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Stochastic Lane Shape Estimation
Using Local Image Descriptors
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Abstract—In this paper, we present a novel measurement model
for particle-filter-based lane shape estimation. Recently, the parti-
cle filter has been widely used to solve lane detection and tracking
problems, due to its simplicity, robustness, and efficiency. The
key part of the particle filter is the measurement model, which
describes how well a generated hypothesis (a particle) fits current
visual cues in the image. Previous methods often simply combine
multiple visual cues in a likelihood function without considering
the uncertainties of local visual cues and the accurate probability
relationship between visual cues and the lane model. In contrast,
this paper derives a new measurement model by utilizing multiple
kernel density to precisely estimate this probability relationship.
The uncertainties of local visual cues are considered and modeled
by Gaussian kernels. Specifically, we use a linear-parabolic model
to describe the shape of lane boundaries on a top-view image and
a partitioned particle filter (PPF), integrating it with our novel
measurement model to estimate lane shapes in consecutive frames.
Finally, the robustness of the proposed algorithm with the new
measurement model is demonstrated on the DRIVSCO data sets.

Index Terms—Lane tracking, linear-parabolic model, local vi-
sual cues, multiple kernel density, partitioned particle filter (PPF).

I. INTRODUCTION

AUTONOMOUS navigation on various roads requires the
knowledge of lane information, which is also an open

problem for driver-assistance systems. To extract lane boundary
information, vision is a natural and powerful tool. However,
high curvature, occlusions, varying illumination, and unmarked
or partly marked lanes in the image are still challenging situa-
tions for this task [1], [2].

In general, locating lane boundaries in image sequences
requires two steps: lane detection and lane tracking. Lane detec-
tion is to locate the lane boundaries in an image without strong
prior knowledge regarding the lane position [3]. By contrast,
the lane tracking is a procedure that tracks the lane edges
from frame to frame by constraining the probable lane location
in the current image using information about the lane location
in previous images [4]. Lane detection can be regarded as an
initialization step for lane tracking. To detect and track lane
boundaries in images, we need some informative visual cues.
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Lane markers on the road are often painted in white or yellow,
which contrasts with the dark concrete of the road. This white
and yellow can be used as color cues for lane markers. The
contrast between lane markers and concrete can be represented
by gradient information, e.g., high contrast means high gra-
dient magnitude. In addition, lane boundaries often can be
represented by a mathematical model, e.g., straight lines and
parabolic or circular curves. Here, we call this mathemati-
cal model of lane boundaries the lane model and parameters
defined in this mathematical model as the lane parameters.
Therefore, lane detection usually becomes a procedure that
estimates lane parameters of the lane model from image cues,
whereas lane tracking updates the parameters of this lane model
for the remaining frames.

Depending on whether a prior knowledge of lane parameters
is available in the lane detection step, previous methods can be
grouped into two classes: bottom-up and top-down methods.

• Bottom-up methods try to obtain a lane model from image
cues. To derive such a lane model, lane markers are usually
extracted from images first. For instance, a threshold [5], a
kernel mask [6], or a classifier [2], [7] can be used to find
possible lane markers. This extraction step may generate
a lot of edges that are not real lane markers; therefore,
further processes are required, e.g., grouping [2], [8] and
curve fitting [9]–[12].

• Top-down methods try to find optimized parameters of
a known lane model that fits measured image cues best.
Since the lane model is known, a set of hypotheses of lane
parameters can be generated. To find out which hypothe-
ses fits the measured image cues, usually, a likelihood
function is used. This likelihood function can be defined
as a mathematical function that describes the relationship
between lane parameters and image cues. For evaluating
these hypotheses, an optimization algorithm can be used,
e.g., the metropolis algorithm [13], Tabu search [4], or
importance resampling of particle filters [14]–[17].

