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Abstract—This paper presents a probabilistic algorithm
for lane shape estimation in an urban environment which
is important for example for driver assistance systems and
autonomous driving. For the first time, we bring together
the so-called Partitioned Particle filter, an improvement of
the traditional Particle filter, and the linear-parabolic lane
model which alleviates many shortcomings of traditional lane
models. The former improves the traditional Particle filter
by subdividing the whole state space of particles into several
subspaces and estimating those subspaces in a hierarchical
structure, such that the number of particles for each subspace
is flexible and the robustness of the whole system is increased.
Furthermore, we introduce a new statistical observation model,
an important part of the Particle filter, where we use multi-
kernel density to model the probability distribution of lane
parameters. Our observation model considers not only color
and position information as image cues, but also the image
gradient. Our experimental results illustrate the robustness
and efficiency of our algorithm even when confronted with
challenging scenes.

I. INTRODUCTION

Robust vision based street lane detection and tracking

is an important factor for driver assistance systems (DAS)

and autonomous driving, which can reduce the risk of car

accidents. Despite numerous approaches developed in the

past [1], many challenges remain in this area. One important

aspect is the lane model used in the detection algorithms.

Simple models, such as a straight line, do not allow accurate

lane fits but are more robust against image artifacts. Complex

models, on the other hand, such as parabolic, circular, and

spline models are more flexible and, thus, allow better fits

but are more sensitive to noise [2], [3].

In this paper, we use the linear-parabolic model introduced

by Jung and Kelber [2] which is a trade-off between accuracy

of the fit and robustness with respect to image artifacts.

This model partitions the image into a near and a far vision

field, as shown in Fig. 3, and assumes that the lanes are

linear in the near and parabolic in the far field. Jung and

Kelber’s method for estimating the linear-parabolic model

comprises two steps. First, an initial detection was performed

with the well-known Hough transform (HT), and second,

tracking of the detected lanes was realized by minimizing a

weighted square error. However, a fixed-width tracking mask

was needed to find possible lane edges in every iteration, and

the used least squares method is sensitive to image noise. An
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improvement was suggested by Lim et al. [4] who used the

Kalman filter (KF) instead of the least squares method for

model parameter estimation which was shown to be more

robust. However, the KF maintains one hypothesis only and

hence it is difficult to recover the true state after a tracking

failure occurred [5]. In contrast, the Particle filter (PF) is able

to maintain multiple hypotheses using simple measurements

and is thus better suited for recovery from a tracking failure

[5], [6].

Here, we use a version of the PF, called Partitioned Particle

filter (PPF) [7] which not only inherits the advantages of the

standard PF, but also benefits from an introduced hierarchical

processing scheme by subdividing the state space of particles

into subspaces and processing each subspace individually.

By this, the computational complexity of the algorithm is

reduced and its robustness increased.

Southall and Tailor [6] used the PPF to implement a lane

detection and tracking framework and further developed a

failure recovery mechanism to improve the tracking. The

latter was achieved by introducing a constant number of

random particles, which were drawn from provided default

lane models, into the particle set of the PPF during each

iteration. This failure recovery mechanism was also used

by Zhou [5] and Danescu [3] with different lane models.

Zhou et al. [5] used a PF to estimate a deformable tem-

plate model, which was based on the assumption that lane

markers on the ground floor are described as parabolas.

Their observation model included both position and gradient

direction information. Danescu and Nedevschi [3] presented

a lane detection and tracking system that used the PF without

tracking initialization phase, i.e., the random particles drawn

from default lane models were used to find possible lanes in

the first frame.

Our paper further improves a) the linear-parabolic model

estimation by combining it with a PPF, and b) introduces a

new improved observation model in the PPF. Furthermore,

we also include a failure recovery mechanism by drawing

a number of random particles from default lane models

during each iteration. We achieve a) by grouping the state

space of the linear-parabolic model into several subspaces,

which are estimated by the PPF in two steps, first the linear

part, then the parabolic part. The intentions behind this are

as follows: first, it is easier to formulate constraints that

describe the parallel relation between multiple lanes for the

linear part, i.e., equal widths and similar slopes. Second,

for the driver the near vision field is more important than

the far vision field, such that the linear part should be

assigned a higher priority. Third, each subspace can have a
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(a) (b)

Fig. 1: (a) An image from the data set, where the lane

markers are not parallel. (b) The transformed image after

applying IPM shows a top-view of the scene and the lane

markers appear nearly parallel.

flexible number of particles, which reduces the computational

complexity and increases the system’s robustness as shown

in our experiments. We achieve b), the introduction of an

improved observation model, by using multi-kernel density

estimation [8] to model the probabilistic distribution of the

model parameters and by considering gradient information

as local descriptor of the image surface. By contrast, many

other approaches use only color and position information. We

show that an accurate estimate of a probabilistic distribution

of the linear-parabolic model parameters can be derived with

this additional information.

