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Abstract—Walking animals show fascinating locomotor abil-
ities and complex behaviors. Biological study has revealed that
such complex behaviors is a result of a combination of biome-
chanics and neural mechanisms. While biomechanics allows
for flexibility and a variety of movements, neural mechanisms
generate locomotion, make predictions, and provide adaptation.
Inspired by this finding, we present here an artificial bio-inspired
walking system which combines biomechanics (in terms of its
body and leg structures) and neural mechanisms. The neural
mechanisms consist of 1) central pattern generator-based control
for generating basic rhythmic patterns and coordinated move-
ments, 2) reservoir-based adaptive forward models with efference
copies for sensory prediction as well as state estimation, and 3)
searching and elevation control for adapting the movement of
an individual leg to deal with different environmental conditions.
Simulation results show that this bio-inspired approach allows the
walking robot to perform complex locomotor abilities including
walking on undulated terrains, crossing a large gap, as well as
climbing over a high obstacle and a fleet of stairs.

I. INTRODUCTION

Walking animals show diverse locomotor skills to deal with
a wide range of terrains and environments. They can effectively
cross gaps [1], climb over obstacles [21], and walk on uneven
terrain [15]. These capabilities are realized by a combination of
biomechanics and neural mechanisms where the mechanisms
include central pattern generators (CPGs), forward models,
and reflex control. The CPGs generate basic rhythmic motor
patterns for locomotion, while the reflex control employs direct
sensory feedback [15] and/or expected feedback (predictive
information) provided by the forward models [22] to shape
the motor patterns for adaption. In principle, the forward
models [22] are neural mechanisms that predict the future
state of a system given the current state (feedback) and the
control signals or motor commands (efference copies) [22].
While these three key neural mechanisms are important for
locomotion control, only individual instances of them has been
successfully realized on artificial systems [2], [11], [16], [20];
thereby achieving partial solutions.

A few studies have applied all these mechanisms to
quadruped robots to achieve adaptive behavior [12], [17] but
climbing over a high obstacle and crossing a large gap have
not been included. Here, we present our neural mechanisms
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which capture the three bio-inspired neural mechanisms for
complex locomotor generation including gap crossing, obstacle
and stair climbing, and uneven terrain walking in a hexapod
robot. This work also introduces the use of reservoir computing
[13] with online learning as our adaptive forward models.
By exploiting the dynamic reservoir embedded in the models,
it allows for complex motor transformation at different gaits
which cannot be achieved by our previous simple models [14].
We implement in total six reservoir-based adaptive forward
models on the robot, each of which is for sensory prediction
and state estimation of each leg. The outputs of the models are
compared with foot contact sensory signals where differences
between them are used for motor adaptation.

However, the main purpose of this article is not only to
demonstrate the complex locomotor behaviors but also to show
that the embodied modular neural closed-loop technique can
be a powerful approach to solve sensorimotor coordination
problems of many degrees-of-freedom systems as well as to
achieve adaptive locomotion.

II. NEURAL MECHANISMS FOR COMPLEX LOCOMOTION

The neural mechanisms (Fig. 1a) are developed based on a
modular structure. The mechanisms comprise i) central pattern
generator (CPG)-based control, ii) reservoir-based adaptive
forward models, and iii) searching and elevation control. The
CPG-based control and the searching and elevation control
have been presented in our previous work [14]. Thus here
we discuss only their main functions while the reservoir-based
adaptive forward models which are a main contribution of this
paper will be presented in detail in the following section.

The CPG-based control basically generates a variety of
rhythmic patterns and coordinates all leg joints of a hexapod
robot (Fig. 1b), thereby leading to a multitude of different be-
havioral patterns and insect-like leg movements. The patterns
include omnidirectional walking and insect-like gaits [14]. All
these patterns can be set manually or autonomously driven by
exteroceptive sensors, like a camera [23], a laser scanner [10],
or range sensors [14]. Furthermore, synaptic long-term storage
of behaviorally relevant motor patterns can be carried out
using simple learning mechanisms as presented in our previous
work [18]. While the CPG-based control provides versatile au-
tonomous behaviors, the searching and elevation control using
error signals provided by the reservoir-based adaptive forward
models adapt the movement of an individual leg of the robot to
deal with different environmental conditions. All neurons in the
CPG-based control and the searching and elevation control are
modeled as discrete-time non-spiking neurons with different
activation functions (see [14] for details). They are updated
with a frequency of ≈ 27 Hz.