Top-down methods in general are more flexible than bottom-
up methods for combining multiple visual cues. Bottom-up
methods usually need an edge extractor to find out possible
lane markers, which often fails to locate the lane boundaries
in images with strong distracting edges [4]. Moreover, the edge
detector normally requires a threshold to detect potential lane
edges. It is difficult to select such a threshold that eliminates
the detection of noise edges without eliminating the detection of
true lane edge pixels [18]. On the other hand, top-down methods
can directly work on intensity and gradient information without
thresholding. In addition, the likelihood function defined in
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top-down methods can be any mathematical function that de-
scribes the relation between the lane model and image cues.

The likelihood function, which represents how well a hy-
pothesis of lane parameters fits current image cues, is the key
part of the most popular top-down methods. Previous methods
try to derive this likelihood function by simply combining
multiple visual cues in a multiplicative or additive manner
assuming that visual cues are independent, without considering
the uncertainties of local visual cues and the probability relation
between the lane model and these visual cues. In contrast to
others, we derive a new likelihood function by using multiple
kernel density to estimate the probability density function of
lane parameters. Here, the likelihood function is seen as a
probability distribution function of lane parameters given image
cues. Therefore, to derive the likelihood function is to estimate
the probability density function of lane parameters.

In this paper, the probability distribution function of lane
parameters is estimated by multiple kernel density, and the
uncertainties of visual cues are modeled by Gaussian kernels.
This idea was inspired by Dahyot [19], who proposed to use
multiple kernel density to estimate straight lines, which is called
statistical Hough transform (SHT). This SHT method is more
robust than the standard Hough transform against image noise,
as shown in the original paper. In addition, the SHT can directly
work on the image density and gradient information without
any thresholding. The main contribution of this paper is that
we extend her idea to parabolic and linear-parabolic cases since
most of lane boundaries have curved shapes.

After deriving the likelihood function, we use a partitioned
particle filter (PPF) that is a novel top-down method to do
lane detection and tracking. The original SHT algorithm is
computationally expensive since no prior knowledge can be
used; therefore, the SHT has to process all image data for each
hypothesis of the lane parameters. In contrast to the SHT, the
PPF can use prior knowledge of the lane model to generate a
number of hypotheses, i.e., particles. Then, these hypotheses
are verified by the derived likelihood function (also called
measurement function) using nearby image data, which can
greatly decrease the computational cost. Moreover, in contrast
to Kalman-filter-based lane tracking methods [7], [20], the PPF
maintains multiple hypotheses of lane parameters at any time,
which is very useful to deal with challenging situations, e.g.,
occlusions, shadows, and lane changes. Furthermore, the PPF
is better for handling high-dimensional states than the standard
particle filter, as discussed in [14] and [21].

To demonstrate the proposed ideas, we choose a linear-
parabolic model as the lane model in top-view images. The
linear-parabolic lane model was introduced by Jung and Kelber
[22], which is a trade-off between accuracy of the fit and ro-
bustness with respect to image artifacts. In contrast to Jung and
Kelber who use the linear-parabolic model in the original im-
age, we employ this model in the top-view image. The reasons
are as follows. First, the parallel shape of the linear parts in the
top-view image can be used to check the goodness of generated
particles. Second, the parabolic model on the top-view image
can be used to handle the curvature of lane boundaries. Third,
this model can be well fitted into the PPF framework, which
will be discussed in Section IV. The top-view images are pro-

Fig. 1. (a) Image from the data set, where the lane markers are not parallel.
(b) Transformed image after applying IPM shows a top view of the scene, and
the lane markers appear nearly parallel.

duced by the well-known inverse perspective mapping (IPM)
algorithm. IPM is an image transformation that removes the
perspective effect, which is based on the flat ground hypothesis
with known extrinsic and intrinsic parameters of the camera
[23]. It remaps pixels from the original image to a top-view
image that has a different coordinate system. This remapping
procedure can be done by a fast lookup table with distortion
compensation [24]. As the resolutions for near and far objects
are different in the original image, an interpolation process is
needed in the IPM algorithm. A resulting example image is
shown in Fig. 1(b), which is a top-view image of Fig. 1(a) with
cubic interpolation. We can see that the lanes in the IPM images
look parallel and that the width between lanes becomes nearly
constant. We note that the use of IPM is not mandatory but has
proven to be useful because IPM creates a somewhat cleaned-
up and less complex image where distractors (sky, objects, etc.,)
are downplayed. Clearly, IPM can also produce problems (for
example aliasing at large distances), but we still observed that
IPM combined with a hierarchical model works well, mitigating
such problems to a large degree.