Finally, We apply our algorithm to images which show

a top-view of the original scene, see Fig. 1. These images

are obtained using a well-known algorithm called Inverse

Perspective Mapping (IPM) [9], [10], and we thus refer to

them as IPM-images. The paper is organized as follows:

Section II introduces the local image descriptors that are

used in the algorithm’s observation model. In Section III, the

multi-kernel density estimation for the straight line, parabolic

and linear-parabolic model are presented. Section IV de-

scribes the PPF for linear-parabolic parameter estimation.

Results and analysis with different road situations are given

in Section V. Finally, the work is concluded in Section VI.

II. LOCAL IMAGE DESCRIPTORS

To detect lane markers in the IPM-images, certain image

descriptors can be used, such as color C, position (x,y) and
gradient (Ix, Iy). Furthermore, we can also derive advanced

descriptors based on these basic ones, e.g., the magnitude,

alignment, and direction of the gradient: ∆I, ρ and θ . In an

urban environment lane markers are not always of the same

color, they may even be missing, such that color information

C cannot be used as a reliable cue alone, however, position

and gradient information are still useful in this case. Our al-

gorithm for lane parameters estimation uses local descriptors

(x,y,θ) as observation and models them by kernel density

including both position and gradient information [8]. Thus,

the observation space for kernel density estimation for each

image is Qxyθ = {xi,yi,θi, i= 1, · · · ,n}, where n denotes the

total number of pixels that are used for estimating the lane

parameters. But for the observation model of the PPF, the

color information is also used by modeling it as a Gaussian

function.

III. LANE PARAMETER ESTIMATION BY KERNEL DENSITY

In [8] and [11] the probabilistic distribution of straight

line parameters is modeled as multi-kernel density, and

the candidates are found by comparing the probability of

different line parameters. This process is called Statistical

Hough transform (SHT). The SHT works on the entire

image using the full information that the image offers to

find possible lines (a so-called dense-method in contrast to

sparse methods which work on sparse information like image

edges or corners). This method is more robust to noise than

the standard HT. In [12] the SHT method was extended to

detect parabolic structures. However, the gradient angle θ
was modeled as a constant, which is not realistic.

In a similar manner we use multi-kernel density to estimate

the statistical distribution of parabolic lane parameters. But

the gradient angle θ of the parabolic lane is not constant,

such that an additional constraint is needed for the esti-

mation. In this section, we first introduce the parameter

estimation of the linear part using multi-kernel density, then

we show the new estimation method for parabolic lane

estimation, and finally we extend the work to linear-parabolic

parameter estimation.

A. Straight line model

A straight line model is given by

ρ = xcosθ + ysinθ , (1)

where x and y are horizontal and vertical image coordinates,

ρ and θ are the line parameters which need to be estimated.

These parameters (x,y,ρ ,θ) can be interpreted as random

variables and described by a probability density function

which is conditioned on Qxyθ , i.e., p(ρ ,θ ,x,y|Qxyθ ). This
is written according to the Bayes rule as

p(ρ ,θ ,x,y|Qxyθ ) = p(ρ |x,y,θ ,Qxyθ ) · p(x,y,θ |Qxyθ ). (2)

When x, y and θ are known, the first term p(ρ |x,y,θ ,Qxyθ )
is determined by (1), and the second term p(x,y,θ |Qxyθ ) can
be modeled by kernels. Thus (2) becomes

p(ρ ,θ ,x,y|Qxyθ ) = δ (ρ − xcosθ − ysinθ)
1

n
∑
i

KxKyKθ , (3)

where δ is the Dirac delta function, Kx = N (xi,σ
2
xi
), Ky =

N (yi,σ
2
yi
), and Kθ = N (θi,σ

2
θi
) are Gaussian kernels and

σ2
xi
, σ2

yi
and σ2

θi
are the variances of xi, yi, and θi, respectively.

