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Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with
its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it
involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely
autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an
architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the
walker’s sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal
walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is
rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine
the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show
how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can
walk with a high speed (.3.0 leg length), self-adapting to minor disturbances, and reacting in a robust way to abruptly
induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning
experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback
from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve
coordination problems in other complex motor tasks.
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Introduction

When walking, humans can adapt quickly to terrain
changes, and they can also learn to walk differently on
different surfaces. This ability is known to us all when we
quickly adapt our gait after having stumbled or more slowly
devise different strategies for walking uphill, downhill, or on
sand as compared with ice. Neurophysiological studies have
revealed that these properties arise from a combination of
biomechanics and neuronal control. For example, some
walking animals (e.g., bears, dogs) may be able to stand up
and walk a few steps, but will not be able to develop a stable
gait because their biomechanical design (called here the
biomechanical level) is inappropriate for this. Neuronal
control, on the other hand, assures that different gaits can
first be learned and then be quickly applied, for instance to
adapt to the terrain.

In the 1930s the Russian physiologist Bernstein [1–3]
pointed out that the coordination of the cooperation within
and between the different functional levels of the motor
system, including controlled forms of motor learning, is a
very difficult problem, e.g., due to the redundancy of effective
movements (‘‘The Bernstein Problem,’’ also discussed in [4]).
Along this paradigm, Sporns and Edelman [5] proposed that a
successful developmentally guided coordination between
neuronal activity and the biomechanics of the musculoskele-
tal system can be achieved without determining a desired
trajectory. Instead, it is based on variations of neuronal and
biomechanical structures and is the result of somatic
selection processes within brain circuits. The concept was
applied to solve the arm-reaching problem, which was
demonstrated with an artificial sensorimotor system. Mussa-

Ivaldi and Bizzi [6] suggested a theoretical framework that
combines some features of inverse dynamic computations
with the equilibrium-point hypothesis for controlling a wide
repertoire of motor behaviors also involving motor learning.
They applied this to control the movement of a two-jointed
robot arm with force fields as motor-primitives [6,7]. In the
domain of dynamic legged locomotion control, Raibert [8]
presented a series of successful hopping robots executing
extremely dexterous and dynamic movements. The first of
these robots is a single-legged running machine that works in
two dimensions. It captures the feature of dynamic stability
due to the carefully designed dynamics of the robot together
with the use of simple feedback control. On the basis of these
principles, Raibert and his collaborators extended their
approach to a variety of machines using one, two, or four,
legs, in two or three dimensions. Nakanishi et al. [9] reported
one excellent example of biped locomotion control with
motor learning. There, a central pattern generator (CPG) was
employed to generate dynamical movement-primitives while
the desired trajectories for walking behavior were learned by
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imitating demonstrated movement of humans. Nonetheless,
some outstanding problems remain unsolved, in particular
the problem of fast and adaptive biped walking based on self-
stabilizing dynamic processes. Given that a biped has only one
foot touching the ground during most of the time of a gait
cycle, this poses huge difficulties for dynamic control, as the
biped always tends to trip or fall. Thus, one particular
objective of this article is to show that minimal adaptive
neuronal control based on the reflexive mechanism [10]
coupled with appropriate biomechanics can generate fast and
adaptive biped walking gaits by a self-stabilizing process. As a
result, our biped system can perform like a natural human
walking (as shown by similar Froude numbers, see Figure 1)

where the maximum walking speed is comparable to that of
humans.
Neuronal walking control in general follows a hierarchical

structure [11]. At the bottom level there are direct motor
responses, often in form of a local, sometimes monosynaptic,
reflex driven by afferent signals, which are elicited by sensors
in the skin, tendons, and muscles—such as the knee tendon
reflex. These sensor-driven circuits; which, following text-
book conventions, we will call the spinal (reflex) level; can
produce reproducible, albeit unstable gaits [12,13] and seem
to play a more dominant role in nonprimate vertebrates [14]
and especially in insects [15]. This level is often also
augmented by CPGs in the spinal cord [14,16,17]. For
example, Grillner [18,19] and others [20,21] have shown that
generation of motor patterns as well as coordination of
motor behavior in both vertebrates and invertebrates is
basically achieved by CPGs which are in the central nervous
system. Although CPGs provide the basis for generation of
motor patterns, this does not mean that sensory inputs are
unimportant in the patterning of locomotion. In fact, the
sensory input is crucial for the refinement of CPG activity in
response to external events.
Especially in humans, CPG functions seem to be less

important for walking, and they had been hard to unequiv-
ocally verify [22] because they can strongly be influenced and,
thus, superseded by sensory influences and by the activity of
higher motor centers [14,23,24]. In general, higher motor
centers modulate the activity of the spinal level, and their
influence leads to our flexibility and adaptivity when
executing gaits under different conditions. For example,
inputs from peripheral sensors (e.g., eye, vestibular organ)
can be used to adapt a gait to different terrains and also to
change the posture of the walker, moving its body, to
compensate for a disturbance. Reflexes also play a role at
this level, called here the postural (reflex) level, but these long-

Figure 1. Relative Leg-Length and Maximum Relative Speed of Various Planar Biped Robots

(A) A copy of McGeer’s planar passive biped robot walking down a slope [77].
(B) ‘‘Mike,’’ similar to McGeer’s robot, but equipped with pneumatic actuators at its hip joints. Thus it can walk half passively on level ground [77].
(C) ‘‘Spring Flamingo,’’ a powered planar biped robot with actuated ankle joints [78].
(D) Rabbit, a powered biped with four degrees of freedom and pointed feet [79].
(E) RunBot.
(F) The world record for the fastest human’s walking speed [80,81].
doi:10.1371/journal.pcbi.0030134.g001
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Author Summary

The problem of motor coordination of complex multi-joint move-
ments has been recognized as very difficult in biological as well as in
technical systems. The high degree of redundancy of such move-
ments and the complexity of their dynamics make it hard to arrive at
robust solutions. Biological systems, however, are able to move with
elegance and efficiency, and they have solved this problem by a
combination of appropriate biomechanics, neuronal control, and
adaptivity. Human walking is a prominent example of this,
combining dynamic control with the physics of the body and
letting it interact with the terrain in a highly energy-efficient way
during walking or running. The current study is the first to use a
similar hybrid and adaptive, mechano–neuronal design strategy to
build and control a small, fast biped walking robot and to make it
learn to adapt to changes in the terrain to a certain degree. This
study thus presents a proof of concept for a design principle
suggested by physiological findings and may help us to better
understand the interplay of these different components in human
walking as well as in other complex movement patterns.

Adaptive, Fast Walking in a Biped Robot



loop reflexes [25,26] are always polysynaptic and can be much
influenced by plasticity. Infants also use such peripheral
sensor signals to learn the difficult task of adjusting and
stabilizing their gaits [27,28], which many times amounts to
learning how to avoid reflexes from earlier compensatory
motor actions. The cerebellum seems to play a fundamental
role in this type of motor learning for reflex-avoidance or
reflex-augmentation [29]. A more specific discussion of this is
presented in Materials and Methods. Beyond postural
reflexes, we find ourselves at the level of motor-planning,
which involves basal ganglia, motor cortex, and thalamus,
with which this study is not concerned.