This paper is organized as follows. Section II introduces the
local image descriptors used in the algorithm. In Section III,
the multi-kernel density estimation for line, parabolic, and
linear parabolic are presented. Section IV describes the PPF for
estimation of linear-parabolic parameters. Results and analyses
are given in Section V, which introduces experimental results
on different road situations. Finally, this paper is concluded in
Section VI.

II. LOCAL IMAGE DESCRIPTORS

To detect lane markers from images, we need to define image
descriptors (image cues) that describe the appearance features
of lane markers. For every pixel in an image, basic descriptors
can be defined, such as image intensity Ic, position (x, y),
and gradient (Ix, Iy). Furthermore, advanced descriptors can be
derived from these basic descriptors, e.g., the magnitude, align-
ment, and direction of the gradient: ΔI , ρ, and θ, respectively.

In practice, it is not necessary to use all descriptors since
their information is redundant and noisy. In our case, we choose
descriptors that are directly related to the lane model, i.e., the
position (x, y) and gradient orientation θ of lane markers. Their
uncertainties can be modeled by Gaussian kernels, which will
be discussed in the following.
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In addition, we also consider the magnitude of gradient ΔI
and image intensity Ic since lane markers often have a specific
color that is in contrast to the concrete background. However,
the magnitude of gradient and image intensity are not directly
related to the lane model; therefore, we need to find another
way to put this information into the measurement model (like-
lihood function). Since the magnitude of gradient indicates the
strength of edges, its inverse can be used as the variance of the
gradient orientation θ, i.e., σ2

θ = (1/ΔI). For instance, θ has a
low variance if ΔI is high, whereas the weak edges have a high
variance since ΔI is low. For the image intensity Ic, we simply
combine its kernel with the probability distribution function of
the lane parameters to form the final measurement model of the
particle filter, which will be discussed in Section IV.

III. LANE PARAMETER ESTIMATION BY

MULTIPLE KERNEL DENSITY

Here, we use multiple kernel density to estimate the prob-
ability distribution of lane parameters given the observation
space Qxyθ = {xi, yi, θi, i = 1, . . . , n} of local image descrip-
tors. Estimation of multiple kernel density is a nonparametric
method to estimate the probability distribution function of
random variables, given a number of samples of these variables.
In our case, the random variables are lane parameters, whereas
the samples are image pixels in the observation space Qxyθ.
Here, we first introduce the previous work of estimating straight
lines using multiple kernel density, which is also discussed in
[19]. After that, we extend this idea to estimate parabolic and
linear-parabolic shapes, which is the main contribution of this
paper.

A. Line Model

For a straight line model, we have

ρ = x cos θ + y sin θ (1)

where x and y are image coordinates, and ρ and θ are line
parameters, which need to be estimated.

The probability distribution p(ρ, θ, x, y|Qxyθ) can be written
according to the Bayes rule as

p(ρ, θ, x, y|Qxyθ) = p(ρ|x, y, θ,Qxyθ) · p(x, y, θ|Qxyθ). (2)

In (2), the first probability p(ρ|x, y, θ,Qxyθ) is determined by
(1), and the second probability p(x, y, θ|Qxyθ) can be modeled
by the multi-kernel density function. Thus, (2) becomes

p(ρ, θ, x, y|Qxyθ) = δ(ρ− x cos θ − y sin θ)
1
n

∑
i

KxKyKθ

(3)

where δ is the Dirac delta function, and Kx = N (xi, σ
2
xi
),

Ky = N (yi, σ
2
yi
) and Kθ = N (θi, σ

2
θi
) are Gaussian kernels.

σ2
xi

, σ2
yi

, and σ2
θi

are variances of xi, yi, and θi, respectively. In
the experiment, we set σ2

xi
= 1, σ2

yi
= 1, and σ2

θi
= (1/ΔI).