The distribution p(ρ ,θ |Qxyθ ) is obtained by integrating (3)

over (x,y)

p(ρ ,θ |Qxyθ ) =
1

n
∑
i

Kθ ·Gli(ρ ,θ), (4)
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Fig. 2: Given observation space Qxyθ of Fig. 1b, the statis-

tical distribution p(ρ ,θ |Qxyθ ) of straight line parameters is

estimated using kernel density.

where

Gli(ρ ,θ) =
1

√

2π(σ2
xi
cos2θ +σ2

yi
sin2θ)

·

exp

(

−(ρ − xicosθ − yisinθ)2

2(σ2
xi
cos2θ +σ2

yi
sin2θ))

)

. (5)

A detailed description of (5) can be found in [8]. Given

the observation space Qxyθ of an image, the statistical

distribution of the line parameters is calculated using (4).

One example result is shown in Fig. 2.

B. Parabolic model

Similar to the straight line model estimation, the parabolic

lane model can also be estimated using kernel density.

However, the gradient angle θ of parabolic lanes is not

constant. To model the kernel density of θ correctly, we need

more constraints and the parabolic lane model is defined as

x= c+dy+ ey2, (6)

where c, d and e are the parabolic lane parameters. The

gradient angle is derived from (6)

θ = atan(−2ey−d). (7)

The probability distribution p(c,d,e,x,y,θ |Qxyθ ) is written

as

p(c,d,e,x,y,θ |Qxyθ ) = p(c,d,e|x,y,θ ,Qxyθ ) · p(x,y,θ |Qxyθ ).
(8)

In the above equation, the first probability

p(c,d,e|x,y,θ ,Qxyθ ) is determined by (6) and (7).

The second probability p(x,y,θ |Qxyθ ) can be modeled

by multiple Gaussian kernel density. Thus, equation (8)

becomes

p(c,d,e,x,y,θ |Qxyθ ) = δ1 ·δ2 ·
1

n
∑
i

KxKyKθ , (9)

Fig. 3: The coordinate system of the image and the linear-

parabolic model. ym is the separate line between the near

vision field and the far vision field.

where δ1 = δ (c+dy+ey2−x) and δ2 = δ (θ −atan(−2ey−
d) are Dirac functions, Kx, Ky, and Kθ are Gaussian kernels

which are same as in (3). The distribution p(c,d,e|Qxyθ ) is

obtained by integrating (9) over (x,y,θ)

p(c,d,e|Qxyθ ) =
1

n
∑
i

Gpi(c,d,e), (10)

where

Gpi(c,d,e) =
∫∫∫ ∞

−∞
δ1δ2KxKyKθ dxdydθ . (11)

Equation (11) is also known as Radon transform. Because

x and θ are represented by y using δ1 and δ2 functions, the

three-fold integration over (x,y,θ) in (11) is simplified to a

single integration over y

Gpi(c,d,e) =
∫ ∞

−∞
K′
xKyK

′
θ dy, (12)

where

K′
x =

1
√

2πσ2
xi

exp

(

−
(c+dy+ ey2− xi)

2

2σ2
xi

)

(13)

K′
θ =

1
√

2πσ2
θi

exp

(

−
(atan(−2ey−d)−θi)

2

2σ2
θi

)

. (14)

The analytic expression of the Radon transform (12)

cannot be obtained. To solve it, the Gauss-Hermite numerical

method is used to calculate Gpi [12].

C. Linear-parabolic model

The linear-parabolic model includes two parts: the linear

and the parabolic part. The linear part is used to model the

lanes in the near vision field, whereas the parabolic part is

used for lanes in the far vision field [2], [4], as shown in

Fig. 3.

x= f (y) =

{

a+by i f y> ym
c+dy+ ey2 i f y≤ ym

, (15)
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where ym is the border between the near and the far vision

fields, and the observation space Qxyθ is divided into two

subspaces: Qnear and Q f ar.

Function (15) imposes continuity and differentiability con-

ditions on point ym such that f (y−m) = f (y+m) and f ′(y−m) =
f ′(y+m). By combining it with (1), we can further obtain

a = ρ
cos(θ) , b = −tan(θ), c = ρ

cos(θ) +
ym
2
(−tan(θ)− d) and

e= 1
2ym

(−tan(θ)−d). The linear-parabolic model is totally

determined by three parameters: (ρ ,θ ,d) given ym.

