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Square-Root Sigma-Point Information Filtering
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Abstract—The sigma-point information filters employ a number of de-
terministic sigma-points to calculate the mean and covariance of a random
variable which undergoes a nonlinear transformation. These sigma-points
can be generated by the unscented transform or Stirling’s interpolation,
which corresponds to the unscented information filter (UIF) and the cen-
tral difference information filter (CDIF) respectively. In this technical note,
we develop the square-root extensions of UIF and CDIF, which have better
numerical properties than the original versions, e.g., improved numerical
accuracy, double order precision and preservation of symmetry. We also
show that the square-root unscented information filter (SRUIF) might lose
the positive-definiteness due to the negative Cholesky update, whereas the
square-root central difference information filter (SRCDIF) has only posi-
tive Cholesky update. Therefore, the SRCDIF is preferable to the SRUIF
concerning the numerical stability.

Index Terms—Central difference information filter, multiple sensor fu-
sion, nonlinear estimation, sigma-point filter, square-root filter, unscented
information filter.

I. INTRODUCTION

The information filter for nonlinear systems comprises two
stages—prediction and update [1], [2]. The state and measurement
prediction can be implemented by using finite-sample approximation
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techniques. For update, the existing nonlinear IF needs the so-called
pseudomeasurement matrix [2]. In essence, is the optimal
statistical linearization of the nonlinear measurement function in the
sense of minimizing the fitting error. This method is also referred to
as statistical linear regression [3]. This is the fundamental explanation
or derivation for the existing nonlinear information filter framework.
Therefore, any finite-sample approximation techniques can be used
in the prediction part of nonlinear information filter, such as the un-
scented transform [4] and Stirling’s interpolation [5]. In the literature,
the unscented transform based unscented information filter (UIF)
has been proposed by Kim et al. [1] and Lee [2]. On the other hand,
the Stirling’s interpolation based central difference information filter
(CDIF) has been proposed by Liu [6]. Since both UIF and CDIF use a
number of sigma-points to approximate the true mean and covariance
[7], they can be called sigma-points information filters (SPIFs). The
SPIFs requires the square-root of the covariance to calculate the
sigma-points, so that the covariance matrix has to be symmetric and
positive definite. As shown in [8], these two properties might be lost
due to errors introduced by arithmetic operations performed on finite
word-length digital computers, or ill-conditioned nonlinear filtering
problems, i.e., near perfect measurements.
In this technical note, we propose to use square-root forms for both

UIF and CDIF, which have shown improved numerical characteris-
tics compared to their regular forms. Here we call them square-root
unscented information filter (SRUIF) and square-root central differ-
ence information filter (SRCDIF) respectively. The square-root filters
predict and update the square-root covariance instead of the full co-
variance. In this way, the square-root filters achieve better numerical
characteristics than the regular ones, e.g., improved numerical accu-
racy, double order precision and preservation of symmetry [8]. The
first square-root filter was developed by Potter [9] and was used in the
Apollo manned mission [10]. Since then, many square-root extensions
of conventional filters have been introduced and analyzed. Our work
was inspired by Van der Merwe [11] who proposed square-root forms
of sigma-point Kalman filters. Here we introduce the square-root ex-
tensions of UIF and CDIF and their numerical advantages for solving
nonlinear state estimation.
This technical note is organized as follows. First, we briefly review

the CDIF algorithm for nonlinear estimation in Section II, and then
we introduce the SRCDIF and SRUIF in Section III and Section IV,
respectively. Simulation results of a reentry vehicle tracking problem
are presented and discussed in SectionV. Finally, the work is concluded
in Section VI.

II. CENTRAL DIFFERENCE INFORMATION FILTER

The CDIF employs Stirling’s interpolation to generate the sigma-
points, which can be further used to estimate the mean and covariance
of the system state. In general, the CDIF algorithm includes two steps:
prediction and measurement update which are described below. In case
of multiple sensors, a global information fusion form of the measure-
ment update can be derived [6].

