. The reflexive neural controller for generating locomotion of RunBot.
AL (AR) refers to stretch receptor for anterior extreme angle of left (right) hip.
GL (GR) refers to ground contact sensor neuron of left (right) foot. EI (FI)
refers to extensor (flexor) reflex inter-neuron. EM (FM) refers to extensor
(flexor) motor neuron and ES (FS) is extensor (flexor) sensor neuron. In
addition, switch sensor neurons (SB and SF) are used to control the movement
of the active body for leaning forward or backward.

in each neuron module roughly limit the extensor and flexor
movement of the joint. Likewise, the thresholds of the sensor-
neurons of the body control ΘES,b, ΘFS,b are presented in
Figs. 2 and 3, while, at the top level, the functions of the
stretch receptor (Anterior Extreme Angle (AEA) signal) and
the ground contact signal are different (see Fig. 4).

A. Model neuron circuit of the top level

The joint coordination mechanism in the top level is imple-
mented with the neuron circuit illustrated in Fig. 2. Each of
the ground contact sensor neurons has excitatory connections
to the inter-neurons of the ipsi-lateral hip flexor and knee
extensor as well as to the contra-lateral hip extensor and
knee flexor. The stretch receptor of each hip has excitatory
connections to its ipsi-lateral inter-neuron of the knee extensor,
and inhibitory connection to its ipsi-lateral inter-neuron of
the knee flexor. Detailed models of the interneuron, stretch
receptor, and ground contact sensor neuron are described in
the following subsections.

1) Inter-neuron model: The inter-neuron model is adapted
from one used in the neural controller of a hexapod simulating
insect locomotion [11]. The state of each model neuron [12]
is described as:

τi
dyi

dt
= −yi +

∑
wi,juj (1)

uj =
1

1 + eΘj−yj
(2)



Fig. 3. Control parameters for the joint angles. ΘES (ΘFS ) indicates to
the threshold of the sensor neuron for extensor (flexor) where the subscripts
(b, h and k) are for body, hip and knee, respectively.

Fig. 4. Series of frames of one walking step. At the time of frame (3), The
stretch receptor (AEA signal) of the swing leg is activated, which triggers the
extensor of the knee joint in this leg. At the time of frame (6), the swing
leg begins to touch the ground. This ground contact signal triggers the hip
extensor and knee flexor of the stance leg, as well as the the hip flexor and
knee extensor of the swing leg. Thus the swing leg and the stance leg swap
their roles thereafter.

where yi represents the mean membrane potential of the
neuron. Equation 2 is a sigmoidal function that can be in-
terpreted as the neuron’s short term average firing frequency,
Θj is a bias constant that controls the firing threshold. τi is a
time constant associated with the passive properties of the cell
membrane [12], wi,j represents the connection strength from
the j th neuron to the i th neuron.

2) Stretch receptors: Stretch receptors play a crucial role
in animal locomotion control. When the limb of an animal
reaches an extreme position, its stretch receptor sends a signal
to the controller, resetting the phase of the limbs. There is
also evidence that phasic feedback from stretch receptors is
essential for maintaining the frequency and duration of normal
locomotive movements in some insects [13]. While other
biologically inspired locomotive models and robots use two
stretch receptors on each leg to signal the attaining of the leg’s
AEP (Anterior Extreme Position) and PEP (Posterior Extreme
Position) respectively, RunBot has only one stretch receptor
on each leg to signal the AEA (Anterior Extreme Angle) of
its hip joint. Furthermore, the function of the stretch receptor

on RunBot is only to trigger the extensor reflex on the knee
joint of the same leg, rather than to implicitly reset the phase
relations between different legs.