A suggested solution to the coordination problem (Bern-
stein Problem) invokes delegating control from higher to
lower centers [4]. Central to this idea is the fact that the
walking process itself leads to repetitive stimulation of the
sensory inputs of the walker. As a consequence, at every step
all neuro–mechanical components and their CPGs are
retriggered [23], which could be used to control coordination.
While an appealing idea, whose importance has been
discussed recently by Yang and Gorassini [30], its applicability
has so far not been demonstrated. In this study, we will try to
show that sensor-driven control can be a powerful method to
guide coordination of different levels in an artificial dynamic
walker, and that this can also be combined with (neuronal)
adaptivity mechanisms in a stable way.

To this end and following from the introduction, we
assume that there are three important requirements for basic
walking control: 1) biomechanical level—the walker requires
an appropriate biomechanical design, which may use some
principles of passive walkers to assure stability [31]. 2) spinal
reflex level—it needs a low-level neuronal structure, which
creates dynamically stable gaits with some degree of self-
stabilization to assure basic robustness. 3) postural reflex
level—finally, it requires higher levels of neuronal control,
which can learn using peripheral sensing to assure flexibility
of the walker in different terrains.

Fundamentally, these levels are coupled by feedback from
the walking process itself, conveying its momentary status to
different sensor organs locally in muscles and tendons and
peripherally to the vestibular organ and the visual system as
well as others as arising. At high walking speeds, cooperation
of these three levels needs to take place very quickly and any
learning also must happen fast. These demands for dynamic
walking are currently impossible to fulfill with artificial
(robot) walking systems, and the required tight interaction
between levels embedded in a nested closed-loop architecture
has not yet been achieved [31,32].

Results/Discussion

In the following description, results are often being
described alongside the structural elements from which they
mainly derive, because this better reflects the tight intertwin-
ing of structure and function in this approach. Details on
RunBot’s structural elements are found in Materials and
Methods.

The robot system ‘‘RunBot’’ (Figure 2) presented in this
study has been developed during the last four years [33,34]
and now covers these three levels of control (Figure 3), using
few components and reaching a speed of up to 3.5 leg-length/s
(see Video S1), which has so far not been achieved with other

dynamic walkers. While still being a planar robot (supported
in the sagittal plane), it is nonetheless a dynamic walking
machine, which does not use any explicit gait calculation or
trajectory control, but instead fully relies on its two neuronal
control levels. As will be shown, at the postural reflex level the
network can learn to use mechanisms of simulated synaptic
plasticity, emulating the idea of learning to avoid a long-loop
body-reflex.

Biomechanical Level
RunBot has four active joints (left and right hips and

knees), each of which is driven by a modified RC servo motor.
It has curved feet allowing for rolling action and a lightweight
structure with proper distribution of mass at the limbs
(Figure 2D). The proper distribution of mass is calculated in
the way that approximately 70% of the robot’s weight is
concentrated on its trunk where the parts of the trunk are
assembled such that its center of mass is located forward of
the hip axis. Furthermore, it has an upper body component
(UBC), which can be actively moved to shift the center of mass
backward or forward. Central to its mechanical design is the
proper positioning of the center of mass, the effect of which
is shown in Figures 2D and 4 during walking on flat terrain
where the UBC is kept stable in its rearward position. One
walking step consists of two stages. During the first stage
(steps (1) and (2) shown in Figure 2D, compare with steps (1)–
(3) shown in Figure 4), the robot has to use its own
momentum to rise up on the stance leg. When walking
slowly, this momentum is small and, hence, the distance the
center of mass has to cover in this stage should be as small as
possible, which can be achieved by a low and slightly forward
placed center of mass similar to humans [35]. In the second
stage (steps (2) and (3) shown in Figure 2D, compare with
steps (3)–(6) shown in Figure 4), the robot just falls forward
naturally and catches itself on the next stance leg [36]. Hence,
RunBot’s design (see Figure 2) relies quite strongly on the
concepts of self-stabilization of gaits in passive walkers [31].
This property is emulated by the lowest loop (Biomechanics
[37]) in Figure 3. RunBot’s passive properties are also
reflected by the fact that during one quarter of its step cycle
all motor voltages remain zero, as shown in Figure 5B (gray
areas). A detailed simulation analysis of the stability proper-
ties of RunBot is given in [33,34].

Spinal Reflex Level
Figure 3 represents the basic neuronal control structure of

RunBot. The right, uncolored side shows the general signal
flow from sensors via motor neurons (Mot.N.) to the motors
involving several closed loops. To reduce computational
overhead, we designed the neuronal control network (left
side) using only standard sigmoid, Hopfield-type neurons (see
Materials and Methods). The circuitry in general consists of
an agonist–antagonist control structure for hips and knees
with flexor and extensor components, a dichotomy which we
have, for clarity, omitted in Figure 3 (for details of the
agonist–antagonist connectivity, see Figure 6). Its motor
neurons N are linear and can send their signals unaltered
to the motors M.
Furthermore, there are several local sensor neurons which

by their conjoint reflex-like actions trigger the different
walking gaits. We distinguish three local loops. Joint control
arises from sensors S at each joint (compare Figure 4), which
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measure the joint angle and influence only their correspond-
ing motor neurons (Spinal1). Interjoint control is achieved
from sensors A, which measure the anterior extreme angle
(AEA, Figure 4) at the hip and trigger an extensor reflex at the
corresponding knee (Spinal2). Leg control comes from ground
contact sensors G (compare Figure 4), which influence the
motor neurons of all joints in a mutually antagonistic way
(Spinal3).

In addition, there is the control circuit for the UBC (Figure
3). This circuit represents a long-loop reflex (Postural1), and its
accelerometer sensor (AS) is also involved in controlling
plasticity within the whole network. Here we first describe its
pure reflex function prior to learning. The UBC is controlled
by its flexor and extensor motor neurons NF,NE, driven by the
activity of one AS neuron. (Indexing of variables in this
article follows this structure: body-level (UBC¼B, left-leg¼L,
right-leg¼R); leg level (hip¼H, knee¼K); joint level (flexor¼
F, extensor¼E). In general, indices are omitted below the last
relevant level, i.e., SL,H,E applies to the extensor of the hip of

the left leg, whereas SL,H would apply to flexor and extensor of
the hip of the left leg.
On flat terrain, AS is inactive and the flexor is activated to

lean the body backward while the extensor is inhibited. This
situation is reverted when a strong signal from the AS exists,
which happens only when RunBot falls backward (see
learning experiments in Figures 7 and 8). This will trigger a
leaning reflex of the UBC.
This way, different loops are implemented, all of which are

under sensory control, which assures stability of walking
within wide parameter ranges. In Figure 9A, we show the
stable domain for the two most sensitive parameters gH and
HSH;E . Within the blue area, a wide variety of different gaits
can be obtained, two of which (marked) are shown in Figure 5.
To analyze the dynamical stability of RunBot, which follows a
cyclic movement pattern, the Poincare-map method [38] is
employed, because our reflexive controller exploits natural
dynamics for the robot’s motion generation, and not
trajectory planning or tracking control. A simulation analysis

Figure 2. The Robot System

(A,B) The planar dynamic robot RunBot with its active UBC. It is constrained sagitally by a boom freely rotating in three orthogonal axes.
(C) The experimental setup of the RunBot system.
(D) Illustration of a walking step of RunBot.
doi:10.1371/journal.pcbi.0030134.g002
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of our robot system with Poincare maps has been shown in
our previous study [34]. Here we present the stability analysis
in a real walking experiment (Figure 9). In Figure 9B, we show
a perturbed walking gait where the bulk of the trajectory
represents the normal orbit of the walking gait, while the few
outlying trajectories are caused by external disturbances
induced by small obstacles such as thin books (less than 4% of
robot size) obstructing the robot path. After a disturbance,
the trajectory returns to its normal orbit soon, demonstrating
that the walking gaits are stable and to some degree robust
against external disturbances. Here, robustness is defined as
rapid convergence to a steady-state behavior despite un-
expected perturbations [39]. That is, the robot does not fall
and continues walking.

