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Abstract—The unscented information filter (UIF) has been
introduced recently for nonlinear system estimation and sensor
fusion. In the UIF framework, a number of sigma points are
sampled from the probability distribution of the prior state
by the unscented transform and then propagated through the
nonlinear dynamic function and measurement function. The new
state is estimated from the propagated sigma points. In this way,
the UIF can achieve higher estimation accuracies and faster
convergence rates than the extended information filter (EIF),
which uses a Taylor series to linearize the nonlinear function.
This paper extends the framework of the UIF: first, a central
difference information filter (CDIF) is derived by employing
Stirling’s interpolation to generate the sigma points. This leads
to fewer predefined parameters and lower computational cost as
compared to the original UIF. Second, we introduce the square-
root forms of the CDIF and UIF to increase the numerical
stability and guarantee positive semi-definiteness of the state
covariances. The proposed algorithms are finally evaluated on two
nonlinear problems: the classical space-vehicle tracking problem
and the bearing-only tracking problem.

Index Terms—Nonlinear estimation, multiple sensor fusion,
target tracking, sigma point filters, central difference information
filter, square-root filters.

I. INTRODUCTION

THE accuracy and robustness of control systems can be
improved using fused information from multiple sensors.

Therefore, sensor fusion techniques have been widely studied
in many research fields, i.e., robot navigation, surveillance,
and intelligent vehicles [1]. Recently, the information filter
(IF), which is the dual of the Kalman filter (KF), has attracted
much attention for multiple sensor fusion [2]. Both the IF and
the KF represent distributions of random state variables with
Gaussians. However, in contrast to moment parametrization
as done in the KF, the IF uses an information matrix and an
information vector to represent the Gaussians. This difference
in parameterization makes the IF superior to the KF concern-
ing multiple sensor fusion, as computations are simpler and
no prior information of the system state is required [3].

In the case of nonlinear estimation problems, an extended
version of the IF can be obtained using the first order term of
the Taylor series expansions of the nonlinear functions, i.e., the
dynamic and measurement functions of the system, which is
called extended information filter (EIF). This approximation
can introduce large errors when the system model is highly
nonlinear, and the higher order terms of Taylor series are
important [4]. To address this issue, the unscented information
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filter (UIF) has been proposed by Kim et al. [5] and Lee
[3]. Kim developed the UIF by using minimum mean square
error estimation. In contrast, Lee’s UIF algorithm is derived
by embedding statistical linear error propagation into the EIF
architecture. Although their methods are different, results are
essentially identical [3], [5], [6]. The UIF uses a number of de-
terministic sigma points to capture the true information matrix
and the information vector, which can be accurate up to the
second order of any nonlinearity. However, three parameters
(α,β ,κ) must be defined for the UIF, which depend on the
system models. As shown in [3], [7], the UIF is superior to
the EIF not only in terms of estimation accuracy but also
concerning the convergence speed for nonlinear estimation
and multiple sensor fusion. However, the choice of system
parameters (α,β ,κ) can affect the filter’s estimation precision.

In this paper, we first propose an alternative to the UIF,
which we call central difference information filter (CDIF).
Where the UIF uses the unscented transform to compute the
sigma points, the CDIF employs Stirling’s interpolation. As
proved in [4], Stirling’s interpolation based central difference
Kalman filter (CDKF) has the same or superior performance as
the unscented transform based Kalman filter (UKF), with one
advantage over the UKF: Stirling’s interpolation only needs
a single parameter, the interval size h, whereas the unscented
transform needs three [8]. As shown in our simulation experi-
ments, the CDIF not only inherits the simplicity of the IF for
multiple sensor fusion ( while having the same accuracy as
the UIF), it also has a lower computational cost.