Fig. 1. (a) The diagram of an artificial bio-inspired walking system
consisting of the biomechanical setup of the hexapod robot AMOS-II (i.e.,
six 3-jointed legs, a segmented body structure with one active backbone
joint (BJ), actuators, and passive compliant components [14]), sensors (i.e.,
proprioceptive and exteroceptive sensors), and neural mechanisms (i,ii,iii). (b)
Modular Robot Control Environment embedded in the LPZRobots toolkit [7].
It is used for developing a controller, testing it on the simulated hexapod
robot, and transferring it to the physical one. FC1, FC2, FC3, FC4, FC5,
and FC6 are foot contact sensors installed in the robot legs. Each leg has
three joints: the thoraco-coxal (TC-) joint enables forward and backward
movements, the coxa-trochanteral (CTr-) joint enables elevation and depression
of the leg, and the femur-tibia (FTi-) joint enables extension and flexion of
the tibia. The morphology of these multi-jointed legs based on a cockroach
leg [24]. More details on BJ control for climbing are described in [5].

III. RESERVOIR-BASED ADAPTIVE FORWARD MODELS

A. Network description

Six identical adaptive1 forward models (RF1,2,3,...,6) are
used here, one for each leg (Fig. 2(a)). They serve for sensory
prediction as well as state estimation. Specifically, each for-
ward model transforms a motor signal (i.e., here the CTr-motor
signal2, efference copy) into an expected sensory signal to be

1Adaptive, here, refers to the ability of each forward model to learn to
multiple walking gaits as well as the ability of the recurrent neurons of the
network to adjust their nonlinearity (firing rate).

2We use the CTr-motor signal instead of the TC- and FTi-motor signals
since the signal shows clear swing (off the ground) and stance (on the ground)
phases which can be simply matched to the foot contact signal.
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Fig. 2. (a) Neural mechanisms implemented on the bio-inspired hexapod robot
AMOS-II. The yellow circle (CPG) represents the neural control mechanism
which consists of a CPG mechanism with neuromodulation, neural CPG post
processing, neural motor control, and motor neurons (see Fig. A2 in [14] and
details therein). The grey circles (RF1,2,3,...,6) represent the reservoir-based
adaptive forward models. The green circles (SE1,2,3,...,6) represent searching
and elevation control modules. The orange circles represent leg joints where
TRi, CRi, FRi are TC-, CTr- and FTi-joints of the right front leg (i = 1),
right middle leg (i = 2), right hind leg (i = 3) and TLi, CLi, FLi are left
front leg (i = 1), left middle leg (i = 2), left hind leg (i = 3), respectively.
BJ is a backbone joint. The orange arrow lines indicate the motor signals
which are converted to joint angles for controlling motor positions. The black
arrow lines indicate error signals. The green arrow lines indicate signals for
adapting joint movements to deal with different circumstances. b) An example
of the reservoir-based adaptive forward model. The dashed frame shows a
zoomed in view of a single reservoir neuron. In this setup, the input to each
of the reservoir network comes from the CTr- joint of the respective leg.
The reservoir learns to produce the expected foot contact signal for three
different gaits (y1, y2, y3). The signals of the output neurons are combined
and compared to the actual foot contact sensory signal. The error from the
comparison is transmitted to an integrator unit. The unit accumulates the error
over time. The accumulated error is finally used to adapt joint movements
through searching and elevation control.

able to compare it to the actual incoming one (i.e., here the
foot contact signal d (Fig. 2b) of the leg). Each forward model
is based on a recurrent neural network (RNN) of the reservoir
computing (RC) [3], [9] type. Due to the dynamic reservoir,
the network exhibits a wide repertoire of nonlinear activity
which can be exploited for our motor signal transformation.
Typically, the network has three layers: input, hidden (or
internal), and output layers (Fig. 2b). The internal layer is
constructed as a random RNN with N internal neurons and
fixed randomly initialized synaptic connectivity. The recurrent
neural activity within the dynamic reservoir varies as a function
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Fig. 3. (a) Plot of the change in the mean squared error for the forward model
task for one of the front legs (R1) of the walking robot with respect to the
scaling of the reservoir weight matrix with different spectral radius (SR). As
observed, very small values of (SR) have a negative impact on performance
compared with values closer to one being better. Interestingly the performance
does not change significantly for SR > 1.0. This is due to homeostasis
introduced by intrinsic plasticity in the network. The optimal value of SR =
0.95 selected for our experiments is indicated with a dashed line. (b) Plot of
the change in mean squared error with respect to different reservoir sizes (N ).
SR is fixed at the optimal value. Although increasing the reservoir size in
general tends to increase performance, a smaller size of N = 30 gives same
level of performance as N = 100. According to computational efficiency,
we set our reservoir to 30 neurons. Results were obtained from 10 trials with
different parameter settings on the forward model task for a single leg and a
fixed walking gait.