Furthermore, the intrinsic robustness of the RunBot system
makes parameter fine-tuning unnecessary, which can be
judged from Figure 5A. Here we show that it is possible to
immediately switch manually from a slower walking speed of
39 cm/s (’1.7 leg-length/s) to a faster one of 73 cm/s (’3.17
leg-length/s) (see Video S1). This result has been achieved by
abruptly and strongly changing two parameters: the threshold
of the local extensor sensor neurons of hip joints (see Figure
10, HSE ) and the gain gH of hip motor neurons. The dynamic
properties of RunBot allow doing this without tripping it, and
speed is almost doubled. Such quick and large changes in
walking speed are no problem for humans but difficult if not
impossible for existing biped robots. The self-stabilization
against such a strong change demonstrates that RunBot’s

Figure 4. Series of Frames of One Walking Step

At the time of frame (3), the stretch receptor (AEA signal) of the swing leg is activated, which triggers the extensor of the knee joint in this leg. At the
time of frame (6), the swing leg begins to touch the ground. This ground contact signal triggers the hip extensor and knee flexor of the stance leg, as
well as the hip flexor and the knee extensor of the swing leg. Thus, the swing leg and the stance leg swap their roles thereafter.
doi:10.1371/journal.pcbi.0030134.g004

Figure 3. The Neuronal Control Structure of RunBot

The different reflexive control levels of RunBot (solid lines). Also indicated is the influence of simulated plasticity (dashed lines), described in detail in
Figure 8. The black box at the bottom represents RunBot’s physical embodiment, colored boxes its neuronal control and sensor networks. Walking
control arises from the interplay of the different sensori–motor loops (spinal, postural) implemented in RunBot together with its passive dynamic
walking properties (biomechanics). G, ground contact sensor; A, stretch receptor for anterior extreme angle of the hips; S, local angle sensor neuron of
hips and knees; N, motor neuron (Mot.N.); M, motor. For details of the agonistic–antagonistic wiring, see Figure 12.
doi:10.1371/journal.pcbi.0030134.g003
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neuronal control parameters, analyzed in [33,34], are not very
sensitive and that a wide variety of stable gaits (see Figure 9A)
can be obtained by changing them. The leg motor signals
shown in Figure 5B demonstrate that during about one
quarter of RunBot’s step cycle all leg motors are inactive
(zero-voltage), making RunBot a passive walker during this
time.

To compare the walking speed of various biped robots
whose sizes are quite different from each other, we use the
relative speed, which is speed divided by the leg-length.

Maximum relative speeds of RunBot and some other typical
planar biped robots (passive or powered) are listed in Figure
1. We know of no other biped robot attaining such a fast
relative speed. Moreover, the world record for human
walking is equivalent to about 4.0–5.0 leg-length/s. So,
RunBot’s highest walking speed is comparable to that of
humans. In general, the Froude number Fr is used to describe
the dynamical similarity of legged locomotion over a wide
range of animal sizes and speeds on earth [40]. It can be
determined by Fr ¼ v2/gl where v is the walking speed, g
gravity, and l leg-length. Figure 1 also gives Fr for different
designs, where Fr of RunBot and humans are quite similar.

Postural Reflex Level
For the postural level, we have implemented a long-loop

body reflex at the UBC, triggered by a strong backward lean
as described above. This reflex can be changed by learning,
which will also influence several other network parameters to
adapt the gait. The learning goal is to finally avoid the leaning
reflex and at the same time to learn changing gait parameters
in an appropriate way to prevent RunBot from falling. This
requires an adaptive network of six more neurons (Figure 11)
which converge onto different target neurons at the spinal-
level network, effectively changing their activation parame-
ters (see Materials and Methods). RunBot’s task was to learn
walking up a ramp and then continuing on a flat surface.
Without gait and posture change, the robot can walk on
slopes of only up to 2.58 [34]. Leaning the UBC forward and
changing several gait parameters, RunBot manages about 8.08.
With a larger UBC mass, even steeper slopes (up to 13.08) can
be tackled, while walking down slopes can be also achieved in
the reverse way with an appropriate gait. This is achieved by
learning which is based on simulated plasticity.
It is known that neurons can change their synaptic strength

according to the temporal relation between their inputs and
outputs. If the presynaptic signal arrives before the post-
synaptic neuron fires, such a synapse gets strengthened, but it
will get weakened if the order is reversed. Hence, this form of
plasticity depends on the timing of correlated neuronal
signals (STDP, spike timing-dependent plasticity [41]). In
neurons with multiple inputs, such a mechanism can be used
to alter the synaptic strengths, through heterosynaptic
interactions, according to the order of the arriving inputs.
Formally, we have v ¼ Rqiui as the neurons output driven by
inputs ui, where synapses q get changed by differential
Hebbian learning using the cross-correlation between both
inputs u0 (the AS) and u1 (the IR (infrared) sensor) [42] (see
also Materials and Methods). As a consequence, if an early
input signal is followed by a later input, where the later one
drives the neuron into firing, then the early input will get
strengthened.

Adaptive Walking Experiments
We make use of this type of sequence learning in adaptive

walking experiments on different terrains, where RunBot was
configured with a parameter set suitable for walking on a flat
surface and learned to tackle an 88 ramp, which it manages
after about three to five falls (see Figure 7A and Video S2). Its
change in walking pattern after starting to climb the ramp is
shown in Figure 7B. It takes about two steps on the slope for
the machine to find its new equilibrium, which results in a
slower stride up the slope as compared with flat terrain. The

Figure 5. Real-Time Data of Walking Experiments

(A) The joint angle of the left hip recorded during walking and changing
speed on the fly. Parameters are changed greatly and abruptly for all
extensor sensor thresholds of hip joints from HSE

¼ 120.0 deg to 93.0 deg
and for all hip motor neuron gain values from g¼ 1.55 to 3.0. This way
speed changed from 39 cm/s (’1.7 leg-lengths/s) to 73 cm/s (’3.17 leg-
lengths/s). At fast walking speed (73 cm/s, ’3.17 leg-lengths/s), RunBot
performs two steps per second, which is related to normal human
walking speed [82]. Light blue areas indicate the swing phase of the left
leg and light yellow areas are the stance phase.
(B) Motor voltages directly sent from the leg motor neurons to the servo
amplifiers while the robot is walking: LH, left hip; RH, right hip; LK, left
knee; RK ,right knee. Gray areas indicate when all four motor voltages
remain zero during some stage of every step cycle where the robot walks
passively. Due to an appropriate weight of the limb together with the
generated velocity, it leads to a momentum which is high enough to
rotate the joint and swing the leg into the desired position although the
motor voltages are zero, while the gear fiction will decrease the
acceleration. Note that the controller of the RunBot system is
implemented on a 2-GHz PC, and the data information is processed at
a certain number of steps with the update frequency of 250 Hz.
doi:10.1371/journal.pcbi.0030134.g005
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slowing down can be explained by the gravitational pull.
Stride length, however, is shorter, and RunBot takes about
seven steps on the slope, which is 80 cm long, while for the
same distance it uses six steps on flat ground. Shortening the
step size is similar to human behavior and is a result of the
different parameters used for climbing together with the
changed gravitational pull. Returning to the initial gait when
reaching the top is faster and happens immediately. Note that
RunBot’s intrinsic stability can also be demonstrated by the
fact that it will always succeed in walking up the slope, after
having learned the new parameters, regardless of its starting
point and independent of the positioning of the legs (as long
as this allows making the first step).