To estimate the linear-parabolic parameters (ρ ,θ ,d), we
first determine the linear part (ρ ,θ) by using (4) conditioned

on observation Qnear, then we estimate the parabolic part d

by (10) conditioned on observation Q f ar. Because c and e

are functions of (ρ ,θ ,d), we have

p(d|Q f ar) =
1

n f ar
∑
i

Gpi(c(ρ ,θ ,d),d,e(ρ ,θ ,d)). (16)

This hierarchical process can be implemented by the PPF as

shown in Section IV.

IV. PARTITIONED PARTICLE FILTER FOR LANE

DETECTION AND TRACKING

In [8] and [12], the authors estimate line and parabolic

parameters by the SHT. However, the SHT is computational

expensive for curved lane detection. Here, we use the PPF to

estimate the lane parameters and introduce the multi-kernel

density of the SHT as observation model with additional

color information. The whole state space is subdivided into

several subspaces, such that only a small number of particles

are needed for each subspace. In addition, the number of

particles for each subspace can be flexibly chosen. This

way, the PPF saves computational time and increases the

robustness of the system.

The whole algorithm is shown in the Fig. 4. In the image

preprocessing part, the perspective effect is removed by the

IPM algorithm, and the size of the image is decreased to

ease off the computation time, then the vertical edge image

is obtained by the Sobel edge extractor. Afterwards, the

initialization samples drawn from the default lane model

are introduced to the particle array. As we mentioned in

the Section I, those initialization samples can be used to

recover the state from tracking failure. Finally the linear and

parabolic part are estimated hierarchically using the PPF with

the observation model based on the multi-kernel density.

A. State definition

In the previous Section III-C, we introduced the prob-

ability estimation of linear-parabolic lane parameters. The

linear-parabolic lane model is defined by three parameters

(ρ ,θ ,d) given ym. For the situation that the road has three

lanes, the entire state probability distribution at time t is

given by a set of N particles Xt = {x jt , j = 1, · · · ,N}, where
x
j
t = (ρ j

l ,θ
j

l ,d
j

l ,ρ
j
m,θ

j
m,d

j
m,ρ

j
r ,θ

j
r ,d

j
r ) is the state space of a

single particle which consists of the left, middle and right

lane parameters.

The number of particles depends on the dimension of the

particle state. The state x
j
t has nine parameters that must

Fig. 4: The outline of our linear-parabolic lane shape es-

timation algorithm based on PPF with multi-kernel density

observation model.

be estimated, this means that a large number of particles

is necessary to accurately model their probability distribu-

tion. If the entire state space can be grouped into several

subspaces, then for each subspace only a small number

of particles are needed. Hence, we group the particle state

space into two subspaces, and different numbers of particles

are assigned to these subspaces. In short, the hierarchical

procedure of the PPF is as follows: first the linear part

Sl = {ρl ,θl ,ρm,θm,ρr,θr} is estimated, then the parabolic

part is estimated, which is Sp = {dl ,dm,dr}. The linear part

Sl must be assigned more particles than the parabolic part,

because the linear part is more important and has three more

parameters in the state vector.

B. Initialization samples

When lanes suddenly disappear, e.g., are occluded by a

car, a robust algorithm must maintain the best hypothesis

or find the lanes again when possible. The solution is to

introduce a constant percentage of initialization samples into

the state distribution at every iteration, which are drawn from

the distribution of the default lane models. In our algorithm,

we use N′ = 20%N initialization particles. This mechanism

can recover the lane state from failures [5]. Here we use the

straight lane model as default lane model, such that the value

of d in random samples are defined as d = b=−tan(θ).

C. Linear part estimation

The linear part estimation includes two steps: the first step

is state prediction using a random-walk probability model.

The second step is resampling using a specific observation

model, i.e., multi-kernel density model. Finally, only the par-

ticles which have high weight value are kept. This resampling

process follows the idea of survival of the fittest [13].