As a hip joint approaches the AEA, the output of the stretch
receptors for the left (AL) and the right hip (AR) are increased
as:

ρAL =
1

1 + eαAL(ΘAL−φ)
(3)

ρAR =
1

1 + eαAR(ΘAR−φ)
(4)

where φ is the actual angular position of the hip joint, ΘAL

and ΘAR are the hip anterior extreme angles whose value are
manually tuned in an experiment, αAL and αAR are positive
constants. This model is inspired by a sensor neuron model
presented in [14] that is thought capable of emulating the
response characteristics of populations of sensor neurons in
animals.

3) Ground contact sensor neurons: Another kind of sensor
neuron incorporated in the top level is the ground contact
sensor neuron, which is active when the foot is in contact with
the ground. Its output, similar to that of the stretch receptors,
changes according to:

ρGL =
1

1 + eαGL(ΘGL−VL+VR)
(5)

ρGR =
1

1 + eαGR(ΘGR−VR+VL)
(6)

where VL and VR are the output voltage signals from switch
sensors of the left foot and right foot respectively, ΘGL and
ΘGR work as thresholds, αGL and αGL are positive constants.

While AEP and PEP signals account for switching between
stance phase and swing phase in other walking control struc-
tures, ground contact signals play a crucial role in phase
transition control of this reflexive controller. In PEP/AEP-
models, the movement pattern of a leg will break down
as soon as the AEP or PEP can not be reached, which
may happen as a consequence of an unexpected disturbance
from the environment or due to intrinsic failure. This can be
catastrophic for a biped robot, though tolerable for a hexapod
due to its high degree of redundancy.

B. Model neuron circuit of the bottom level

In animals, a reflex is a local motor response to a local sen-
sation. It is triggered in response to a suprathreshold stimulus.
The quickest reflex in animals is the monosynaptic reflex,
in which the sensor neuron directly contacts the motor-neuron.
Similarly, the bottom-level reflex system of RunBot consists
of reflexes local to each joint (see Fig. 2). The neuron module
for one reflex is composed of one angle sensor neuron and the
motor-neuron it contacts (see Fig. 2). Each joint is equipped
with two reflexes, extensor reflex and flexor reflex, both are
modelled as a monosynaptic reflex, i.e. whenever its threshold
is exceeded, the angle sensor neuron directly excites the
corresponding motor-neuron. In addition, the motor-neurons



of the local reflexes also receive an excitatory synapse and an
inhibitory synapse from the inter-neurons of the top level, by
which the top level can modulate the bottom level reflexes.

1) Angle sensor neurons: Each joint has two angle sensor
neurons, one for the extensor reflex, and the other for the flexor
reflex (see Fig. 2). Their models are similar to that of the
stretch receptors described above. The extensor angle sensor
neuron changes its output according to:

ρES =
1

1 + eαES(φ−ΘES)
(7)

where φ is the actual angular position obtained from the
potentiometer of the joint (see Fig. 3). ΘES is the threshold
of the extensor reflex (see Fig. 3) and αES a positive constant.

Likewise, the output of the flexor sensor neuron is modelled
as:

ρFS =
1

1 + eαF S(ΘF S−φ)
(8)

where ΘFS and αFS are similar to above. It should be
particularly noted that the thresholds of the sensor neurons
in the reflex modules do not work as desired positions for
joint control, because the reflexive controller does not involve
any exact position control algorithms that would ensure that
the joint positions converge to a desired value. In fact, as
will be presented in walking experiments, the hip joints often
pass these thresholds in swing- and stance phase, and move
continuously until the friction of the joint gears stop it.

2) Motor neurons: The model of the motor-neuron is the
same as that of the inter-neurons described above. Note that,
in RunBot, the final output value of the motor neurons,
after multiplication by a gain coefficient, is sent to the servo
amplifier circuit to directly drive the joint motors. The voltage
of the motor at each joint is described as:

MotorV oltage = MAMP GM (sEMuEM + sFMuFM ), (9)

where MAMP represents the magnitude of the servo am-
plifier, e.g. 3 on RunBot, GM stands for output gain of the
motor-neurons in the joint. sEM and sFM are signs for the
motor voltage of flexor and extensor in the joint, being +1 or
-1, depending on the polarity of the motors. uEM and uFM

are the outputs of the motor-neurons (see Fig 2).