A complete set of curves taken from RunBot similar to
Figure 7A but from a different experiment is presented in
Figure 8. Every ‘‘spike’’ in the top panels (Figure 8A–8D)
represents one step. Figure 8F and 8H show that the IR signal
does indeed come earlier as compared with the AS signal.
This is also visible in Figure 8E, where the leaning reaction
first coincides with the AS signal and only after learning
comes together with the IR signal. Figure 8G shows all
synaptic weights q1 that grow with a different rate (l) and
stabilize at different values. Small glitches in the weights
observed after the last fall (see for example at about 22 s) arise
from the fact that the AS sensor will always produce a little
bit of noise, which leads to a weak correlation with the IR
signal and to minor weight changes. Note that weights will
only change strongly again if the AS signal produces another
strong response; hence, in the case that the robot falls again.

Thus, learning is stable as soon as the AS-triggered reflex is
being avoided, but will set in anew if the robot should fall
again.
As demonstrated in Figures 7 and 8, on approaching the

ramp, RunBot’s IR sensor will sense the slope early, but
initially the IR sensor signal converges with zero strength at
the network and goes unnoticed. As a consequence, RunBot
will begin walking up the ramp with a wrong set of gait
parameters and will eventually fall, leading to a later signal at
the AS. The AS signal triggers the leaning reflex of the UBC
together with the gait adaptation, but too late. However, the
early IR sensor signal and the later AS signal converge at the
same neurons, and due to simulated plasticity the synapses
from the early IR inputs will grow. As a consequence, after
some learning, the postural control network (see Figure 11)
will receive nonzero input as soon as the IR sensor becomes
active, RunBot will perform the leaning action earlier, and its
gait will be changed in time. The used differential Hebbian
learning rule has the property that learning will stop when
the late input (AS signal) is zero [42], which is the case as soon
as the reflex has successfully been avoided and the robot does
not fall anymore. Hence, we obtain behavioral and synaptic
stability at the same time without any additional weight-
control mechanisms.
Recent studies on biped robots have emphasized the

importance of the biomechanical design by focusing on so-
called passive dynamic walkers, which are simple devices that
can walk stably down a slope [43]. This is achieved only by
their mechanical design. Adding actuators to their joints may

Figure 6. The Reflexive Neuronal Network

It consists of two distributed neural modules for leg and body control. The connection strengths (color lines) are indicated by the small numbers. A
refers to the stretch receptors for AEA of the hips and G to the ground contact sensor neurons of the feet. NF(NE) refers to flexor (extensor) motor neuron
of the body and leg. S represents the angle sensor neurons of each joint. The AS neuron is used to trigger the UBC reflex.
doi:10.1371/journal.pcbi.0030134.g006
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allow these robots to walk also on a level surface or even
uphill. The developed gaits are impressively human-like [31],
but these systems cannot easily adapt and/or change their
speed. More traditionally, successful robot-walkers have been
built based on precise joint-angle control, using mainstream
control paradigms such as trajectory-based methods [44], and
some of the most advanced robots are constructed this way;
e.g., ASIMO [45], HRP2 [46], JOHNNIE [47], and WABIAN [48].
It is, however, difficult to relate these machines to human
walking, because closed-loop control requires highly precise
actuators unlike muscles, tendons, and human joints, which
do not operate with this precision. Furthermore, such systems
require much energy, which is in conflict with measured
human power consumption during walking or running
[36,49,50], and their control is non-neuronal. Neuronal
control for biped walking in robots is usually achieved by
employing CPGs [51,52], which are implemented as a local
oscillator under limited sensor control. Furthermore, if

adaptive mechanisms are employed [32,53], then conven-
tional techniques from machine learning are used, which are
not directly related to neuronal plasticity. The controller
described in [54] is also based on the concept of CPGs where
the trajectory of each joint is modeled by a specific oscillator.
These are globally synchronized through sensory information
(e.g., ground reaction force) together with the robot
dynamics, instead of being partially autonomous. The method
does not start with generated limb patterns or a formal proof
of stability as used in trajectory-based methods. By contrast,
the model in Morimoto et al. has been designed and then
tuned to obtain the desired effect. As a consequence of its
simplicity, one can add more feedback in the control loop, or
modify the generated trajectories without having to restart a
global optimization process.
The strategy pursued here is to some degree related—

RunBot also relies on sensory feedback to synchronize its
components, which are arranged in nested loops ([8,55], see

Figure 7. Adaptive Walking Experiments

(A) The real-time data of left hip angle (a), reflexive AS and predictive IR signals (b), and plastic synapses q1 (c) in three situations where there was no
learning for walking up a slope at the beginning. Learning was switched on at 14 s (dashed line). After that, learning self-stabilized and ended at about
28 s (dashed line). The data was recorded while RunBot was initially walking from a lower floor (light gray areas) to an upper floor (dark gray areas)
through a ramp (yellow areas). Note that red areas depict the situation where RunBot falls backward and white areas where RunBot was manually
returned to the initial position. In this experiment, RunBot can manage to walk on an 88 ramp after three falls, which is approximately 14 s of learning
time.
(B) Stick diagram of RunBot walking on different terrains where black (gray) shows the right (left) leg. RunBot started to walk on a level floor, then on an
88 ramp, and finally it continued again on a level floor. Average walking speed was about 50 cm/s (’2.17 leg-length/s). The interval between any two
consecutive snapshots of all diagrams is 67 ms. In this walking experiment, we set gmax to 2.2. The lower diagrams show the walking step of RunBot
corresponding to each walking condition above. During the swing phase (white blocks), the respective foot has no ground contact. During the stance
phase (black blocks), the foot touches the ground. As a result, one can recognize the different gaits between walking on a level floor, (1) and (3), and
walking up the ramp, (2).
doi:10.1371/journal.pcbi.0030134.g007
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Figure 3), but without the help of CPGs. Instead, we achieved
tight coupling of the different levels of physical and neuronal
control via feedback from the walking processes itself, which
conveys its momentary status to different sensors; locally at
the joints/legs and peripherally to our very simple simulated
‘‘vestibular organ’’ (AS) and ‘‘visual system’’ (IR). This
structure made it possible to also implement a fast learning
algorithm, which is driven by peripheral sensors but
influences all levels of control; explicitly by augmenting
neuronal parameters and implicitly at the biomechanical

level by the resulting new walking equilibrium. The idea of
downward-delegating coordination control, where local levels
maintain a high degree of sensori-driven autonomy [3,4],
could thereby be implemented and tested.
We believe that this demonstration is the major contribu-

tion of the current study. It shows that complex behavioral
patterns result from a rather abstract model for locomotion
and gait control consisting of a simple set of nested loops.
Much of the biologically existing complexity has been left out.
This especially should stimulate further biological investiga-