Second, we propose to use square-root forms for both
the UIF and the CDIF. In Stirling’s interpolation and the
unscented transform, a square-root of the prior covariance
has to be calculated to generate sigma points. This step is
computationally expensive and requires that the covariance
matrix to be positive definite. To save computational cost
and increase numerical robustness, a square-root form of the
covariance is directly taken and updated in the algorithm.
This idea has been introduced by Van der Merwe [9], who
proposed square-root forms of Kalman filters. Here we employ
a similar idea, and describe the square-root versions of UIF
and CDIF for solving nonlinear state estimation and sensor
fusion problems.

This paper is organized as follows: First, we present our
CDIF algorithm for nonlinear estimation and multiple sensor
fusion in Section II, and then the Square-Root CDIF and
Square-Root UIF are proposed in Section III and Section IV
respectively. Simulation results of target tracking are presented
and discussed in Section V. Finally, the work is concluded in
Section VI.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, XXXX 2011 2

II. CENTRAL DIFFERENCE INFORMATION FILTER

In this section, we present our CDIF framework, which
replaces the unscented transform with Stirling’s interpolation
to generate the sigma points. The algorithm includes three
steps: prediction, measurement update and global information
fusion.

A. Stirling’s interpolation

Stirling’s interpolation has been used previously with the
Kalman filter in the literature, referred to as the central
difference Kalman filter (CDKF) [4], [8]. The CDKF uses a
symmetric set of 2L+1 sigma points to approximate nonlinear
functions. In the case of Gaussian distributions of the system
variables, the mean and covariance can be represented by those
sigma points. As we mentioned in Section I, the IF is a dual
filter of the KF, such that the information vector and matrix
also can be derived by those sigma points. In this section,
we first show how the mean and covariance are derived using
Stirling’s interpolation, then show how the information vector
and matrix are obtained from the mean and covariance.

The 2L+1 prior sigma points used in Stirling’s interpolation
step are given by the prior mean x̂ plus or minus the columns
of the scaled square root of the prior covariance matrix Px [4]:

Xi =











x̂, i= 0
x̂+(h

√
Px)i, i= 1, · · · ,L

x̂− (h
√
Px)i, i= L+1, · · · ,2L

(1)

where h is a scaling parameter and L is the dimension of
the state x̂. The subscript i indicates the ith column of the
matrix. A set of the posterior sigma points can be derived
by propagating these prior sigma points through the nonlinear
function g: Zi= g(χi). Furthermore, the estimations of mean ẑ,
covariance Pz and cross-covariance Pxz are obtained as follows:

z≈
2L

∑
i=0

w(m)
i Zi (2)

Pz ≈
L

∑
i=1

w(c1)
i (Zi−Zi+L)(Zi−Zi+L)

T

+
L

∑
i=1

w(c2)
i (Zi+Zi+L−2Z0)(Zi+Zi+L−2Z0)

T (3)

Pxz ≈
�

w(c1)
1 Px(Z1:L−ZL+1:2L)

T . (4)

The corresponding weights for the mean and covariance are
defined as

w(m)
0 = h2−L

h2

w(m)
i = 1

2h2 ,

w(c1)
i = 1

4h2 ,

w(c2)
i = h2−1

4h4 , i= 1, · · · ,2L

(5)

As proved in [4], if the random variables obey a Gaussian
distribution, the optimal value of h is

√
3. Stirling’s interpo-

lation only depends on one parameter, the interval size h, in
contrast to three parameters (α,β ,κ) which are required in
the unscented transform. This makes Stirling’s method simpler
and easier to tune.

B. Prediction
Here we consider the discrete-time nonlinear dynamic sys-

tem
xk = f (xk−1,v), (6)

where xk is the state vector of the system at time step k, and
v∼ N (v,Rv) is Gaussian noise.