of it’s previous activity and the current driving input signal.
The discrete time state dynamics of reservoir neurons is given
by:

x(t+1) = (1−λ)x(t)+λfsys(Winu(t+1)+Wsysx(t)+bo),
(1)

y(t) = Woutx(t), (2)

where x(t) is the N dimensional vector of reservoir
state activations. N is the reservoir size. It is empirically

selected and subsequently scaled to the optimal spectral radius
(Figs. 3(a) and (b)). Here each reservoir contains N = 30
neurons with a spectral radius of 0.95. u(t) is the input to
the reservoir, which in this case, is a single CTr-motor signal.
y(t) is the M dimensional vector of output neurons. In this
study, M is set to three, since only three different gaits (i.e.,
wave (y1), tetrapod (y2), and caterpillar (y3)) are used. The
wave, tetrapod, and caterpillar gaits are used for climbing
over an obstacle, walking on uneven terrain, and crossing a
gap3, respectively. Each output neuron, basically generates the
expected foot contact signal of each gait. In principle, more
gaits can be applied by adding further output neurons. As a
result, once learned, this enables each reservoir forward model
to do sensory/state prediction for a wide variety of walking
patterns without the need of any re-training. The reservoir time
scale is controlled by the parameter λ, where 0 < λ ≤ 1.
Here it is set to 0.9. A constant bias bo = 0.001 is applied to
the reservoir neurons. Win and Wsys are the input to reser-
voir weights and the internal reservoir recurrent connection
weights, respectively. They are set randomly from an uniform
distribution of [-0.1,0.1] and [-1,1] respectively. The reservoir
neurons are updated with a frequency of ≈ 27 Hz using a tanh
nonlinear activation function, fsys(.) = tanh(ax + b) where,
x is the right hand side of Eq. 1 inside the function fsys. Here
the parameters a and b, allow adjustment of the shape and
scale of the neuron transfer function (zoomed in view in Fig. 2
(b)) and are adapted through a generic intrinsic plasticity (IP)
mechanism [19]. The IP mechanism is based on the Weibull
distribution for unsupervised adaptation. In principle, adapting
the parameters of the reservoir neuron nonlinearity allows the
reservoir to homoeostatically maintain a stable firing rate and
at the same time prevent unwanted chaotic neural activity (see
[3] for more details).

The output neurons use a linear activation function. The
output weights Wout are calculated online using the recursive
least squares (RLS) algorithm at each time step, while the
training input u(t) is being fed into the reservoir. Wout are
calculated such that the overall error is minimized; thereby,
the network transforms the CTr-motor signal to the expected
foot contact signal correctly. We implement the RLS algorithm
using a fixed forgetting factor (λRLS < 1) as follows:

Here for each input signal u(t), the reservoir state x(t)
and network output y(t) are calculated using Eqs. 1 and 2.
e(t) is the online error calculated from the difference between
the desired output (i.e., here foot contact signal) and the
summation of all generated outputs. K(t) is the RLS gain
vector and ρ(t) the auto-correlation matrix updated at each
time step. The reservoir to output weights Wout are initially
set to zero. Exponential forgetting factor (λRLS) is set to a
value less than one (here, we use 0.99). The auto-correlation
matrix ρ is initialized as ρ(0) = I/β, where I is unit matrix
and β is a small constant (here, β = 10−4). Details of all
the fixed parameters and initial settings for the reservoir based
forward model networks are summarized in Table I.