1) Linear part prediction: Assuming the change of the

lane boundary between two consecutive frames is small, a
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normal distribution can be used to model the state transition

of the jth particle as

p(x̂l jt |x
j
t−1) = N (Alx

j
t−1,Σ

l), (17)

where N is the normal distribution. The matrix Al is

the identity matrix as we assume smooth changes of the

lane boundaries, and Σl is the covariance which handles

the difference of lane boundaries between two consecutive

frames. Because we only predict the linear part, Σl is defined

as

Σl = diag(σ2
ρ ,σ

2
θ ,0,σ

2
ρ ,σ

2
θ ,0,σ

2
ρ ,σ

2
θ ,0), (18)

where diag is the diagonal matrix, and σ2
ρ and σ2

θ are the

covariances of the line parameters ρ and θ . The predicted

particle set is X̂ l
t = {x̂l jt , j= 1, · · · ,Nl}, where Nl = N′+N is

the number of particles used in the linear part estimation.
2) Linear part resampling: The observation space Qnear

of the linear part describes the local features in the image.

For the jth predicted particle, the measurement of the left

lane is z
l j

lt which includes nnear pixels in Qnear that are near

the predicted left lane. The observation model is derived from

(4) with additional color information

p(zl jlt |x̂
l j
t ) =

1

nnear
∑
i

Kci ·Kθ
j
lt

·Gli(ρ
j

lt ,θ
j

lt), (19)

where Kci = N (µc,σ
2
c ) is the Gaussian kernel model of the

color information, and µc and σ2
c are mean and covariance of

this model. The other measurements p(zl jmt |x̂
l j
t ) and p(zl jrt |x̂

l j
t )

for middle and right lanes are computed in the same way as

described above. The weight for the jth particle used in above

observation model is

w
l j
t = η p(zl jlt |x̂

l j
t )p(z

l j
mt |x̂

l j
t )p(z

l j
rt |x̂

l j
t ), (20)

where η is a normalization factor, which ensures that the

weights sum to one. Finally, the new particle set X l
t =

{xl jt , j = 1, · · · ,Np} is obtained by resampling X̂ l
t based on

the weights where Np is the number of particles used to

estimate the parabolic parameters. Those particles in X̂ l
t that

have a high weight will be kept and the others that have

lower weight will be removed [11]. To avoid impoverishment

effect of original PPF algorithm [14], [15], and enforce the

importance of linear part, the weights for particles in X l
t are

reset to be equal.

D. Parabolic part estimation

The algorithm of parabolic part estimation is similar to the

linear part, but the number of particles and the observation

model used for estimation are different.
1) Prediction of parabolic part: The normal distribution

is also used to model the state transition of curve part:

p(x̂p jt |xl jt−1) = N (Apx
l j
t−1,Σ

p) (21)

where function N is a normal distribution, the matrix Ap is

the identity matrix and Σp is the covariance defined as:

Σp = diag(0,0,σ2
d ,0,0,σ

2
d ,0,0,σ

2
d ) (22)

where σ2
d is the covariance of the parabolic parameter d, and

the three lanes have the same covariance. As a result, the

predicted particle set X̂
p
t = {x̂p jt , j = 1, · · · ,Np} is obtained.

2) Resampling of parabolic part: For the jth particle,

the measurement of the left lane in the far vision field

observation space Q f ar is z
p j

lt , which corresponds to n f ar

pixels in Q f ar that are near the predicted left lane. The

observation model can be derived from Eq. (16):

p(zp jlt |x̂
p j
t ) =

1

n f ar
∑
i

Kci ·Gpi(c(ρ
j

lt ,θ
j

lt ,d
j

lt),d
j

lt ,e(ρ
j

lt ,θ
j

lt ,d
j

lt))

(23)

The measurement distributions p(zp jmt |x̂
p j
t ) and p(zp jrt |x̂

p j
t ) for

middle and right lanes are computed in the same way as

above. The weight for the jth particle using the above

observation model is:

w
p j
t = η p(zp jlt |x̂

p j
t )p(zp jmt |x̂

p j
t )p(zp jrt |x̂

p j
t ) (24)

where η is normalization factor. After resampling on X̂
p
t by

the weights, the new particle set Xt = {xp jt , j= 1, · · · ,N} for

the next iteration is obtained, and the weights are reset to be

equal.

V. RESULTS

To demonstrate the performance of our algorithm, we

applied it to the EISATS dataset [16], which contains a

variety of challenging situations like strong shadow, high-

curvature roads, partly marked and occluded lanes, etc. In

the experiments, we use N = 250 particles to track the linear

part and Np = 200 particles to estimate the parabolic part.

For every iteration N′ = 50 initialization samples, drawn

from default lane models, are introduced into the particle

set. The covariances of the lane model parameters in the test

are σρ = 1, σθ = 0.02, and σd = 0.05. The estimation result

is defined as a weighted average of the particle state value

in the set Xt .