Fig. 2. Statistical distribution p(ρ, θ|Qxyθ) given observation space Qxyθ

of Fig. 1(b).

The distribution p(ρ, θ|Qxyθ) can be obtained by integrating
(3) over (x, y)

p(ρ, θ|Qxyθ) =
1
n

∑
i

Kθ ·Gli(ρ, θ) (4)

where

Gli(ρ, θ) =
1√

2π
(
σ2
xi
cos2 θ + σ2

yi
sin2 θ

)

·exp
(
−(ρ− xi cos θ − yi sin θ)

2

2
(
σ2
xi
cos2 θ + σ2

yi
sin2 θ)

)
)
. (5)

A detailed description of (5) can be found in [19]. Given
observation space Qxyθ of an image, the statistical distribution
of the lane parameters can be calculated using (4). One example
result is shown in Fig. 2.

B. Parabolic Model

Similar to the line model estimation, the parabolic lane model
also can be estimated using kernel densities. However, the
parameter θ is not constant in the parabolic case. To model
Kθ correctly, the gradient information is introduced to our
parameter estimation.

For a parabolic lane model, we have

x = c+ dy + ey2 (6)

where c, d, and e are the parabolic lane parameters. The orien-
tation of the gradient θ is derived by the first-order derivative
of (6)

θ = a tan(−2ey − d). (7)
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The probability distribution p(c, d, e, x, y, θ|Qxyθ) can be
written as

p(c, d, e, x, y, θ|Qxyθ)=p(c, d, e|x, y, θ,Qxyθ)·p(x, y, θ|Qxyθ)
(8)

where p(c, d, e|x, y, θ,Qxyθ) is determined by (6) and (7), and
the second probability term p(x, y, θ|Qxyθ) can be modeled by
multiple Gaussian kernel density

p(c, d, e, x, y, θ|Qxyθ) = δ1 · δ2 ·
1
n

∑
i

KxKyKθ (9)

where δ1=δ(c+dy+ey2−x) and δ2=δ(θ−a tan(−2ey−d)
are Dirac functions, and Kx, Ky , and Kθ are Gaussian kernels,
which are the same as in (3). The distribution p(c, d, e|Qxyθ)
can be obtained by integrating (9) over (x, y, θ) as follows:

p(c, d, e|Qxyθ) =
1
n

∑
i

Gpi(c, d, e) (10)

where

Gpi(c, d, e) =

∫ ∫ ∞∫
−∞

δ1δ2KxKyKθ dxdydθ. (11)

Equation (11) is also known as the Radon transform. Because
x and θ are represented by y using δ1 and δ2 functions, the
threefold integration over (x, y, θ) in (11) is simplified to a
single integration over y

Gpi(c, d, e) =

∞∫
−∞

K ′
xKyK

′
θ dy (12)

where

K ′
x =

1√
2πσ2

xi

exp

(
− (c+ dy + ey2 − xi)

2

2σ2
xi

)
(13)

K ′
θ =

1√
2πσ2

θi

exp

(
− (a tan(−2ey − d)− θi)

2

2σ2
θi

)
. (14)

Here, we cannot obtain an analytic expression of the Radon
transform (12). Instead, we use the Gauss–Hermite numerical
method to calculate Gpi [25].

C. Linear-Parabolic Model

The linear-parabolic model includes two parts: the linear part
and the parabolic part. The linear part is used to model the lanes
in the near vision field, whereas the parabolic part is used for
the lanes in the far vision field [22], [26] as follows:

x = f(y) =

{
a+ by, if y > ym
c+ dy + ey2, if y ≤ ym

(15)

where ym is the border between the near and far vision fields,
and the observation space Qxyθ is divided into two subspaces:
Qnear and Qfar. In the following, we assume that the separating
line ym is constant and at half of the image height, as shown
in Fig. 3.

Fig. 3. Coordinate system of the image and the linear-parabolic multiple-lane
model. In this case, the number of lanes is three. ym is the separating line
between the linear part (near vision field) and the parabolic part (far vision
field). dlm and dmr are distances between the multiple lanes.