3These three gaits were empirically selected among 19 gaits. Previous
studies show that wave and tetrapod gaits are the most effective gaits for
climbing and walking on uneven terrains, respectively. While in this study we
observe that the caterpillar gait is the best one for crossing a gap.
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Fig. 4. Weight adaptation during online learning. (a) Changes of 30 weights projecting to the first output neuron (y1) of the forward model of the right front
leg (R1) while walking with a wave gait. During this period, weights projecting to the second (y2) and third (y3) output neurons remain unchanged (i.e., they
are zero). (b) Changes of the weights to y2 while walking with a tetrapod gait. During this period, the weights to y3 still remain unchanged and the weights
to y1 converge to around zero. (c) Changes of the weights to y3 while walking with a caterpillar gait. During this period, the weights to y1 and y2 converge
to around zero. At the end of each gait, all weights are stored such that they will be used for locomotion in different environments. The Grey areas represent
transition phases from one gait to another gait and the yellow areas represent convergence. The gait diagrams are shown on the right. They are observed from
the motor signals of the CTr-joints (Fig. 5). White areas indicate ground contact or stance phase and gray areas refer to no ground contact during swing phase.
As frequency increases, some legs step in pairs (dashed enclosures). Note that one time step is ≈ 0.037 s.

TABLE I. THE LIST OF RESERVOIR NETWORK PARAMETER SETTINGS

Parameter Value
Reservoir size (neurons) 30
Number of output neurons 3
Number of input neurons 1
Reservoir neuron bias (bo) 0.001
Reservoir leak rate (λ) 0.9
RLS learning constant (β) 10−4

Non-linearity shape initialization (a) 1.0
Non-linearity scale initialization (b) 0.0
RLS learning rate (λRLS ) 0.99
Reservoir network sparsity 50 %
Input to Reservoir sparsity 50 %
Reservoir spectral radius 0.95

B. Learning the Forward Models

In order to train the six forward models in an online
manner, one for each leg, we let the simulated robot AMOS-II
walk under normal condition (i.e., walking on a flat terrain with
the three different gaits). Each gait is sequentially executed
for a certain period of time. Specifically, we let the robot
walk with a wave gait for 2500 time steps (Fig. 4a, right).

Afterward, we change to a tetrapod gait (Fig. 4b, right) and
finally to a caterpillar gait (Fig. 4c, right). In this way, synaptic
weights projecting from reservoir neurons to the first output
neuron (y1) correspond to the motor signal transformation of
the wave gait while synaptic weights projecting to the second
(y2) and third (y3) output neurons correspond to the motor
signal transformation of the tetrapod and caterpillar gaits,
respectively. In this experimental setup, the weights for each
gait converges within 2500 time steps. After each such learning
period, all the reservoir forward model weights were stored
in memory, such that they can be retrieved during testing
the network for different behavioral scenarios. The weight
adaptation of the different gaits during the online training
process is shown in Fig. 4. It was sufficient to carry out
the training process for a single run under normal walking
condition. This was finally used as reference to compare with
the foot contact signals generated for other walking conditions
like crossing a gap, climbing, and walking on uneven terrain.

Figure 5 shows an example of the motor signal transforma-
tions at the different gaits. It can be seen that the CTr-motor
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Fig. 5. (a-c) The CTr-motor signal of the right front leg (R1) for wave,
tetrapod, and caterpillar gaits, respectively. This motor signal is basically the
input of the forward model. (d-f) The foot contact signal (force sensor signal)
used as the target signal of the reservoir network. (g-i) The transformed motor
signal or the final output of the forward model (RF output signal).

signal of the right front leg (R1) (Fig. 5 a,b,c) is precisely
transformed into the expected foot contact (FC) signal. The
motor signals of the other legs are also precisely transformed
into the corresponding foot contact signals (not shown). Note
that the FC signals of the other legs show slightly different
periodic patterns.

During testing, the output of each trained forward model
(i.e., the expected FC signal, Fig. 5g,h,i) is used to compare it
to the actual incoming FC signal of the leg (Fig. 5d,e,f). The
difference (error signal) between them determines the walking
state, where, a positive value indicates losing ground contact
during the stance phase and a negative value indicates stepping
on or hitting obstacles during the swing phase. These values are
accumulated over time and then transmitted to the searching
and elevation control for leg adaptation. The accumulated error
is always reset to zero at the beginning of the swing phase (see
[14] for more details of the searching and elevation control).
For gap crossing, we use the accumulated error to control
tilting of the backbone joint (BJ) and shifting of the TC- and
FTi-joints such that the legs move extendedly forward (see the
experiments and results section below, Fig. 6). For climbing
and walking on uneven terrain (Fig. 7), we use them to control
shifting of the CTr- and FTi-joints such that the respective leg
searches for a foothold (i.e. extending the leg downwards till
foot contact signal is active). This mechanism only occurs in
the stance phase. In addition to such leg joint control, reactive
backbone joint control is also applied to control the BJ for
climbing (see [5] for details).