For comparison, we also test the kernel density observation

model with the general PF, which uses 50 particles for

initialization and 250 particles for tracking. The tracking

results are shown in Fig. 5, which shows that the general PF

is more sensitive to noise, especially in the far vision field.

However, the proposed PPF algorithm gives better estimation

results using the same amount of particles, as shown in

Fig. 6. The Fig. 7 shows the lanes back-projected into the

original image. Furthermore, our algorithm also succeeds in

tracking sequences that have strong illumination artifacts and

brightness differences, where only right and middle lanes are

estimated using the PPF, as shown in Fig. 8. These results

demonstrate the algorithm’s robustness with respect to these

difficult situations. A video is also available online at [17].

The advantage of the hierarchical processing in the PPF is

shown in Fig. 6c, where the car is on a bridge and the ground

is not flat anymore, such that there are no lane markers

in the far vision field of the IPM-image. The hierarchical

processing first finds the straight lanes in the near vision field,

and further finds the parabolic part based on the straight lane

detection results. As shown in Fig. 6c, the noisy information

on the parabolic part has no effect on the straight lane part

which is more important for driving. Although the parabolic

estimation is random in Fig. 6c, after a few frames, the PPF
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(a) frame 399 (b) frame 408 (c) frame 767 (d) frame 840 (e) frame 1109

Fig. 5: Estimation results on the IPM images using multi-kernel density model as observation model of the general Particle

filter. Cases are: (a) dashed lanes, (b) occluded by car, (c) non–flat ground plane, (d) high curvature image, (e) partly marked

lanes.

(a) frame 399 (b) frame 408 (c) frame 767 (d) frame 840 (e) frame 1109

Fig. 6: Estimation results on the IPM images using multi-kernel density model as observation model of the Partitioned

Particle filter.

(a) frame 399 (b) frame 408 (c) frame 767 (d) frame 840 (e) frame 1109

Fig. 7: Tracking results in Fig.6 are projected back to the original images.

still can give accurate estimations when the parabolic part is

available again in the image as shown in Fig. 6d. This shows

the robustness of our algorithm.

The current algorithm was programmed in Matlab on a

Laptop with INTEL QUAD CORE (2.5GHz) for simulation

and analysis purpose. Because the Gauss-Hermite numerical

integral method is very slow in Matlab, the computations

are expensive and our algorithm cannot be used for online

processing yet (e.g., 10s for Fig. 6 and 5s for Fig. 8). How-

ever, this can be improvable substantially since the algorithm

structure allows for implement using parallel programming.

For example, the pixels in the observation space can be

processed independently. Another limit of our algorithm is

that if the lanes in the near vision field have high curvature,

the estimation error will increase, which can been seen

in Fig. 7b and Fig. 7d. This limit comes from our linear

assumption and the constant ym. To solve this problem, a

self adaptive algorithm for updating ym can be developed in

the future.

VI. CONCLUSION

We presented our idea to combine multi-kernel density

based parameter distribution estimation with the PPF, and

showed the application of this idea for linear-parabolic lane

detection and tracking on IPM-images. The algorithm suc-

ceeded in tracking with many challenge scenes, which shows
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(a) Seq1: frame 58 (b) Seq1: frame 85 (c) Seq1: frame 100 (d) Seq2: frame 9 (e) Seq2: frame 66

Fig. 8: Tracking results on challenging situations, e.g., strong illumination artifacts (Seq1) and brightness differences (Seq2).

that our algorithm is very robust concerning challenging

scenes.

The advantages of our algorithm, as compared to the state

of the art in this field, are threefold. First, we do not only use

position and color information of the pixels, but also employ

gradient information in the multi-kernel density to improve

performance. Second, we estimate the linear-parabolic lane

model in a hierarchical fashion. This reduces computation

time and enhances the robustness of the algorithm. Third,

the PPF maintains multiple hypotheses of lane state and can

recover from failure by introducing initial particles, whereas

the KF and least-squares method do not support this feature.

Future work will require testing our algorithm on more

and larger databases. as well as optimizing computation

using faster programming approaches. This effort is justified

since the suggested combination of methods can be used to

estimate also other shapes like circles, ellipses, and conics.

Thus, our novel algorithm can become useful also in other

fields where tracking of curved lines is important and its

application is not limited to the driving scenario.
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