Figure 8. Real-Time Data of All Leg Joints and Body Motion

The data was recorded while RunBot was initially walking from a lower floor (light gray areas) to an upper floor (dark gray areas) through a ramp (yellow
areas). Red areas represent situations where RunBot falls backward and white areas where RunBot was manually returned to the initial position. In this
experiment, RunBot can manage to walk on an 88 ramp after three falls.
(A–D) Show the left and right joint angles at all situations.
(E) Shows the posture of the UBC where 08 means leaning backward while 1208 mean leaning forward.
(F,H) Show the predictive (IR) and reflexive (AS) signals, respectively. The growing synaptic strengths (compare Figure 13A) during the learning phase
are represented in (G).
doi:10.1371/journal.pcbi.0030134.g008
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tions because little is known about how a possible Bernstein
mechanism is actually implemented in humans for locomo-
tion and gait control. The existing data in this field is
plentiful and diverse, but often conflicting evidence exists for
certain subfunctions. This may be due to neglect of context
within which a certain dataset has been obtained. Thus, given
the rich existing data, a better understanding of human
locomotion would probably require a focus of new research
on abstractions and synthesis trying to combine the different
strands into a closed form picture and only carefully
extending the existing datasets. This may also help to resolve
the existing conflicts because synthesis will enforce context.
Highly adaptive and flexible biped walking will certainly

require additional mechanisms beyond those implemented
here; for example, augmenting neuronal control via internal
models of the expected movement outcome (‘‘efferent
copies’’ [56]) and/or adding intrinsic loops for CPG-like
functions [14,22]. The results presented here, however,

Figure 9. The Stable Domain of the Controller Parameters and the

Stability Analysis

(A) The shaded area is the stable domain of the controller parameters
(HS H , E

, gH ), where stable gaits will appear in experiments performed with
the real robot.
(B) Limit cycles in phase plane dHSH

/dt, HSH
for walking on a flat floor

(HS H , F
¼ 78.08, HS K , F

¼ 115.08, HS H , E
¼ 105.08, HS K , E

¼ 175.08, gK¼ 1.8 and
gH¼ 2.2). It shows that after being perturbed, the walking gait returns to
its limit cycle quickly in only a few steps. Note that RunBot can neither
detect the disturbance nor adjust any parameters of its controller to
compensate for it.
doi:10.1371/journal.pcbi.0030134.g009

Figure 10. Control Parameters for the Joint Angles

(A) Flexor angles. (B) Extensor angles. HSE
(HSF

) indicates the threshold of
the sensor neuron for extensor (flexor). H, hip; K, knee.
doi:10.1371/journal.pcbi.0030134.g010

Figure 11. Postural Neuronal Control

Connections between learner neurons and target neurons of the right
leg, which are identical to those of the left leg, are not shown (see text
and also Materials and Methods for details).
doi:10.1371/journal.pcbi.0030134.g011
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suggest that the employed nested-loop design remains open
to such extensions bringing the goal of fully dynamic and
adaptive biped walking in artificial agents a little bit closer.

Materials and Methods

Mechanical setup of RunBot (biomechanical level). RunBot is 23 cm
high, with a foot-to-hip joint axis (see Figure 2). Its legs have four
actuated joints: left hip, right hip, left knee, and right knee. Each joint
is driven by a modified RC servo motor where the built-in Pulse
Width Modulation (PWM) control circuit is disconnected, while its
built-in potentiometer is used to measure the joint angles. A
mechanical stopper is implemented on each knee joint to prevent
it from going into hyperextension, similar to the function of human
kneecaps. The motor of each hip joint is a HS-475HB from Hitec. It
weighs 40 g and can produce a torque up to 5.5 kg�cm. Due to the use
of the mechanical stopper, the motor of the knee joint bears a smaller
torque than the hip joint in stance phases, but must rotate quickly
during swing phases for foot clearance. Therefore, we use a PARK
HPXF from Supertec on the knee joints, which has a light weight (19
g), but is fast with 21 rad/s. Thus, approximately 70% of the robot’s
weight is concentrated on its trunk, and the parts of the trunk are
assembled in a way that its center of mass is located forward of the
hip axis.

RunBot has no actuated ankle joints, resulting in very light feet and
efficiency for fast walking. Its feet were designed to have a small
circular form (4.5 cm long), whose relative length, the ratio between
the foot-length and the leg-length, is 0.20, less than that of humans
(approximately 0.30) and that of other biped robots (powered or
passive, see discussion in [31]). Each foot is equipped with a switch
sensor to detect ground contact events. The mechanical design of
RunBot has some special features; for example, small curved feet and
a properly positioned center of mass that allow the robot to perform

natural dynamic walking during some stage of its step cycles. Hip and
knee joints are driven by output signals of the leg controller (running
on a Linux PC) through a DA/AD converter board (USB-DUX). The
USB-DUX provides eight input (A/D) and four output (D/A) channels,
and it has the update frequency of 250 Hz. The signals of the joint
angles and ground contact switches are also digitized through this
board for the purpose of feeding them into the leg controller
(compare Figure 12).

To extend its walking capabilities for walking on different terrains,
for example level floor versus up or down a ramp, one servo motor
with a fixed mass, called the UBC, is implemented on top. The UBC
has a total weight of 50 g. It leans backward (see Figure 2A) during
walking on a level floor, and this position is also suitable for walking
down a ramp [57], and it will lean forward (see Figure 2B) when
RunBot falls backward, and when it has successfully learned to walk
up a ramp. The corresponding reflex is controlled by an AS, see
Figure 2. The AS is installed on top of the right hip joint. In addition,
one IR sensor is implemented at the front part of RunBot (see Figure
2) pointing downward to detect ramps (see Figure 12). Here, the IR
sensor serves as a simple vision system, which can distinguish between
a level floor with black color and a painted ramp with white color.
This sensory signal is used for adaptive control. In our setup, the AS
and IR signals are in parallel-feed to the USB–DUX for digitalization,
providing them to the leg and body controllers afterward. The
scheme of our setup is shown in Figure 12.

We constrain RunBot in the sagittal plane by a boom of one meter
length. RunBot is attached to the boom via a freely rotating joint in
the x-axis, while the boom is attached to the central column with
freely rotating joints in the y and z axes (see Figure 2A). With this
configuration, the robot is in no way being held up or suspended by
the boom, and its motions are only constrained on a circular path.
Given that the length of the boom is more than four times the height
of RunBot, the influence of the boom on RunBot’s dynamics in the
sagittal plane is negligible. In addition, by way of an appropriate
mounting (see Figure 2C), cabling also does not influence the
dynamics of the walker. As shown here, the mechanical design of
RunBot has the following special features that distinguish it from
other powered biped robots and that facilitate high-speed walking
and exploitation of natural dynamics: (a) small, curved feet allowing
for rolling action; (b) unactuated, hence light, ankles; (c) lightweight
structure; (d) light and fast motors; (e) proper mass distribution of the
limbs; and (f) properly positioned mass center of the trunk.

This is a common strategy toward fast walking which facilitates
scalability and is, thus, also present in other large robots, as in the
new design of LOLA, the followup to JOHNNIE ([58], personal
communication).