We impose continuity and differentiability conditions on
function (15) at point ym, such that f(y−m) = f(y+m) and
f ′(y−m) = f ′(y+m). Combining with (1), we can further
obtain ⎧⎪⎪⎨

⎪⎪⎩
a = ρ

cos(θ)

b = − tan(θ)
c = ρ

cos(θ) +
ym

2 (− tan(θ)− d)

e = 1
2ym

(− tan(θ)− d) .

(16)

According to (16), the linear-parabolic model is totally deter-
mined by three parameters: (ρ, θ, d), given ym. The coordinate
system of the linear-parabolic model is shown in Fig. 3.

To estimate the linear-parabolic parameters (ρ, θ, d), we first
estimate the linear part (ρ, θ) by (4) using observation Qnear,
and then, we estimate the parabolic part d by (10) using
observation Qfar. Because c and e are functions of (ρ, θ, d),
we find

p(d|Qfar) =
1

nfar

∑
i

Gpi (c(ρ, θ, d), d, e(ρ, θ, d)) . (17)

This hierarchical process can be implemented by the PPF, as
shown in Section IV.

IV. PARTITIONED PARTICLE FILTER FOR LANE DETECTION

AND TRACKING

Here, we mainly illustrate the idea of how to use the prob-
ability distribution function of the lane parameters derived
from multiple kernel density in the particle filter for lane
detection and tracking. In [19], line parameters were estimated
by combining the Hough transform with a multikernel proba-
bility model, i.e., SHT. However, the SHT is computationally
expensive, and no prior information is used. By contrast, we
use the PPF instead of the Hough transform to estimate the
lane parameters. The measurement model of the PPF is derived
by combining the probability distribution function of the lane
parameters with the image intensity kernel. The PPF was de-
signed for solving high-dimensional state problems [21]. First,
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Fig. 4. Flowchart of our lane detection and tracking algorithm.

the high-dimensional state space in the PPF is partitioned into
multiple subspaces. After that, each subspace is hierarchically
estimated. This hierarchical process increases efficiency and
robustness of the condensation algorithm [14].

For the linear-parabolic lane shape estimation, the state space
of lane parameters in the PPF can be grouped into two sub-
spaces: the linear part and the parabolic part. The PPF first
estimates the linear part and then the parabolic part. Our whole
algorithm is shown in Fig. 4. In the image preprocessing part,
the perspective effect is removed by the IPM algorithm; then,
the local image descriptors are calculated, e.g., gradient magni-
tude and orientation. After that, the initialization samples drawn
from the default lane model are introduced to the particle array.
These initialization samples can be used to recover the state
from tracking failure [16]. Finally, the linear and parabolic parts
are hierarchically estimated using the PPF with the observation
model based on the multi-kernel density.

A. Multiple-Lane Model

Here, we use a simple multiple-lane model, as shown in
Fig. 3. Additional conditions arising from the parallel lanes
can be used to check the quality of the particles. For instance,
the distances between each pair of nearby lanes are larger than
12 pixels, e.g., dlm > 12 and dmr > 12, and the difference
between dlm and dmr is smaller than five pixels.

B. State Definition

In Section III-C, we introduce the probability estimation of
linear-parabolic lane parameters from local image descriptors.
The linear-parabolic lane model is defined by three parameters
(ρ, θ, d). For the situation that the road has multiple lanes,
the whole state probability distribution at time t is given by
a set of N particles Xt = {xj

t , j = 1, . . . , N}, where xj
t =

{ρjk, θ
j
k, d

j
k, k = 1, . . . , nl} is a single-particle state, and nl is

the number of lanes.

The dimension of the state xj
t is 3 × nl, which depends

on the number of lanes nl. In case of three lanes nl = 3,
state xj

t has nine parameters. That means we need a large
number of particles to correctly model this high-dimensional
state distribution, which leads to high computational
cost.

The solution to decrease the number of particles is to use
the PPF, which separates the state xj

t into two subgroups:
the linear part Sl = {ρjk, θ

j
k, k = 1, . . . , nl} and the parabolic

part Sp = {djk, k = 1, . . . , nl}. The subgroups are estimated
by partitioned sampling in a hierarchical way. Because each
subgroup requires less number of particles, the computational
cost is lower.