First, the state vector is augmented with the noise variable
and the corresponding augmented covariance matrix is derived
by:

xavk−1 =

�

xk−1
v

�

, Pavk−1 =

�

Pk−1 0
0 Rv

�

. (7)

A symmetric set of 2L+1 sigma points is generated using (1):

X
av
i,k−1 =















xavk−1, i= 0

xavk−1 +(h
�

Pavk−1)i, i= 1, · · · ,L
xavk−1 − (h

�

Pavk−1)i, i= L+1, · · · ,2L
(8)

where each sigma point X
av
i,k−1 contains the state and noise

variable components

X
av
i,k−1 =

�

X x
i,k−1

X v
i,k−1

�

. (9)

These sigma points are further passed through the nonlinear
function (6), such that the predicted sigma points for the
discrete time k are derived as:

X
x
i,k|k−1 = f (X x

i,k−1,X
v
i,k−1). (10)

Finally, the first two moments of the predicted state vector are
obtained by linear regression of the transformed sigma points:

x−k|k−1 =
2L

∑
i=0

wmi X
x
i,k|k−1 (11)

P−k|k−1 =
L

∑
i=1

w(c1)
i αiαT

i +
L

∑
i=1

w(c2)
i βiβTi , (12)

where αi = X x
i,k|k−1 − X x

i+L,k|k−1 and βi = X x
i,k|k−1 +

X x
i+L,k|k−1−2X x

0,k|k−1. As stated in Section I, the information
matrix and information vector are the dual of the mean and
covariance, so that the predicted information matrix Yk|k−1 and
the information vector yk|k−1 are derived as:

yk|k−1 = Yk|k−1 x
−
k|k−1 (13)

Yk|k−1 = (P−k|k−1)
−1. (14)

C. Measurement update
The measurement function of the nonlinear system is de-

fined as
zk = h(xk)+n, (15)

where zk is the measurement and n∼N (n,Rn) is the Gaussian
noise of the measurement.

The sigma points used for the measurement update are
derived as:

Xi,k|k−1 =















x−k|k−1, i= 0

x−k|k−1 +(h
�

P−k|k−1)i, i= 1, · · · ,L
x−k|k−1 − (h

�

P−k|k−1)i, i= L+1, · · · ,2L
(16)
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The predicted measurement points are obtained by transform-
ing the sigma points through (15)

Zi,k|k−1 = h(Xi,k|k−1). (17)

Furthermore, the mean and cross-covariance are derived by:

z−k|k−1 =
2L

∑
i=0

wmi Zi,k|k−1 (18)

Pxzk|k−1 =

�

w(c1)
1 Pk|k−1(Z1:L−ZL+1:2L)

T . (19)

Finally, the measurement update of the information vector
and the information matrix are derived as:

yk = yk|k−1 +φk (20)

Yk = Yk|k−1 +Φk (21)

where φk and Φk are information contribution terms for the
information vector and matrix respectively, which can be
derived by:

φk = Yk|k−1P
xz
k|k−1R

−1
n [zk− z−k|k−1 +(Pxzk|k−1)

T yk|k−1] (22)

Φk = Yk|k−1P
xz
k|k−1R

−1
n (Pxzk|k−1)

T (Yk|k−1)
T . (23)

The derivation of (22) and (23) can be found in [3], [5], [7].

D. Global information fusion

In case of multiple sensors N, where the measurement
noises between the sensors are uncorrelated, the measurement
update for information fusion is simply expressed as a linear
combination of the local information contribution terms:

yk = yk|k−1 +
N

∑
i=1

φi,k (24)

Yk = Yk|k−1 +
N

∑
i=1

Φi,k. (25)

III. SQUARE-ROOT CDIF

For each discrete time update in the CDIF, a new set of
sigma points needs to be calculated, which is computationally
expensive because the square root of the covariance matrix is
required. To avoid this operation, we introduce a Square-Root
CDIF (SRCDIF). This square root form guarantees that the
state covariance matrix P is positive semi-definite, and further
improves the numerical stability of the system [9].

A. Square-Root CDIF for state estimation

The square-root CDIF benefits from three powerful matrix
factorization techniques: QR decomposition, Cholesky factor
updating and efficient least squares. In the following, we will
use qr, chol, cholupdate and ’\’ (backslash) to refer to the
QR decomposition, Cholesky decomposition, Cholesky factor
updating and efficient least squares respectively 1.