In general, scalability can be achieved by dynamic similarity
[41,59]; for example, reflected in the same Froude number. Hence, by
using similar design principles together with appropriate simulations
(see, for example, [34]), one can gradually upscale such designs. This
justifies the cost-effective small RunBot architecture from which basic
principles can be extracted. Clearly, difficulties are expected to arise
when introducing more degrees of freedom, but this reflects a true
change in the system, not just an upscaling.

The reflexive neuronal controller (spinal reflex level). The reflexive
neuronal controller of RunBot is composed of two neural modules:
one is for leg control and the other for body control. The UBC and
the peripheral sensors (AS, IR) are mounted on the rump of RunBot.
Both controllers have a distributed implementation, but they are
indirectly coupled through the biomechanical level; this way, the
neural control network driven by the sensor signals will synchronize
leg and body movements for stable locomotion.

Leg control. Leg control of RunBot consists of the neuron modules
local to the joints, including motor neurons N and angle sensor
neurons S, as well as a neural network consisting of hip stretch
receptors A and ground contact sensor neurons G (see Figure 6),
which modulate the motor neurons. Neurons are modelled as
nonspiking neurons (Hopfield-type neurons) simulated on a Linux
PC with an update frequency of 250 Hz, and communicated to the
robot via the USB–DUX (see Figure 12). Nonspiking neurons have
been used to increase the speed of network operations. Connection
structure and polarity are depicted in Figure 6.

The top part of Figure 6 shows the ground contact sensor neurons
G, which are active when the foot is in contact with the ground (see
Figure 4). Its output changes according to:

aG ¼ ð1þ eaGðHG6DVÞÞ�1 ð1Þ

Where DV equals VR � VL, computed by the output voltage signals
from switch sensors of the right foot VR and left foot VL, respectively,

Figure 12. Schematic Setup of the RunBot System

Leg sensors consist of joint angle sensors and ground contact switch
sensors, leg motors are the motors of the left and right hip and knee
joints, and the body motor indicates the motor of the UBC. IR and AS
stand for infrared and accelerometer sensors, respectively. The detection
range of the IR sensor for slope sensing is shown in the lower picture.
Note that the red ray of the IR sensor indicates that the sensor gives a
high output signal while the yellow ray means a low signal. Hence, the
sensor responds more strongly to the white ramp.
doi:10.1371/journal.pcbi.0030134.g012
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used with a plus sign in Equation 1 for the left and with a minus sign
for the right ground contact sensor. Furthermore, HG are thresholds
and aG positive constants.

Beneath the ground contact sensors, we find stretch receptor
neurons A (Figure 6). Stretch receptors play a crucial role in animal
locomotion control. For example, when the limb of an animal reaches
an extreme position, its stretch receptor sends a signal to the
controller, resetting the phase of the limbs [10]. There is also evidence
that phasic feedback from stretch receptors is essential for
maintaining the frequency and duration of normal locomotive
movements in some insects [37].

Different from other designs [10,60], our robot has only one stretch
receptor on each leg to signal the AEA of its hip joint (see Figure 4).
Furthermore, the function of the stretch receptor on our robot is
only to trigger the extensor motor neuron on the knee joint of the
same leg (compare Figure 4), rather than to implicitly reset the phase
relations between different legs, as, for example, in the model of
Cruse [10].

The outputs aA of the stretch receptor neurons A for the left and
the right hip are:

aA ¼ ð1þ eaAðHA�IÞÞ�1 ð2Þ

where I denotes the input signal of the neuron, which is the real time
angular position of the hip joint u, and aA is a positive constant. The
hip anterior extreme angle HA depends on the walking pattern, for
example HA ¼ 105.0 deg for walking on a level floor, while it will be
modified according to a learning rule for walking up a ramp
described in the next section. This model is inspired by a sensor
neuron model presented in [61].

At the joint level (Figure 6), the neuron module is composed of two
angle sensor neurons (SE, SF) (see Figure 4) and the motor neurons
(NE, NF) they contact (see Figure 6).

Whenever its threshold is exceeded, the angle sensor neuron S
directly inhibits the corresponding motor neuron. This direct
connection between angle sensor neurons and motor neurons is
inspired by monosynaptic reflexes found in different animals [62] and
also in humans [63].

The model of the angle sensor neurons S is similar to that of the
stretch receptor neurons A described above. The angle sensor
neurons change their output according to:

aS ¼ ð1þ e6aSðHS�IÞÞ�1 ð3Þ

where I is an input signal, which is the real time angular position u
obtained from the potentiometer of the joint. HS is the threshold of
the motor neuron and aS a positive constant. The plus sign is for the
extensor angle sensor neuron aSE , and the minus sign is for the flexor
angle sensor neuron aSF .

These three sensor signals (G,A,S) converge on the motor neurons
N with different polarity, as shown in Figure 6. Some signals connect
between joints or between legs, which assures correct cross-
synchronization.

The motor neuron model is adapted from [60]. The state and
output of each extensor and flexor motor neuron are governed by
Equations 4 and 5 [64]:

s
dy
dt

¼ � yþ
X

xZaZ ð4Þ

r ¼ ð1þ eaN ðHN�yÞÞ�1 ð5Þ

where y represents the mean membrane potential of the neuron.
Equation 5 is a sigmoidal function that can be interpreted as the
neuron’s short-term average firing frequency, aN is a positive
constant. HN is a bias constant that controls the firing threshold. s
is a time constant associated with the passive properties of the cell
membrane [64]. xZ represents the connection strength from the
sensor neurons and stretch receptors to the motor neuron (Figure 6).
The value of aZ represents the output of the sensor neurons and
stretch receptors that contact this motor neuron (e.g., aS, aA, aG, etc.).

The voltage of the motor U in each joint is determined by:

U ¼ gDðfErE þ fF rF Þ; ð6Þ

where D represents the magnitude of the servo amplifier, which is
predefined by the hardware with a value of 3.0 on RunBot and g
stands for the software-settable output gain of the motor neurons in
the joint. The variables fE and fF are the signs for the motor voltage of
extensor and flexor in the joint, being þ1 or �1, depending on the

hardware of the robot (compare Figure 6), and rE and rF are the
outputs of the motor neurons.

Parameters for leg control. RunBot is quite robust against changes
in most of its parameters (see details in [33]). Therefore, most param-
eters could be manually tuned by a few experiments supported by
simulations (see [33]).We set:aSE ¼ aSF ¼ aAL ¼ aAR ¼ aGL ¼ aGR ¼ 2:0,
but aN ¼ 1.0, which assures a quick response of the corresponding
neurons.
The threshold of the sensor neurons for the extensor (flexor) in the

neuron module roughly limits the movement range of the joint and
effects stability of locomotion on the different terrains. For instance,
for walking on a level floor, we choose HSH;F ¼ 78:0 deg,
HSK;F ¼ 115:0 deg, HSH;E ¼ 105:0 deg, and HSK;E ¼ 175:0 deg (compare
Figure 10), which is in accordance with observations of normal
human gaits [65]. The movements of the knee joints are needed
mainly for timely ground clearance. After some trials, we set the gain
of the motor neurons in the knee joints to gK¼ 1.8. Furthermore we
set gH ¼ 2.2.