A. Prediction

Here we consider the discrete-time nonlinear dynamic system

(1)

where is the state vector of the system at time step , and
is Gaussian noise.
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First, the state vector is augmented with the noise variable and the
corresponding augmented covariance matrix is derived by

(2)

A symmetric set of sigma points is generated

(3)

where is a scaling parameter and is the dimension of the state .
The subscript indicates the column of thematrix. Each sigma point

contains the state and noise variable components

(4)

These sigma points are further passed through the nonlinear function
(1), such that the predicted sigma points for the discrete time are
derived as

(5)

Finally, the first two moments of the predicted state vector are obtained
by the weighted sum of the transformed sigma points:

(6)

(7)

where and
. The corresponding weights for the mean

and covariance are defined as

(8)

where is the scalar central difference step size. If the random
variables obey a Gaussian distribution, the optimal value of is
[11].
As stated in [12], the information matrix and information vector are

the dual of the mean and covariance, so that the predicted information
matrix and the information vector are derived as

(9)

(10)

B. Measurement Update

The measurement function of the nonlinear system is defined as

(11)

where is the measurement and is the Gaussian noise
of the measurement.

The sigma points used for the measurement update are derived as:

(12)

The predicted measurement points are obtained by transforming the
sigma points through (11)

(13)

Furthermore, the mean and cross-covariance are derived by

(14)

(15)

Finally, the measurement update of the information vector and the
information matrix are derived as

(16)

(17)

where and are information contribution terms for the informa-
tion vector and matrix respectively, which can be derived by

(18)

(19)

The derivation of (18) and (19) is given in [1] and [2].

C. Global Information Fusion

For multiple sensor fusion, if the measurement noises between the
sensors are uncorrelated, the measurement update for information fu-
sion is simply expressed as a linear combination of the local informa-
tion contribution terms [13]:

(20)

(21)

where is the number of sensors. (20) and (21) show the main ad-
vantage of the information filters, which is the efficient measurement
update. This superiority makes information filters more suitable for
multiple sensor fusion than the Kalman filters. Note that the informa-
tion matrix is the inverse of the covariance matrix as shown in
(10). When there is no prior information concerning the initial state, the
Kalman filters have difficulties to cope with this situation since is
infinite. However, the information filters can deal with this special sit-
uation well, because . Other comparisons between
information filters and Kalman filters can be found in [12].

III. SQUARE-ROOT CENTRAL DIFFERENCE INFORMATION FILTER

The CDIF requires the square-root of the covariance to calculate the
sigma-points in each discrete time update and measurement update, as
shown in (3) and (12). The square-root operation is computationally
expensive and demands that the covariance matrix must be positive
semi-definite. To avoid the square-root operation and improve the nu-
merical stability, we introduce the square-root central difference infor-
mation filter (SRCDIF).
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The square root form has important numerical advantages over the
regular one: First, since the square-root of the covariance matrix is di-
rectly available, the SRCDIF saves computational cost for generating
the sigma-points. Second, the numerical accuracy is improved because
the condition number of the square root of the covariance matrix is only
half of the covariance matrix [12]. Third, the square-root filters can
achieve twice the effective precision of the regular forms [14]. Fourth,
the symmetry and nonnegative properties of the covariance matrix are
kept [12].

A. SRCDIF for State Estimation

The SRCDIF benefits from three powerful matrix factorization tech-
niques: QR decomposition, Cholesky factor update and efficient least
squares. In the following, we will use qr, chol, cholupdate to refer to
the QR decomposition, Cholesky decomposition, and Cholesky factor
update, respectively.

Algorithm 1 SRCDIF for state estimation

• Initialization:
, ,

and .
• For :
1) Generate sigma points for prediction:

(22)

(23)

2) Prediction equations:

(24)

(25)

(26)

(27)

(28)

(29)

(30)

3) Generate sigma points for measurement update:

(31)

4) Measurement update equations:

(32)

(33)

(34)

(35)

(36)

(37)

• QR decomposition. In the CDIF, the square-root of the covari-
ance matrix is derived by Cholesky decomposition on :

where is a lower triangular matrix and fulfills
. If we know , the square-root factor can be di-

rectly calculated from by QR decomposition: . If
the matrix , then the computational complexity of a
QR decomposition is .

• Cholesky factor update. If the original update of the covariance
matrix is and is the Cholesky factor, then the rank
1 update of is where is the up-
date vector and means the positive or negative up-
date. The positive update is usually numerical stable, but the neg-
ative update may destroy the positive definite property of [14],
[15]. If is a matrix, we can update each column of one by one
in a loop. For each column vector, the computational complexity
is . This procedure can alternatively be implemented as

using QR decomposition without the loop
updates.