1The abbreviations qr, chol, cholupdate and ’\’ (backslash) are in accor-
dance with the function names for QR decomposition, Cholesky decomposi-
tion, Cholesky factor updating and efficient least squares in Matlab.

• QR decomposition. In the CDIF, the square-root of the
covariance matrix S is derived by Cholesky decomposition
on P: S= chol(P)T where S is a lower triangular matrix
and fulfills P = SST . If we know P = AAT , the square-
root factor S can be directly calculated from A by QR
decomposition: S= qr(A)T . If the matrix A ∈R

L×N , then
the computational complexity of a QR decomposition is
O(NL2).

• Cholesky factor updating. If the original update of the
covariance matrix is P±uuT and S is the Cholesky factor,
then the rank 1 update of S is S = cholupdate(S,u,±)
where u is the update vector. If u is a matrix, we can
update each column of u one by one in a loop. For each
column vector, the computational complexity is O(L2).
This procedure can alternatively be implemented as S =
qr([S ± u]T ) using QR decomposition without the loop
updates.

• Efficient least squares. The least squares solution for the
linear equation Px = b can be solved efficiently using
forward and back substitution if the Cholesky factor S
is known and satisfies P = SST . For example, we can
solve it by x= ST\(S\b) where ’\’ is the backslash. This
operation only requires computational complexity O(L2).

The whole process is shown in Algorithm 1, where h is
the scaling parameter derived from (1), L is the dimension
of the state, Rv and Rn are process noise covariance and
observation noise covariance respectively, w(m)

i and w(c)
i are

weights calculated in (5), and I is an identity matrix. Algorithm
1 looks similar to the general CDIF algorithm introduced in
Section II, except that the Cholesky factor Sxk is used instead
of the covariance Pk. The Square-Root CDIF also comprises
two steps, the first is the prediction and the second is the
measurement update. For each step, a number of sigma points
are generated using Stirling’s interpolation in (27) and (35).
However, the square root of covariance Sxk is directly used to
calculate the sigma points without the Cholesky factorization.

In the prediction step, the Cholesky factor Sxk is updated
using QR decomposition on the weighted sigma points. This
step replaces the Pk update in (12) and has complexity O(L3).
The information vector ŷ−k = (P−k )−1x̂−xk =

�

S−xk
�T \

�

S−xk\x̂
−
k

�

is derived using efficient least squares in (33). Because Ŝ−xk
is a square and triangular matrix, we can directly use back-
substitution for solving ŷ−k without the need for matrix inver-
sion. The back substitution only requires O(L2). Next is the
calculation of the square-root information matrix S−yk in (34).
This step requires a QR decomposition since S−yk is a upper
triangular matrix, and meets

�

S−yk
�T S−yk =

�

S−xk
�−T �S−xk

�−1. As
S−xk is a lower triangular matrix, QR decomposition is used to
solve the Cholesky factor S−yk of the information matrix Yk|k−1.
To avoid the inversion, here we use efficient least squares to
solve

�

S−xk
�−1 as S−xk\I, where I is an identity matrix.

In the measurement update step, the updated information
vector yk is derived by efficient least squares in (40). If the ob-
servation dimension is M, the updated square-root information
matrix Syk is calculated in (41) by applying an M-sequential
Cholesky update to S−yk . The columns of matrix U are update
vectors. This requires O(L2M) and replaces the measurement
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Algorithm 1 Square-Root CDIF for state estimation
• Initialization:
x̂0 = E(x0), Sx0 = chol

�

E
�

(x0 − x̂0)(x0 − x̂0)
T
��

, Sv =√
Rv and Sn =

√
Rn.