The threshold of the stretch receptors is simply chosen to be the
same as that of the sensor neurons for the hip extensor,
HAL ;AR ¼ HSH;E ¼ 105:0 deg. With these parameters, we obtain a
walking speed of about 50 cm/s (’2.17 leg-length/s). However, the
walking speed of RunBot can be increased up to 80 cm/s (’3.48 leg-
length/s) when gH is increased, while HSH;E is decreased (described
more details in [33]).

Note that for walking up a ramp, seven parameters (HSH;E , HSK;E ,
HSH;F , HSK;F , HAL , HAR , and gH) will be modified by the synaptic
plasticity mechanism, which allows RunBot to autonomously learn by
adapting its gait (described later).

The threshold HG of the ground contact sensor neurons is chosen
to be 2.0 v following a test of the switch sensors, which showed that in
a certain range the output voltage of the switch sensor is roughly
proportional to the pressure on the foot bottom when touching the
ground. The time constant of the motor neurons, s (see Equation 4), is
chosen as 10.0 ms, which is in the normal range of biological data. For
the connection strengths wZ (see Equation 4) as denoted in Figure 6,
we use: wNG � HN, wNA�wNG � HN, wNS�wNA�wNG � HN, where wNG
¼weights of the synapses between the ground contact-sensor neurons
and the motor neurons, wNA ¼ weights of the synapses between the
stretch receptors and the motor neurons, wNS ¼ weights of the
synapses between the angle sensor neurons and the motor neurons in
the neuron modules of the joints, and HN ¼ the threshold of the
motor neurons (see Equation 5), which can be any positive value as
long as the above conditions are satisfied. The function of these rules
is to make sure that among all the neurons which contact the motor
neurons, the angle sensor neurons have the first priority, while the
stretch receptors have second priority, and the ground contact sensor
neurons have lowest priority. So, we simply choose them as: HN, wNG¼
10.0, wNA ¼ 15.0, wNS ¼ 30.0 (compare Figure 6). A more detailed
description of the neuronal controller and a discussion of stability
issues of all parameters can be found in [33].

Body control. Body control of RunBot consists of two motor neurons
(NE and NF) and one AS providing a reflex signal (see Figure 6). These
neuron models are similar to those for leg control. The synaptic
strengths of the connection structure are shown in Figure 6. This
network is driven by the AS where its output aAS is modelled
according to:

aAS ¼ ð1þ eaASðHAS�CASVASÞÞ�1 ð7Þ

where VAS is the output voltage signal from the AS. HAS and aAS are
the threshold and a positive constant which are set to 4.0 and 2.0,
respectively. CAS is a positive amplification of the input signal set to
6.0.

The motor neurons (NE, NF), which directly modulate the motions
of the UBC, have the same characteristic as the leg motor neurons
(see Equations 4 and 5) but different parameters HN, aN, D, and g. We
set HN of the extensor body–motor neuron to 0.75 and for the flexor
to�0.75 and aN to 20.0, while D and g are both set to 1.0 (see Equation
6). Usually, for example when walking on a level floor, NF is activated
to lean the body backward (see Figures 2A and 12) while NE is
deactivated unless a strong signal from the AS drives its reflex
(leaning the UBC forward); i.e., this signal excites NE while it inhibits
NF. This situation happens only when RunBot falls backward; e.g.,
when RunBot tries to walk up a ramp.

Adaptive neuronal controller with learning rule (postural reflex
level). To create adaptive behavior for walking on different terrains,
an effective way is to let RunBot learn adapting its gait and
controlling the posture of its UBC by itself. To this end, we apply a
learning technique, which will finally allow RunBot to walk up a ramp
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and then continue again on a level floor. To sense a ramp when
RunBot is making an approach, we use an IR sensor (see Figure 12),
which requires some preprocessing before it can be used by our
learning algorithm. Thus, in the following sections, we will describe
the sensory preprocessing, followed by the details of the learning
network together with the learning algorithm.

Sensory preprocessing. The raw infrared signals require preprocessing
because they are too noisy due to RunBot’s egomotion and because
they arrive too early at the robot (hence before it reaches or leaves
the ramp). To address these issues, we construct the neural
preprocessing of the raw IR signal as a hysteresis element [66,67]
using a single neural unit with a ‘‘supercritical’’ self-connection (wself
. 4). It is modelled as a discrete-time nonspiking neuron, and its
activation function is given by:

aIRðtþ 1Þ ¼ wself rðaIRðtÞ þHIR þ CIRVIR ð8Þ

where VIR is the output voltage signal from the IR sensor, which is
linearly mapped onto the interval [0, 1]. HIR is the threshold, and CIR
represents a positive amplification factor of the input signal. The
output of the neuron is given by the standard sigmoidal transfer
function rðaIRÞ ¼ ð1þ e�aIR Þ�1. To get an appropriate hysteresis, we
set HIR¼�3.2, CIR¼ 4.0, and wself¼ 4.8 (see Figure 13B). Note that the
width of the hysteresis is proportional to the strength of the self-
connection; i.e., the stronger the self-connection, the wider the
hysteresis.

Learning network and its effect—reflex avoidance learning. In the

following, we will describe our learning network, which enables
RunBot to successfully perform the given task. To do so, its gait has to
be changed as well as the posture of its UBC. The UBC is controlled
by exciting or inhibiting NE, NF through sensory signals (described
above).

We know from previous experiments [57] that a stable gait for
upslope walking can be obtained by adjusting the following
parameters. At the knee joints, the firing threshold HSE ;SF of neurons
SE, SF has to be decreased; while at the hip joints, the firing
threshold HSE ;SF of neurons SE, SF,, which also affects the
stretch receptor neurons A, has to be increased, but the gain g
of neurons NE, NF, has to be decreased. This leads to smaller
steps, also observed in humans when climbing.

In our learning algorithm, the modification of all those parameters
also common in human walking reflexes [68] will be controlled by two
kinds of input signals: one is an early input (called predictive signal)
and the other is a later input (called reflex signal). Here, we use the
preprocessed IR signal as a predictive signal, while the AS signal
serves as a reflex signal. Both sensory signals are provided to the
learner neurons as shown in Figure 13.

At the beginning, the connections (q1:::6
1 ) between the predictive

signal and learner neurons converge with zero strengths. In this
situation, parameters of the target neurons will be altered only by the
reflex signal; i.e., the leaning reflex of the UBC together with the gait
adaptation will be triggered by the AS signal as soon as RunBot falls.

Figure 13. Adaptive Neuronal Controller with Learning Mechanism

(A) The adaptive neuronal network. The excitatory synapses r0 projecting from the AS neuron to the learner neurons (black triangles) are all set to 1.
While the changeable synapses r1 projecting from the IR neuron to the learner neurons are initially set to 0, they will grow during learning. Eventually,
each of them will have converged to different values when learning stops.
(B) Recurrent neural preprocessing of the IR signal configured as a hysteresis element. The curves below show the IR signal before preprocessing (Input)
and the output signal after preprocessing (Output). The bottom curve presents the hysteresis effect between input and output signals. In this situation,
the input varies between 0 and 0.6. Consequently, the output will gradually show high activation (’1.0; meaning that RunBot approaches the ramp)
when the input increases to values above 0.25. On the other hand, it will gradually show low activation (’0.0; meaning that no ramp is detected) when
the input decreases below 0.15.
(C) Learning mechanism (see text for details). Note that all learner neurons have the same learning mechanism.
doi:10.1371/journal.pcbi.0030134.g013
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Hence, RunBot will begin walking up the ramp with a wrong set of
gait parameters and an inappropriate posture of the UBC. Thus, it
will eventually fall, leading to a signal at the AS, which will change
RunBot’s parameters—but too late (when it already lies on the
ground). Due to learning the modifiable synapses, q1, which connects
the predictive IR signal with the learner neurons, will grow.
Consequently, after three to five falls during the learning phase, gait
adaptation together with posture control of the UBC will finally be
driven by the predictive I-signal instead. Correspondingly, RunBot
will adapt its gait together with leaning the UBC in time. The used
learning algorithm has the property that learning will stop when the
reflex signal is zero; i.e., when RunBot does not fall anymore [42]. On
returning to flat terrain, the IR output will get small again and
RunBot will change its locomotion back to normal for walking on a
level floor. Note that the same circuitry and mechanisms can be used
to learn different gaits for other given tasks, for example walking
down a ramp.