C. Model neuron circuit of the active body control

This neural circuit (see Fig. 2, solid frame) consists of two
switch sensor neurons and two neuron modules for activating
body movement: one module is for extensor motion (EM,
leaning forward) and the other for flexor motion (FM, leaning
backward). Each module is composed of one angle sensor
neuron and one motor-neuron similar to the reflex neuron
module.

The switch sensor neurons are used to control the motions
of the active body according to the terrain conditions and they
are manually activated. Their outputs, similar to that of the
angle sensor neurons, change according to:

ρSF =
1

1 + eαSF (Vs−ΘSF )
(10)

ρSB =
1

1 + eαSB(ΘSB−Vs)
(11)

where Vs is the output voltage signal from a switch sensor,
ΘSF and ΘSB work as thresholds, αSF and αSB are positive
constants.

In the neuron modules, the angle sensor neurons are mod-
elled in the similar way to the one in the bottom level except
for the threshold values of the flexor ΘFS,b and extensor
ΘES,b which are different. Once the threshold value is reached,
the activation of the motor-neuron of the corresponding side
will be held until the signal of the activated switch sensor
neuron becomes deactivated. The motor-neuron, which directly
modulates the motions of the active body, has the same
characteristics as the motor-neuron of the bottom level except
MAMP and GM which are here set to 1.

Most of the values for the neural parameters chosen by
trial and error method are listed in Table I, II and III while
activation thresholds of the sensor neurons and the output gain
of the leg motor-neurons, being a part of neural modules at the
bottom level (compare Fig. 2, light gray neurons), are changed
according to three different walking patterns described in the
next section. The time constant τi of all neurons takes the
same value of 5 ms. The weights of all inhibitory connections
are set to -10. The weight of all excitatory connections are 10,
expect those between inter-neurons and motor-neurons, which
are 0.1.

TABLE I
PARAMETERS OF NEURONS FOR HIP AND KNEE JOINTS.FOR MEANING OF

THE SUBSCRIPT, SEE FIG. 2

Joints ΘEI ΘFI ΘEM ΘFM αES αFS

Hip 5 5 5 5 4 4
Knee 5 5 5 5 2 2

TABLE II
PARAMETERS OF STRETCH RECEPTORS AND GROUND CONTACT

SENSOR NEURONS.

ΘGL ΘGR ΘAL ΘAR αGL αGR αAL αAR

2 2 = ΘES = ΘES 4 4 4 4

TABLE III
PARAMETERS OF SWITCH SENSOR NEURONS AND ANGLE

SENSORS OF THE ACTIVE BODY.

ΘSF ΘSB ΘES,b ΘFS,b αSF αSB

2 2 115 5 4 4



D. Neural parameters for generating different walking pat-
terns

Three different walking patterns for walking on a flat floor
(FlatF loor), up a slope of 7.5 degrees (SlopeUp) and down
a slope of 3.5 degrees (SlopeDown) were determined and
the active body has to be also controlled to guarantee stable
walking. In normal walking condition, a neural parameter
set was determined from Fig. 5 of [9] presented in our
previous study where the stable gaits appear in addition the
upper-body is controlled to lean backward (see Fig. 3). In
special situations, e.g. walking up and down the slopes, the
parameter sets were experimentally adjusted with respect to
the characteristics of human walking [15], [16], i.e. humans
usually attempt to keep the center of mass more to the front by
leaning forward together with changing gait during walking
up a slope and vice versa for walking down. Similarly, the
parameter set of RunBot for walking up was adjusted to allow
RunBot keeping its center of mass more to the front, and
in this situation the upper-body component is activated to
lean forward (compare Fig. 3) and vice versa for walking
down. Appropriate parameter sets for the different gaits are
presented in Table IV where the first column describes the
terrain conditions and other columns show the parameters with
respect to the given terrains.