• For k = 1, · · · ,∞:
1) Generate sigma points for prediction:

x̂avk−1 =

�

x̂k−1
v

�

, Savk−1 =

�

Sxk−1 0
0 Sv

�

(26)

X
av
k−1 =

�

x̂avk−1 x̂avk−1 +hSavk−1 x̂avk−1 −hSavk−1

�

(27)

2) Prediction equations:

X
x
k|k−1 = f (X x

k−1,X
v
k−1,uk−1) (28)

x̂−k =
2L

∑
i=0

w(m)
i X

x
i,k|k−1 (29)

A=

�

w(c1)
1

�

X
x

1:L,k|k−1 −X
x
L+1:2L,k|k−1

�

(30)

B=

�

w(c2)
1 (X x

1:L,k|k−1 +X
x
L+1:2L,k|k−1 −2X

x
0,k|k−1)

(31)

S−xk = qr{[A B]} (32)

ŷ−k =
�

S−xk
�T \

�

S−xk\x̂
−
k

�

(33)

S−yk = qr
�

S−xk\I
�

(34)

3) Generate sigma points for measurement update:

Xk|k−1 =
�

x̂−k x̂−k +hS−xk x̂−k −hS−xk
�

(35)

4) Measurement update equations:

Zk|k−1 = h
�

Xk|k−1
�

(36)

ẑ−k =
2L

∑
i=0

w(m)
i Zi,k|k−1 (37)

Pxkzk =
�

wc1
1 S

−
xk [Z1:L,k|k−1 −ZL+1:2L,k|k−1]

T (38)

U =
�

S−xk
�T \

�

S−xk\Pxkzk
�

/Sn (39)

yk = ŷ−k +U/STn (zk− ẑ−k +PTxkzk ŷ
−
k ) (40)

Syk = cholupdate{S−yk ,U,+1} (41)

update of Yk in (21).

B. Square-Root CDIF for multiple sensor fusion
In the case where information from multiple sensors is

available, i.e., N > 1, we can fuse this using the Square-Root
CDIF. For the ith sensor, the information contribution for the
information vector is

φi,k =U/STn (zk− ẑ−k +PTxkzk ŷ
−
k ) (42)

where U is defined in (39). The information contribution for
the square-root information matrix is

Si,φk =U. (43)

The final estimated result is derived by:

yk = ŷ−k +
N

∑
i=0

φi,k (44)

Syk = cholupdate{S−yk , [S1,φk S2,φk · · · SN,φk ],+1}. (45)

IV. SQUARE-ROOT UIF

In this section we consider the square-root implementation
of the UIF. Because the UIF uses the unscented transform
to calculate the sigma points, the architecture of the Square-
Root UIF (SRUIF) has few differences from the SRCDIF.
As mentioned in Section III, the main techniques behind the
square-root form estimators are: QR decomposition, Cholesky
factor updating and efficient least squares. We show how to
use these in the Square-Root UIF in the following.

The Square-Root UIF is shown in Algorithm 2, where γ =
�

(λ +L) is the composite scaling parameter, λ =α2(L+κ)−
L, α and κ are scaling parameters that determine how far the
sigma points spread from the mean value [4], [10], L is the
dimension of the state, Rv and Rn are process noise covariance
and observation noise covariance respectively, w(m)

i and w(c)
i

are weights calculated by wm0 = λ
L+λ , wc0 =

λ
L+λ +(1−α2+β ),

wmi = wci =
1

2(L+λ ) i = 1, · · · ,2L, and sign{}̇ is the signum
function.

We compare the SRUIF in Algorithm 2 to the SRCDIF
in Algorithm 1. First of all, the SRUIF uses the unscented
transform to calculate the sigma points in (47) and (55), where
the scaling parameter becomes γ =

�

(λ +L) and λ = α2(L+
κ)−L. In contrast to only one scaling parameter h used in the
SRCDIF, the SRUIF depends on three parameters λ , α and
κ . Second, since the weight w(c)

0 might be negative, we need
an additional cholupdate to update the Cholskey factor S−xk in
(52), whereas the SRCDIF does not need this step. Finally, for
multiple sensor fusion, the SRUIF is equivalent to the SRCDIF
in (44) and (45).