C. Image Preprocessing

To remove the perspective effect of the image, an IPM
algorithm is implemented on consecutive frames; then, the local
gradient magnitude and orientation are calculated using the
Sobel operator from the top-view image. To save computational
cost, we threshold the gradient magnitude image to get an
image mask. Only the pixels that have gradient values over this
threshold are used as measurements, i.e., this threshold is set as
ten in our experiments.

D. Initialization Samples

When lanes suddenly disappear, e.g., when occluded by a car,
a robust algorithm has to maintain the best hypothesis or to find
the lanes again when possible. The solution is to introduce a
constant percentage of initialization samples of the PPF into the
state distribution at every iteration. The initialization samples
are drawn from the distribution of the default lane models.
In our algorithm, we use N ′ = 50 initialization particles. This
mechanism can recover the lane state from failures [4]. Here,
we use the straight lane model as the default lane model,
such that the value of d in random samples is defined as
d = b = − tan(θ).

E. Linear Part Estimation

The linear part estimation includes two steps: the first step
is state prediction using a random-walk probability model. The
second step is resampling using a specific observation model,
i.e., the multikernel density model. Finally, only the particles
that have high weight values are kept. This resampling process
follows the idea of “survival of the fittest” [27].

1) Linear Part Prediction: Assuming the change of the lane
boundary between two consecutive frames is small, a normal
distribution can be used to model the state transition of the jth
particle as

p
(
x̂lj
t |xj

t−1) = N (Alxj
t−1,Σ

l
)

(18)

where N is the normal distribution. The matrix Al is an identity
matrix as we assume that the lane boundaries have smooth
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changes, and Σl is the covariance that handles the difference
of lane boundaries between two consecutive frames. Because
we only predict the linear part, Σl is defined as

Σl = diag
{
V l
k , k = 1, · · · , nl

}
(19)

where diag is the diagonal matrix function, and V l
k =

{σ2
ρk
, σ2

θk
, 0}. σ2

ρk
and σ2

θk
are the covariances of the Kth

lane parameters ρk and θk. The predicted particle set is X̂ l
t =

{x̂lj
t , j = 1, . . . , Nl}, where Nl = N ′ +N is the number of

particles used in the linear part estimation.
2) Linear Part Resampling: The observation space Ql

k of
the linear part describes the local features in the image. For the
jth predicted particle, the measurement of the kth lane is zljkt,
which includes nl

k pixels in Ql
k that near the predicted lane. The

observation model is derived from (4) with additional image
intensity information

p
(
zljkt|x̂

lj
t

)
=

1

nl
k

∑
i

Kci ·Kθj
kt
·Gli

(
ρjkt, θ

j
kt

)
(20)

where Kci = N (μc, σ
2
c ) is the Gaussian kernel model of the

color intensity information, and μc and σ2
c are the mean and the

covariance of this model. The weight for the jth particle is

wlj
t = η

nl∏
k=1

nl
kp

(
zljkt|x̂

lj
t

)
(21)

where η is a normalization factor, which ensures that the
weights sum to 1. The number of candidate pixels nl

k is consid-
ered as an important factor for weighting the particles because
only the pixels that have higher gradient magnitude values are
selected as candidate measurements. Finally, the new particle
set X l

t = {xlj
t , j = 1, . . . , Np} is obtained by resampling X̂ l

t

based on the weights where Np is the number of particles used
to estimate the parabolic parameters. Those particles in X̂ l

t that
have high weights will be kept, and the others that have lower
weights will be removed from the particle set [28].

F. Parabolic Part Estimation

The algorithm for the parabolic part estimation is similar to
the linear part, but the number of particles and the observation
model used for estimation are different.

1) Prediction of Parabolic Part: The normal distribution is
also used to model the state transition of the curved part as
follows:

p
(
x̂pj
t |xlj

t−1

)
= N

(
Apxlj

t−1,Σ
p
)

(22)

where N is a normal distribution, Ap is the identity matrix, and
Σp is the covariance defined as

Σp = diag {V p
k , k = 1, · · · , nl} (23)

where V p
k = {0, 0, σ2

dk
}, and σ2

dk
is the covariance of the

parabolic parameter dk for the kth lane. As a result, the pre-
dicted particle set X̂p

t = {x̂pj
t , j = 1, . . . , Np} is obtained.