• Efficient least squares. The least-squares solution for the linear
equation can be solved efficiently using forward and back
substitution if the Cholesky factor is known and satisfies

. For example, we can solve the linear equation by
. This operation has computational complexity

.
The whole process is shown in Algorithm 1, where is the scaling

parameter, is the dimension of the state, and are the process
noise covariance and observation noise covariance, respectively,
and are weights calculated in (8), and is the identity matrix.
In the prediction step, the Cholesky factor is updated using QR

decomposition on the weighted sigma points. This step replaces the
update in (7) and has the complexity . The information vector

is derived using efficient least squares
in (29). Because is a square and triangular matrix, we can directly
use back-substitution for solving without the need for matrix inver-
sion. The back substitution only requires . Next is the calculation
of the square-root information matrix in (30). This step requires a
QR decomposition since is a upper triangular matrix and is a
lower triangular matrix. and meet . To
avoid the inversion, here we use efficient least squares to solve as

, where is the identity matrix.
In the measurement update step, the updated information vector in

(36) is derived from (16) as follows:

(38)

where as shown in (35). Since and
are square and triangular matrices, can be calulated using effi-

cient least squareswithout thematrix inverse. The updated information
matrix in (17) can be rewritten as

(39)
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Because is the Cholesky factor of the information matrix , the
updated Cholesky factor of can be derived using the Cholesky
update. If the observation dimension is , the updated square-root in-
formationmatrix is calculated in (37) by applying an -sequential
Cholesky update to . The columns of matrix are update vectors.
This sequential Cholesky update only requires .

B. Square-Root CDIF for Multiple Sensor Fusion

In the case where information from multiple sensors is available,
i.e., , we can fuse this using the Square-Root CDIF. For the
sensor, the information contribution for the information vector is

(40)

where is defined in (35). The information contribution for the square-
root information matrix is

(41)

The final estimated result is derived by:

(42)

(43)

IV. SQUARE-ROOT UNSCENTED INFORMATION FILTER

Algorithm 2 SRUIF for state estimation

• Initialization:
, , ,

and .
• For :
1) Generate sigma points for prediction:

(44)

(45)

2) Prediction equations:

(46)

(47)

(48)

(49)

(50)

(51)

(52)

3) Generate sigma points for measurement update:

(53)

4) Measurement update equations:

(54)

(55)

(56)

(57)

(58)

(59)

In this section we consider the square-root implementation of the
UIF. Because the UIF uses the unscented transform to calculate the
sigma points, the architecture of the Square-Root unscented informa-
tion filter (SRUIF) has few differences from the SRCDIF. As men-
tioned in Section III, the main techniques behind the square-root form
estimators are:QR decomposition,Cholesky factor update and efficient
least squares. We show how to use these in the SRUIF in the following.
The SRUIF is shown in Algorithm 2, where in (45)

is the composite scaling parameter, , and
are scaling parameters that determine how far the sigma points spread
from the mean value [11], is the dimension of the state, and
are process noise covariance and observation noise covariance respec-
tively, and are weights calculated by ,

, ,
and in (50) is the signum function.
We compare the SRUIF in Algorithm 2 to the SRCDIF in Algo-

rithm 1. First, the SRUIF uses the unscented transform to calculate the
sigma points in (45) and (53), where the scaling parameter becomes

and . In contrast to only one
scaling parameter used in the SRCDIF, the SRUIF depends on three
parameters , and . Second, since the weight might be nega-
tive, we need an additional cholupdate to update the Cholesky factor

in (50), whereas the SRCDIF does not need this step since all
weights used for the covariance update are positive. As we mentioned
in Section III-A, the negative update might destroy the positive definite
property of the Cholesky factor, such that the SRCDIF is preferable
to the SRUIF concerning the numerical stability. Finally, for multiple
sensor fusion, the SRUIF is equivalent to the SRCDIF in (42) and (43).

V. EXPERIMENTS

In this paper, two individual experiments are demonstrated. The first
experiment uses a normal noisy measurement to show the performance
and computational cost of the proposed filters. In contrast, the second
experiment utilizes a near perfect measurement to illustrate the im-
proved numerical characteristics of the proposed square-root filters.
Here we consider a classic space-vehicle reentry tracking problem: a
high speed vehicle is tracked by radars located on the surface of the
earth as shown in Fig. 1(a). The state vector of the filter consists of the
position ( and ), the velocity ( and ) and a parameter related
to the aerodynamic force . As described in [4], [16], the vehicle
state dynamics for the discrete case are given by

(60)

where are Gaussian process noises, is the
drag-related force, is the gravity-related force, and
is the sampling time. The force terms are given by