TABLE IV
THE PARAMETER SETS OF DIFFERENT WALKING PATTERNS FOR

THE SPECIFIC TERRAIN CONDITIONS.

Terrain ΘES,h ΘFS,h ΘES,k ΘFS,k GM,h GM,k

FlatFloor 105 78 175 115 2.2 1.8
SlopeUp 125 106 171 111 1.8 1.8

SlopeDown 85 53 170 100 2.0 2.2

Once the parameter sets of the different walking patterns
were found, the next step was to find smooth transition
phases between the patterns. Choosing unappropriate transition
phases, e.g. changing too fast or too slow from one gait to
another gait, will cause RunBot to easily fall down. Thus,
on the circular walking path of RunBot, the timing of four
transition phases were experimentally explored, where: the
first phase is the transition from walking on a flat floor to
walking up the slope, the second phase is the transition from
walking up to again walking on a flat floor, the third phase is
the transition from walking on a flat floor to walking down the
slope and the last phase is the transition from walking down
the slope to again walking on a flat floor. All transition phases
from one gait to another gait are divided into 5 time steps and
the transition time of each change is identical to 0.2 s except
the transition from walking on a flat floor to walking up a
slope, which is set to 0.6 s.

The final stage is to trigger the walking pattern according
to the terrain condition. Gait switching is currently still done
by a human operator; i.e. during experiments the operator
switches the walking pattern and controls the active body via a

keyboard, when RunBot starts to approach or leave the slope.

IV. EXPERIMENTS AND RESULTS

In this section, several experiments have been carried out to
assess the walking capability of RunBot. The three different
terrain conditions were set-up and RunBot was manually
controlled to switch its walking pattern. First, we show the
walking performance of RunBot. To do so, the three walking
patterns together with the position of the active body were
tested with the three terrain conditions: flat floor (FlatFloor),
a slope up of 7.5 degrees (SlopeUp) and a slope down
of 3.5 degrees (SlopeDown). Here, walking performance is
measured by the number of walking steps successfully made
before falling. Note that, one step is counted by two different
phases: swing and stance phases. Each walking experiment
was run for 5 times. The results are shown in Table V where
NormalGait, UpSlopeGait and DownSlopeGait are the
patterns of walking on a flat floor, up the slope and down
the slope, respectively. LF (LB) is the forward (backward)
leaning position of the active body.

TABLE V
COMPARISON OF DIFFERENT WALKING CONDITIONS ON THREE

DIFFERENT TERRAINS

Walking conditions FlatFloor SlopeUp SlopeDown
NormalGait and LF 3 3 2
NormalGait and LB ∞∗ 1 2
UpSlopeGait and LF 1 ∞∗ 0
UpSlopeGait and LB 1 ∞ 0

DownSlopeGait and LF ∞ 1 2
DownSlopeGait and LB ∞ 0 ∞∗

As shown in Table V, RunBot can walk stably on a flat floor
(∞, ∞∗) when the corresponding mode (NormalGait) with
leaning the body backward is used while it can walk maximum
3 steps and then falls down when the body leans forward.
Surprisingly, RunBot has also a good walking performance
when the mode for walking down the slope (DownSlopeGait)
with leaning the body either forward or backward is applied.
On the other hand, RunBot can walk only one step when the
mode for walking up the slope (UpSlopeGait) with leaning the
body either forward or backward is used.

For walking up the slope, the two walking conditions, where
RunBot can walk stably, are UpSlopeGait with leaning body
either forward or backward. Generally, leaning the body for-
ward is important for keeping the balance during a transition
phase from walking on a flat floor to up the slope. It can walk
maximum 3 steps, when NormalGait with leaning the body
forward is used, while only one step when the body leans
backward. However, RunBot cannot walk up the slope (0 step)
when DownSlopGait with leaning the body backward is used,
i.e. it immediately falls down during the swing phase, but it
is still able to walk one step when the body leans forward.