2) Resampling of the Parabolic Part: For the jth particle,
the measurement of the kth lane in the far-vision-field obser-
vation space Qp

k is zpjkt , which corresponds to np
k pixels in Qp

k

that are near the predicted lane. The observation model can be
derived from (17) as

p
(
zpjkt |x̂

pj
t

)
=

1
np
k

∑
i

Kci ·Gpi

(
ρjkt, θ

j
kt, d

j
kt

)
. (24)

The weight for the jth particle using the given observation
model is

wpj
t = ηA

nl∏
k=1

np
kp

(
zpjkt |x̂

pj
t

)
(25)

where η is the normalization factor. This process is called
weighted resampling because it has an additional term A =
(1/wlj

t ), such that it does not alter the distribution represented
by the particle set [29]. However, this weighted resampling
can introduce the impoverishment effect on the particle set
[30]–[32]. To avoid this effect of the original PPF algorithm and
to enforce the importance of the linear part, we set A = (1/nl

k).
After resampling X̂p

t by the weights, the new particle set Xt =
{xpj

t , j = 1, . . . , N} for the next iteration is obtained, and the
weights are reset to be equal.

V. RESULTS

To demonstrate the proposed algorithm, we selected two
data sets from the DRIVSCO database [8], [33]: the Suburban
Bridge data set and the Trailer data set. These data sets contain
a variety of challenging situations like high-curvature roads,
partly marked and occluded lanes, etc.

As aforementioned in Section I, the main contribution of
this paper is the new measurement model derived by the
multiple kernel density estimation. To evaluate the proposed
model, two algorithms are required in the experiment: the PPF
with the proposed multiple-kernel-density-based measurement
model (PPF-Kernel) and the PPF with the measurement model
that only uses image intensity and edge information (PPF-
NoKernel), In other words, we compare the PPF-Kernel to the
PPF-NoKernel to show the performance of the multiple-kernel-
density-based measurement model.

For a quantitative analysis, we manually choose the lane
markers in the IPM frames (every fifth frame) and then calculate
the ground truth for the lane parameters using least squares.
The root-mean-square error (RMSE) of the results from
PPF-NoKernel and PPF-Kernel are shown in Fig. 6 for the
Suburban Bridge data set and in Fig. 8 for the Trailer data set.
In addition, we project the estimation results on the IPM images
to allow visual inspection of the results, as shown in Fig. 5, for
the Suburban Bridge data set and in Fig. 7 for the Trailer data
set. In the following, we will give more details and analyses on
these estimation results.
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Fig. 5. Estimation results drawn from the IPM images of the Suburban Bridge data set. (Top) Results estimated by (red) PPF-Kernel and (blue)
PPF-NoKernel. (Bottom) Original images from the camera. (a) IPM frame 38. (b) IPM frame 195. (c) IPM frame 470. (d) IPM frame 505.
(e) IPM frame 748. (f) Original frame 38. (g) Original frame 195. (h) Original frame 470. (i) Original frame 505. (j) Original frame 748.

Fig. 6. RMSE of the estimated lane parameters (ρ, θ, d) by PPF-Kernel and PPF-NoKernel from the Suburban Bridge data set. Left, middle and right indicate
the left, middle and right lanes, respectively.

A. PPF-Kernel Versus PPF-NoKernel

To show the performance of the proposed kernel-density-
based measurement model, we compare the PPF-Kernel
method to the PPF-NoKernel method. For PPF-NoKernel, we
only employ the image intensity and edge information in the
measurement models, which are defined as

p
(
zljkt|x̂

lj
t

)
=

1

nl
k

∑
i

Kci (26)

p
(
zpjkt |x̂

pj
t

)
=

1
np
k

∑
i

Kci (27)

where p(zljkt|x̂
lj
t ) and p(zpjkt |x̂

pj
t ) are the measurement models

for the linear part and the parabolic part, respectively; nl
k is the

number of particles for the linear part; and np
k is the number

of particles for the parabolic part. Kci = N (μ0, σ
2
0) is the

Gaussian kernel model of the image intensity information. As
lane markers are white with a high intensity value in this data
set, we set μ0 = 1 and σ2

0 = 0.5 for the normalized image, i.e.,
the original intensity value is divided by 255.