V. EXPERIMENTS

A. Space-vehicle tracking

To demonstrate the performance of the CDIF, UIF and
their square-root forms SRCDIF and SRUIF, here we consider
a classic space-vehicle reentry tracking problem, which was
used in [3], [11], [12]. Two radars, which measure range and
bearing, are used for tracking a high speed vehicle. The true
trajectory of this vehicle is shown in Fig. 1f.

The state space of the filter consists of the position (x1 and
x2), the velocity (x3 and x4) and a parameter related to the
aerodynamic force x5. As described in [11], the vehicle state
dynamics for the discrete case are given by

x1(k+1) = x1(k)+Δtx3(k)
x2(k+1) = x2(k)+Δtx4(k)
x3(k+1) = x3(k)+Δt(D(k)x3(k)+G(k)x1(k))+ v1
x4(k+1) = x4(k)+Δt(D(k)x4(k)+G(k)x2(k))+ v2
x5(k+1) = x5(k)+Δtv3,

(62)
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Algorithm 2 Square-Root UIF for state estimation
• Initialization:
x̂0 = E(x0), Sx0 = chol

�

E
�

(x0 − x̂0)(x0 − x̂0)
T
��

, Sv =√
Rv and Sn =

√
Rn.

• For k = 1, · · · ,∞:
1) Generate sigma points for prediction:

x̂avk−1 =

�

x̂k−1
v

�

, Savk−1 =

�

Sxk−1 0
0 Sv

�

(46)

X
av
k−1 =

�

x̂avk−1 x̂avk−1 + γSavk−1 x̂avk−1 − γSavk−1

�

(47)

2) Prediction equations:

X
x
k|k−1 = f (X x

k−1,X
v
k−1,uk−1) (48)

x̂−k =
2L

∑
i=0

w(m)
i X

x
i,k|k−1 (49)

S−xk = qr
�
�

w(c)
1

�

X
x

1:2L,k|k−1 − x̂−k
�

�

(50)

C = sign{w(c)
0 }

�

w(c)
0

�

X
x

0 − x̂−k
�

(51)

S−xk = cholupdate
�

S−xk ,C,+1
�

(52)

ŷ−k =
�

S−xk
�T \

�

S−xk\x̂
−
k

�

(53)

S−yk = qr
�

S−xk\I
�

(54)

3) Generate sigma points for measurement update:

Xk|k−1 =
�

x̂−k x̂−k + γS−xk x̂−k − γS−xk
�

(55)

4) Measurement update equations:

Zk|k−1 = h
�

Xk|k−1
�

(56)

ẑ−k =
2L

∑
i=0

w(m)
i Zi,k|k−1 (57)

Pxkzk =
2L

∑
i=0

w(c)
i [Xi,k|k−1 − x̂−k ][Zi,k|k−1 − z−k ]

T (58)

U =
�

S−xk
�T \

�

S−xk\Pxkzk
�

/Sn (59)

yk = ŷ−k +U/STn (zk− ẑ−k +PTxkzk ŷ
−
k ) (60)

Syk = cholupdate{S−yk ,U,+1} (61)

where v1, v2 and v3 are Gaussian process noises, D(k) is the
drag-related force, G(k) is the gravity-related force, and Δt =
0.1s is the sampling time. The force terms are given by

D(k) = β (k)V (k)exp
�

R0−R(k)
H0

�

G(k) =− Gm0
R3(k) ,

(63)

where β (k) = β0 exp{x5(k)}, R(k) =
�

x2
1(k)+ x2

2(k) is the
distance between the vehicle and the earth center, and V (k) =
�

x2
3(k)+ x2

4(k) is the vehicle’s speed. The constants in (63)
are defined as: β0 =−0.59783,H0 = 13.406,Gm0 = 3.9860×