IV. EXPERIMENTS AND RESULTS

In this section, we present the experiments carried out
to assess the ability of the reservoir-based adaptive forward
models in a neural closed-loop control system (see Fig. 1)
at different behavioral conditions including crossing a gap,
climbing over obstacles and up a fleet of stairs, and walking on
uneven terrain. In all cases, we used the same learned forward

models (Section 3). In the case of gap crossing, we let AMOS-
II walk with a caterpillar gait (see Fig. 4c, right), such that each
pair of legs moves simultaneously.

As shown in Fig. 6(1), at the beginning AMOS-II walked
forward, straight towards the gap. During this period it per-
formed regular movements as in the case of normal walking
(walking on the flat surface of the first platform). Afterward,
it encountered a 15 cm gap (≈ 44% of body length - the
maximum crossable gap). In this situation, only its front legs
lost ground contact during the stance phase. This results in the
occurrence of the accumulated error signals of only the front
legs. In order to activate the BJ and adapt the leg movements
due to the error signals, the maximum accumulated error value
of the previous step (Fig. 6, red line) was used to control
the BJ and leg movements in the next step. This resulted in
the BJ to lean upwards incrementally at around 1020-1170
time steps (Fig. 6(2)). Simultaneously, the TC- and FTi-joint
movements of the left and right front legs were also adapted
accordingly. Due to a predefined time-out period for tilting
upwards, at around 1170 time steps (Fig. 6(3)), the backbone
joint automatically moved downwards. As a result, the front
legs touched the ground of the second platform at the middle
of the stance phase; leading to a decrease in the accumulated
error signals. In order to let the BJ to move back to the normal
position (−2 deg) another time-out period of 1200 time steps
was used to signal tilting downwards (Fig. 6(4)). Thereafter,
the TC- and FTi-joints performed regular movements. At
around 1300 time steps (Fig. 6(5)), the left and right hind legs
lost the ground contact leading to body tilting. As a result the
movements of the TC- and FTi-joints were slightly adapted.
Finally, AMOS-II successfully crossed the gap (as observed
from Fig. 6(6)).

Besides this experimental result, it is important to note
that both adaptive locomotion and reactive backbone joint
controllers have a distributed implementation, but they are
indirectly coupled by sensory feedback and the mechanical
structure of AMOS-II. In this way, the combined neural control
network driven by the sensor signals synchronizes leg and
backbone joint movements for stable walking and gap crossing.

Figure 7 shows that the neural mechanisms (see Fig. 1) not
only enable AMOS-II to successfully generate gap crossing
behavior (as shown above), but also allows it to climb over
an obstacle and up a fleet of stairs as well as to walk on
uneven terrain. In both cases, we directly used the accumulated
errors for leg movement adaptation. For climbing, the reactive
backbone joint control was also applied to the system (see [5]
for more details) along with a slow wave gait (see Fig. 4a,
right). Experimentally the wave gait was found to be the most
effective for climbing, which allows AMOS-II to overcome
the highest climbable obstacle (i.e., 15 cm height which
equals ≈ 86% of its leg length) and to surmount a fleet of
stairs. For walking on uneven terrain, a tetrapod gait (see
Fig. 4b, right) was used without the backbone joint control.
This is the most effective gait for walking on uneven terrain
(see also [14]). Recall that in all experiments the forward
models basically generate the expected foot contact signals
(i.e., sensory prediction) which are compared to the actual
observed signal. Errors between the expected and actual signals
during locomotion serve as state estimation and are used to
adapt the joint movements accordingly. It is important to note
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Fig. 6. Real-time data of walking and crossing a large gap. (a) The accumulated error (black line) and the maximum accumulated error value at the end of
each stance phase (red line) of the right front leg (R1). The accumulated error is reset to zero every swing phase. (b) The backbone joint (BJ) angle during
walking and gap crossing. The BJ stayed at a normal position (−2 deg) during normal walking. It leans upwards and then bent downwards during gap crossing.
(c-e) The TC-, CTr-, and FTi-joint angles of R1 during walking and gap crossing. The joint adaptation was controlled by the maximum accumulated error value
of a previous step (red line). Below pictures show snap shots of the locomotion of AMOS-II during the experiment. Note that one time step is ≈ 0.037 s. We
encourage readers to also see the video of this experiment at http://manoonpong.com/ComplexLocomotion/S1.wmv.