For the Suburban Bridge data set, the RMSE of the esti-
mated lane parameters is shown in Fig. 6. It is clear that the
PPF-Kernel has a smaller RMSE than the PPF-NoKernel for
most lane parameters. We can also see the robustness of the
PPF-Kernel against occlusions and noise (the bridge), whereas
the PPF-NoKernel has larger errors for the estimation of the
parabolic part, as shown in Fig. 5(a), (b), and (e). Furthermore,
the PPF has a good performance to handle occlusions by the car,
as shown in Fig. 5(a) and (d). One reason is the hierarchical
processing of the PPF. Because we separate the lane into two
parts, i.e., the linear part and the parabolic part, even if one
part is occluded, the measurements from the other part can still
support the right particles. The other reason is that we introduce
random particles (drawn from the default lane model) into the
particle set for each iteration, such that the PPF can recover
from tracking failures.

For the Trailer data set, the curvature of the lanes is very
small; thus, the difference of the estimation results between the
PPF-Kernel and PPF-NoKernel are minor, which is in Fig. 7.
However, the PPF-Kernel still has a smaller RMSE than the
PPF-NoKernel for most lane parameters, as shown in Fig. 8.
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Fig. 7. Estimation results drawn from the IPM images of the Trailer data set. Top images show the results estimated by (red) PPF-Kernel and (blue)
PPF-NoKernel. The bottom images are the original images from the camera. (a) IPM frame 20. (b) IPM frame 112. (c) IPM frame 123. (d) IPM frame 321.
(e) IPM frame 446. (f) Original frame 20. (g) Original frame 112. (h) Original frame 123. (i) Original frame 321. (j) Original frame 446.

Fig. 8. RMSE of the estimated lane parameters (ρ, θ, d) by PPF-Kernel and PPF-NoKernel from the Trailer data set. Left, middle, and right indicate the left,
middle and right lanes, respectively.

TABLE I
COMPARISON OF COMPUTATION TIME

B. Computational Cost

The current algorithm is programmed on a modern com-
puter with an Intel Core 2 Quad central processing unit. The
comparison of computational time is shown in Table I. The
PPF-NoKernel is faster than the PPF-Kernel. The reason is
that the Gauss–Hermitte numerical integral method in the
PPF-Kernel is computationally expensive. However, there are
several ways to speed up the proposed algorithm. For example,
pixels in the observation space can be independently processed.
Thus, this can be easily parallelized and computed by Graphics
Processing Unit [34].

VI. CONCLUSION

In this paper, we have mainly focused on the improve-
ment of the measurement model for lane shape estima-

tion in the framework of particle filters. We considered the
measurement model as a probability distribution function of
the lane parameters. Therefore, we could employ multiple
kernel density estimation to estimate this probability density.
Furthermore, the final measurement model was derived by
combining this estimated probability distribution function with
the image intensity kernel. Finally, we used the PPF to es-
timate a linear-parabolic model on the DRIVSCO data sets
as a demonstration of the proposed ideas. The experimental
results show that the PPF with the proposed new measurement
model (PPF-Kernel) is very robust concerning challenging
scenes and achieves better estimation results than the PPF
with an image intensity and an edge measurement model
(PPF-NoKernel).

The main contribution of this paper is the use of multiple
kernel density estimation in the measurement model. To get
with this, we have introduced three measurement models (lin-
ear, parabolic, and linear-parabolic). Here, we only show how
to use the proposed measurement model for the linear-parabolic
shape estimation, but other measurement models could be also
used in the same way. Furthermore, the proposed parabolic
shape estimation can also be used for other applications, e.g.,
eyelid detection [25].
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