105,R0 = 6374. The discrete process noise covariance in our
simulation is defined by

Rv = diag(2.4064×10−5,2.4064×10−5,10−6), (64)

where diag means the diagonal matrix. The vehicle is tracked
by two radars which are located at (xs,ys), where s= 1,2, and
the measurements model is

rs(k) =
�

(x1(k)− xs)2 +(x2(k)− ys)2 + er,s
θs(k) = tan−1

�

x2(k)−ys
x1(k)−xs

�

+ eθ ,s,
(65)

where [er,s,eθ ,s]T ∼ N (0,Rn,s) is the measurement noise. In
the simulation, the radars are located at (x1,y1)= (6474,0) and
(x2,y2) = (6475,−30), and their measurement noise variances
are

Rn,1 = diag((1×10−3)2,(1.7×10−4)2)
Rn,2 = diag((2×10−3)2,(1.7×10−4)2).

(66)

The initial true state and the covariance of the vehicle are
given by

x0 = [6500.4,349.14,−1.8093,−6.7967,0.6932]T

P0 = diag(10−6,10−6,10−6,10−6,0),
(67)

and the prior state and the covariance are given by

x̂0 = [6500.4,349.14,−1.8093,−6.7967,0]T

P̂0 = diag(10−6,10−6,10−6,10−6,1),
(68)

which are the same as those used in [11].
The time step Δt in (62) is set to 0.1s, and measurements

from both radars are received during each step, such that the
observation frequency of both radars is 10Hz.

The results of the simulation are derived from 100 Monte
Carlo simulations, and summarized in Table I, where UIFa,
CDIFa, SRUIFa and SRCDIFa consider only the measurement
from the first radar, and UIFb, CDIFb, SRUIFb and SRCDIFb
consider measurements from both radars. The results indicate
that by fusing two sensors, the CDIF and UIF can achieve
much more accurate results, i.e., the mean and the standard
deviation of the root mean square error (RMSE) of the position
decrease, whereas the additional computational cost for fusion
is very low, e.g., only 0.36% for SRCDIF 2. Furthermore,
the SRCDIF has the lowest additional computational cost for
sensor fusion in this simulation, although all filters have almost
identical RMSE over time (at least to the fourth decimal place).

Because the UIFs and CDIFs have identical estimation
results, we only show the state estimation errors from the
SRCDIFa and SRCDIFb in Fig. 1. It can been seen that the
convergence rate of the SRCDIFb is faster than that of the
SRCDIFa, and the SRCDIFb has a better estimation accuracy
in most cases, except Fig. 1e where the aerodynamic force
parameter x5 of the SRCDIFb has a larger RMSE error when
t > 50s.

2The additional computational cost is computed as follows: (Tb−Ta)/Ta
where Ta and Tb are average run times using one sensor and two sensors
respectively. For instance, the additional computational cost for SRCDIF is
derived by 0.36% = (4.5743−3.5022)/3.5022 from the Table I.
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Fig. 1. (a)-(e): the RMSE error of x1, x2, x3, x4 and x5 against the time. (f): the trajectory of the vehicle and the positions of radars.
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TABLE I
MEANS (E) AND STANDARD DEVIATIONS (STD) OF RMSE VALUES OF THE POSITION AND AVERAGE RUN TIME IN 100 MONTE CARLO RUNS OF THE

SPACE-TRACKING PROBLEM

Number of Sensors Method E[RMSE] STD[RMSE] Average run time(s)
UIFa 0.0083 0.0007 4.0632