that, the best gait for each specific scenario was experimentally
determined (see also [14]) and fixed. However, this could
be easily extended with learning mechanisms (see [18] [4])
to switch to the desired gait when the respective behavioral
scenarios are encountered.

V. CONCLUSION

In this study, we presented adaptive forward models using
reservoir computing for locomotion control. Each model is
implemented on each leg of a simulated bio-inspired hexapod
robot. It is trained online during walking on a flat terrain
in order to transform an efference copy (motor signal) into
an expected foot contact signal (i.e., sensory prediction).
Afterward, the learned model of each leg is used to estimate
walking states by comparing the expected foot contact signal
with the actual incoming one. The difference between the
expected and actual foot contact signals is used to adapt the
robot’s leg through elevation and searching control. Each leg is
adapted independently. This enables the robot to successfully
walk on uneven terrains. Moreover, using a backbone joint,
the robot can also successfully cross a large gap and climb

over a high obstacle as well as up a fleet of stairs. In this
approach, basic walking patterns are generated by CPG-based
control. It is also important to note that the usage of reservoir
networks, as forward models in general, provides the added
benefit of an inherent representation of temporal memory (due
to the recurrent structure). The memory might be required to
overcome scenarios with time lags between expected sensory
signals and motor outputs or tasks with memory dependencies.
Furthermore, online adaptation of only the output weights
(readout) makes reservoir networks beneficial for simple and
robust learning. However, reservoir parameters (e.g., sparsity,
spectral radius, number of neurons) require proper tuning to
achieve optimal performance for a given task. Although here
we provided a proof of selecting some of these parameters,
more rigorous analysis of all free parameters will be carried
out in the future.

The concept of forward models with efference copies in
conjunction with neural control has been suggested since
the mid-20th century [8], [6] and increasingly employed for
biological investigations [22]. This is because it can explain
mechanisms which biological systems use to predict the conse-
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Fig. 7. Snap shots during climbing over a high obstacle, climbing up a fleet of stairs, and walking on uneven terrain. (a) AMOS-II walked with the
wave gait and approached a 15 cm high obstacle (1). It detected the obstacle using its range sensors installed at its front part. The low-pass filtered range
sensory signals control the BJ to tilt upwards (2) and then back to its normal position (3). Due to the missing foot contact of the front legs, the BJ moved
downwards to ensure stability (4). During climbing, middle and hind legs lowered downwards due to the occurrence of the accumulated errors, showing leg
extension, to support the body. Finally, it successfully surmounted the high obstacle (5). We encourage readers to also see the video of this experiment at
http://manoonpong.com/ComplexLocomotion/S2.wmv. (b) AMOS-II climbed up a fleet of stairs (1-5) using the wave gait as well as the reactive backbone
joint control. The climbing behavior is also similar to the one described in the case (a). We encourage readers to also see the video of this experiment at
http://manoonpong.com/ComplexLocomotion/S3.wmv. (c) AMOS-II walked with the tetrapod gait. During traversing from the uneven terrain (1-4) to the even
terrain (5), it adapted its legs individually to deal with a change of terrain. That is, it depressed its leg and extended its tibia to search for a foothold when
losing a ground contact during the stance phase. Losing ground contact information is detected by a significant change of the accumulated errors. We encourage
readers to also see the video of this experiment at http://manoonpong.com/ComplexLocomotion/S4.wmv.

quence of their action based on sensory information, resulting
in adaptive and robust behaviors in a closed-loop scenario. This
concept also forms a major motivation for robots inspired by
biological systems. In this context, our work verifies that a
combination of CPG-based neural control, adaptive forward
models with efference copies, and searching and elevation
control can be used for generating complex locomotion and
adaptive behaviors in an artificial walking system. In the future,
we will transfer the reservoir-based adaptive forward models
with neural control to our real hexapod robot AMOS-II and
test it in a real environment.
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