Hence, the employed mechanism performs ‘‘reflex avoidance
learning.’’ Synapses stop growing as soon as the new anticipatory
reaction has been learnt and the reflex to the later signal is not
triggered anymore. As mentioned above, the principle of reflex
avoidance learning appears to be emulated by cerebellar function
[29], albeit not by the same mechanisms as used here. The cerebellum
rather seems to rely on an interplay between the mossy fiber to deep
nucleus synapse and the parallel fiber to Purkinje cell synapse. The
first seems to control the overall amplitude of a cerebellar response,
the second the timing. The parallel fiber to Purkinje cell synapse does
not seem to rely on STDP but rather it uses long-term depression to
facilitate the reduction of Purkinje cell activity, leading to a release of
the deep nucleus neurons to form inhibition and a rebound
excitation. This possibly involves presynaptic mechanisms. This
whole circuitry has been captured in a recent model by Hofstötter
et al. [69]. Our learning rule operates at the single cell level using an
STPD-like mechanism. This is necessary to achieve the required
efficiency for real-time learning. Hence the same principle (reflex
avoidance) is used here but with a different implementation, very
much focusing on algorithmic efficiency.

Learning algorithm. In general, each learner neuron Ln requires two
input signals u0 and u1 with synaptic weights q0,1. Here, we use the AS
and the preprocessed IR signals as u0 and u1, respectively.

Furthermore, we initially set q1:::6
1 ¼ 0 and q1:::6

0 ¼ 1. Only q1 is
allowed to change through plasticity. The output activity v of Ln is
given by:

vðLnÞ ¼ qn
0u0 þ qn

1u1; n ¼ 1; . . . ; 6: ð9Þ

Note, since v is defined by weights and input strengths, we will—
after learning—receive differently strong outputs for differently
strong input signals IR (signal u1). Hence, after having learned a steep
slope, less steep slopes will drive the output less, leading to smaller
parameter changes and incomplete leaning of the body, which is the
appropriate behavior, in this case preventing a fall (not shown).

We use a differential Hebbian learning rule (ISO-learning, [42]) for
the weight change of qn

1 given by:
dqn

1

dt
¼ lnu1vðLnÞ; n ¼ 1; . . . ; 6; ð10Þ

where v(Ln) is the temporal derivate and ln the learning rate. It is
independently set for each learner neuron, which will define the
desired equilibrium point (l1¼ 10, l2¼ 7.0, l3¼ 10.5, l4¼ 0.14, l5¼
3.0, l6 ¼ 10.0). One could consider l as the susceptibility for a
synaptic change, which in a biological agent will be defined by its
evolutionary development, which determines the agent’s ability to
learn a certain task. How and if these values could also be influenced
(possibly by mechanisms of meta-plasticity), changing learning
susceptibility, goes beyond the scope of this article.

Our learning rule is based on differential Hebbian learning [70],
described in detail in [42]. Hence, this form of plasticity depends on
the timing of correlated signals and thereby compares with STDP
[41,71]. In neurons with multiple inputs, such a mechanism can be
used to alter the synaptic strengths according to the order of the
arriving inputs. Note that neuronal time scales for STDP do not
match the much longer time scales required here. There are
mechanisms discussed in the literature to address this problem [72].
In the context of the current study, we are, however, not concerned
with this, and we are using Equations 9 and 10 directly. As a
consequence of this rule, the modifiable synapses q1 will get
strengthened if the predictive signal u1 is followed by the reflex
input u0, where the reflex drives the neuron into firing. This rule will

lead to weight stabilization as soon as u0 ¼ 0 [42]; hence, when the
reflex has successfully been avoided. As a result, we obtain behavioral
and synaptic stability at the same time without any additional weight-
control mechanisms.

The output of each learner neuron v(Ln) is directly fed to its target
neuron in the network. The connection structure together with its
synaptic polarity f is shown in Figure 13. To control the UBC, we
directly use the average firing rate of the learner neuron v(L1) to drive
the body motor neurons NE and NF. Once the learner neuron L1 gets
active, it will inhibit NF, while NE will be activated. As a result, the
UBC will lean forward. As described above, changing the gait of
RunBot is achieved by controlling the values of the output gain of the
leg motor neurons g and the firing threshold H of sensor neurons
using the firing rate of learner neurons. To change a threshold, one
can simply redefine the input signal I of the sensor neurons (AL, AR,
SE, SF)) presented in Equations 2 and 3 as:

I ¼ uþ fvðLnÞ ð11Þ

where I is the input summation of the real time angular position u
and the average firing rate of a learner neuron v(Ln), and f is the
connection polarity learner and target neuron (see Figure 13).

To change the output gain of the hip motor neurons, we need to
divide or multiply. Hence, the learner neuron L4 performs divisive
(shunting) inhibition [73], which in a real neuron is commonly
generated by the influence of GABAA on chloride channels ([74,75],
but see [76]). Thus, the gain of NE and NF is affected by divisive
inhibition, defined by:

gef f ¼ gmax

1þ vðL4Þ
ð12Þ

where gmax is the maximum motor gain which is set to 2.2 for an
optimal walking speed. Note that gmax is proportional to the walking
speed and it can be set to up to 3.0, beyond which the motors are
damaged.

Supporting Information

Video S1. RunBot Can Perform Self-Stabilization When Changing
Speed on the Fly

In this situation, we immediately switch from a slower walking speed
of 39 cm/s (’1.7 leg-length/s) to a faster one of 73 cm/s (’3.17 leg-
length/s). This has been achieved by abruptly and strongly changing
two parameters: HSE and gH. Self-stabilization reflects the coopera-
tion between the mechanical properties and the neuronal control.
Furthermore, it shows that RunBot’s neuronal controller is robust to
quite drastic and immediate parameter variations. Note that the real
time data of the joint angles recorded during walking and changing
speed on the fly is presented in Figure 3. (http://www.nld.ds.mpg.de/
;poramate/RUNBOT/ManoonpongMovieS1.mpeg)

Found at doi:10.1371/journal.pcbi.0030134.sv001 (4.2 MPG).

Video S2. RunBot Learns to Walk up an 88 Ramp Where gmax Is Set to
2.2

It can achieve this after three falls. Consequently, it can autono-
mously adapt its gait to walk on different terrains, i.e., walking from a
level floor to a ramp and then again to a level floor. (http://www.nld.
ds.mpg.de/;poramate/RUNBOT/ManoonpongMovieS2.mpeg)

Found at doi:10.1371/journal.pcbi.0030134.sv002 (5.1 MPG).
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