One CDIFa 0.0083 0.0007 3.5140
SRUIFa 0.0083 0.0007 4.0667

SRCDIFa 0.0083 0.0007 3.5022
UIFb 0.0060 0.0005 5.3660

Two CDIFb 0.0060 0.0005 4.6454
SRUIFb 0.0060 0.0005 5.3364

SRCDIFb 0.0060 0.0005 4.5743

B. Bearing-only tracking

In this section, we consider a nonlinear bearing-only track-
ing (BOT) problem using the UIF, CDIF, SRUIF and SRCDIF
and compare their performances. The bearing-only tracking
problem has become an important benchmark for different
probability inference methods. By solving a BOT problem on
a moving sensor platform, Bar-Shalom et al. [13] analyzed
the performance of the Taylor linearization in the EKF, Lin
et al. [14] have compared the performance of the EKF, pseudo-
measurement filter and particle filter, and Sadhu et al. [15] pro-
posed a new track-loss criterion for the comparison between
the EKF and the square-root UKF. In addition, Hartikainen
and Särkkä [16] have developed a toolbox which includes the
comparison between the UKF, the EKF, and their smoothers
by solving the BOT problem with static sensors.

Here we use the same system model as in [16]. A moving
target object is tracked by two static angular sensors. The
discrete time update of the dynamic object on time step k
is

xk =









1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1









xk−1 +vk−1 (69)

where the system state is xk = (xk,yk, ẋk, ẏk)T , which includes
the target position (xk,yk) and velocity (ẋk, ẏk). Δt is the time
interval between time step k and k−1, which is set to Δt = 0.01
in the simulation. vk−1 is Gaussian noise with zero mean and
the covariance is

Rv =









1
3Δt

3 0 1
2Δt

2 0
0 1

3Δt
3 0 1

2Δt
2

1
2Δt

2 0 Δt 0
0 1

2Δt
2 0 Δt









β (70)

where β is the spectral density of the noise [16] and set to
β = 0.1 in our experiment. The target is tracked by sensors
located at (xs,ys), where s = 1,2 in the case of two sensors.
The measurement model of the sth sensor is defined as

θs = tan−1
�

yk− ys
xk− xs

�

+ eθ ,s (71)

where eθ ,s ∼ N (0,Rn,s) is the measurement noise of the
sth sensor. The sensors are located at (x1,y1) = (−1,−2)
and (x2,y2) = (1,1), and their measurement noise variances
are Rn,1 = Rn,2 = 0.052. The initial prior state x̂0 and the
covariance P̂0 are given by:

x̂0 = [0, 0, 1, 0]T (72)

P̂0 = diag(0.1,0.1,10,10). (73)

To achieve a curved trajectory the target has a randomized
acceleration in our simulation [16]. The estimated results from
different filters are summarized in Table II. It can be seen
that the UIF and SRUIF have equal accuracy, as do the CDIF
and the SRCDIF. Here we only show the comparison between
the SRUIF and SRCDIF in Fig. 2. When only one sensor is
available, the filters are hardly able to track the target and have
very large RMSE errors as can be seen in Fig. 2a. Although
the CDIFs still run faster than the UIFs in this simulation, the
CDIFs have larger errors and covariances at the beginning of
the trajectory. The filters achieve better results by fusing one
more sensor which is shown in Fig. 2b.

VI. CONCLUSION

In this paper, a new central difference information fil-
ter (CDIF) algorithm for multiple sensor fusion and target
tracking was presented. It is analogous to the UIF, but uses
Stirling’s interpolation instead of the unscented transform.
Therefore, the CDIF only depends on one parameter (interval
size) in contrast to three parameters which are required in
the unscented transform. This makes the CDIF simpler, faster
and easier tune than the UIF. Furthermore, the square-root
forms of the CDIF and UIF are presented and discussed.
They have equal complexity as the original CDIF and UIF,
i.e., O(L3), however, the SRCDIF and SRUIF have better
numerical properties and guarantee positive semi-definitives of
the state covariance. In the presented experiments, the CDIFs
are faster than the UIFs, but the square-root forms do not
improve the computational cost as we expected ( the square-
root UKF is 20% faster than the UKF as shown in [9] ).
In the future, we plan to investigate their performances with
different sensor network architectures [1], and further improve
the estimation accuracies, e.g., by combining the proposed
filters with the adaptive consensus algorithm [2], [17].
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