In walking down the slope, there is only one walking con-
dition, being DownSlopeGait with leaning the body backward
with which RunBot is able to successfully perform the task.



On the other hand, no stability exists when UpSlopeGait with
leaning the body either forward or backward is used, while it
can walk up to 2 steps for the remaining walking conditions.

From the experiments described above, there are only three
specific walking patterns which are suitable for the given
terrain conditions (see pairs between the walking condition
and the terrain condition from ∞∗ in Table V) and which
still enable RunBot to walk stably when the transition phase
between walking patterns is applied. The appropriate gait of
RunBot during walking on the different terrains, a flat floor, the
slope up and the slope down, are shown as the stick diagrams
in Fig. 5 where black (gray) shows a right (left) leg.

Fig. 5. Stick diagrams of RunBot walking on different terrains. (A) Walking
on a flat floor by using NormalGait with leaning the body backward. (B)
Walking up the slope of 7.5 degrees where the total length of the slope is 70
cm. UpSlopeGait with leaning the body forward was applied. (C) Walking
down the slope of 3.5 degrees where the total length of the slope is 130 cm.
DownSlopeGait with leaning the body backward was applied. The interval
between any two consecutive snapshots of all diagrams is 33 ms.

It can be seen that RunBot obviously performs on an asym-
metric gait, i.e. the step lengths between left and right legs are
not equal, when it walks up the slope. While walking on a flat
floor and walking down a shallow slope, its gaits are almost
symmetried. Note that, the parameter sets of left and right legs
are the same in all cases. This surprising phenomenon occurs
because of the circular walking path of RunBot which causes
the left and right legs of RunBot to traverse on different radii
of the curvature where the left leg has smaller radius than
the right one. Furthermore, gravitational effect, which resists
forward motion, increasingly occurs during walking up the
slope. As a result, RunBot can adapt its step length compatible
to walk forwards on a curved trajectory.

Fig. 6A presents series of frames of RunBot during contin-
uously walking on the different slopes. At the beginning, it

Fig. 6. (A) RunBot is walking on different terrains with the different walking
patterns and it is also leaning the body according to the walking pattern and the
terrain. Average walking speed was about 50 cm/s while maximum walking
speed was about 55 cm/s during walking down a slope. (B) Real-time data
of the angular sensor of the hip and knee joints while RunBot is walking
on the different terrains: flat floor (white area), upslope (dark gray area) and
downslope (light gray area).

walked on a flat terrain (from 2.77 s to 3.44 s) and then it ap-
proached to upslope at around 3.57 s. In this situation, its gait
started to gradually change from NormalGait to UpSlopeGait
as well as its body was activated to lean forward. It walked
up the slope of 7.5 degrees until around 5.87 s. After that, it
started to walk on flat terrain again where the gait was also
changed and its body was activated to lean backward. Then,



at around 9.24 s, it approached the downslope and its gait
was changed from NormalGait to DownSlopeGait while the
body was still leaning backward. Again, it returned to walk
on flat terrain at around 12.5 s. One can also compare this
frames series with real-time data of the angular position of
a hip joint and a knee joint during walking in all states in
Fig. 6B. The video clips of the experiments can be seen at
http://www.chaos.gwdg.de/∼poramate/Runbot.html.

V. CONCLUSION

RunBot with an added active upper-body component and
its neural reflexive controller has been presented. It is used
as the experimental platform to study dynamic walking and
especially the problem of a dynamic change of the gait. Using
real-time experiments, this study has shown that the different
dynamic walking patterns and the transition phase between
them, required to walk on different terrains, can be achieved
in such simple dynamically stable bipeds, like RunBot. For
future research in the following 6 months, more demanding
tasks will be related to the use of additional sensors, e.g.
accelerometer sensors or vision sensors, which enable RunBot
to autonomously adapt its gait together with balancing itself by
the use of the active body. Also, a learning technique will be
applied to optimize the transition phase between the terrains.
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