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Abstract

Recently it has been pointed out that in simple animals like flies a motor neuron can have a visual receptive field [H.G. Krapp, S.J.

Huston, Encoding self-motion: From visual receptive fields to motor neuron response maps, in: H. Zimmermann, K. Krieglstein (Eds.),

Proceedings of the sixth Meeting of the German Neuroscience Society/30th Göttingen Neurobiology Conference 2005, Göttingen, 2005,

p. S16–3] [4]. Such receptive fields directly generate behaviour which, through closing the perception–action loop, will feed back to the

sensors again. In more complex animals an increasingly complex hierarchy of visual receptive fields exists from early to higher visual

areas, where visual input becomes more and more indirect. Here we will show that it is possible to develop receptive fields in simple

behavioural systems by ways of a temporal sequence learning algorithm. The main goal is to demonstrate that learning generates stable

behaviour and that the resulting receptive fields are also stable as soon as the newly learnt behaviour is successful.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A receptive field (RF) of a given neuron is that particular
surface area of sensor organ from which responses can be
elicited. Sensory inputs should be triggered in order to get
response from the neuron. We will apply temporal
sequence learning to a driving robot that is supposed to
learn to better follow a curvy line painted on the ground.
We will demonstrate: (1) That it is possible with such
architectures to generate ‘‘receptive fields’’ from sensory
inputs. (2) That the output of these RFs can drive the
motors of the robot in order to create better and more
stable behaviour, (which in turn influences its sensor
inputs) and (3) that RF development will stop as soon as
the system has obtained this behavioural stability after
learning. Furthermore we will show (4) that it is possible to
design simple chains of such learning units while at the

same time still guaranteeing behavioural stability. The
central goal of this approach is to demonstrate that direct
sensor–motor coupling in a very simple architecture can
lead to the generation of stable structural elements and
simultaneously to stable behaviour without additional
assumptions, while it is possible to gradually extend such
architectures towards lattices without the need for addi-
tional free parameters.

2. Methods

The learner (open loop case) has inputs xj which feed

into a summation unit v (see Fig. 1B). The output is
calculated by v ¼

P
jrjuj, where u ¼ h � x is a convolu-

tion of input x with resonator h. We define hðtÞ ¼

ð1=bÞeat sinðbtÞ, a ¼ �pf =Q and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pf Þ2 � a2

q
, with f

the frequency and Q40:5 the damping. The delay between
x0 and x1 depends on the speed of the robot. To
accommodate some variability, x1 is fanned out and fed
into a filterbank of different filters h as indicated by the
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dashed lines. The number of filters is not critical and we use
10. The robot’s base speed of 0:125m=s together with the
camera frame rate of 25Hz used in all experiments leads to
f 1;k ¼ 2:5=kHz, k ¼ 1; . . . ; 10 for the filterbank in the x1

pathway. Frequency of the x0 pathway was f 0 ¼ 1:25Hz.
Damping parameters of all filters were Q ¼ 0:6. Weights
change according to an input–input correlation rule:
_rj ¼ muj _u0, j40. The behaviour of this rule and its
convergence properties are discussed in [7]. Initially the
system is set up only to react to the near-sense x0 by ways
of a reflex. The late and weak reflex response by itself is not
enough to assure line-following behaviour; therefore the
robot misses the line whenever it drives without learning.

The convolution of input signals with resonators allows
correlating temporally non-overlapping signals allowing to
apply temporal difference learning. Goal of the learning is
to grow w1 that the learner can use the earlier signal at x1

to generate an anticipatory reaction. Learning stops and
the weights stabilise at the condition x0 ¼ 0 when the reflex
is not triggered anymore (i.e. the system dos not receive
input from the near-sense x0 ¼ 0). We used a small
(diameter of 18 cm) two-wheeled Rug Warrior Pro driving
robot for investigation which is shown in Fig. 1A. We use a
line-following task to develop RFs in a closed loop
scenario where a reflexive reaction (x0) and predictive
reactions (x1) are generated from sensor fields in the image
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Fig. 1. (A) Picture of the robot. (B) Schematic diagram of the learning system in the open-loop. Components of the learning system. Inputs x, resonator

filters h, connection weights r, output v. The symbol � denotes a multiplication, d=dt a temporal derivative. The amplifier symbol stands for a variable

connection weight. Dashed lines indicate that input x1 is fed into a filterbank. (C) The neuronal architectures of the learning system: simple (dashed box)

and linear-chain.
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Fig. 2. Results of the RF development using the simple neuronal setup on different tracks. (A) Physical setup. The RF positions on the image are denoted

by xL;R
1i;j

where i; j are the indices of the RF pixels and sensor field positions xL;R
0 . (B,D) Right RFs obtained from the simple setup. The diagrams show the

summed weights
P10

k¼1r
b
1i;j ;k

over all 10 filters in the filterbank which receive inputs from the corresponding predictor xR
1i;j
. (B) Results for the shallow track

(E). Learning rate was m ¼ 1:7� 10�8. Learning stopped after three trials (see video rf-shallow.mpg, please download at http://www.chaos.gwdg.de/

�tomas/drv/). (C) Results for the intermediately steep track (F). Learning rate was m ¼ 10�8. Learning stopped after four trials (see video rf-225.mpg).

Results for the sharp track (G). Learning rate was m ¼ 1:7� 10�8. Learning stopped after six trials (see video rf-sharp.mpg).
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of a forward pointing camera. RFs xL;R
1 (Fig. 2A) in pixel-

lines more at the top correspond to the far future of
the robot’s trajectory and act predictive in comparison

to sensor fields xL;R
0 at the bottom, whereas RFs xL;R

2

(Fig. 3A) act predictive in comparison to RFs xL;R
1 . Two

different neuronal setups of the robot are presented in Fig.
1C. The unchained neuronal setup, called simple, is shown
in the dashed box of Fig. 1C. It has one neuron on which
signals from both sides of the view-field converge. Inputs

from the left xL side are negative whereas inputs from the

right side xR are positive. The chained neuronal setup,
called the linear-chain, is presented in Fig. 1C. There is one
reflex input x0 and two predictive inputs x1 and x2. Output
vb is used as the reflex input of the neuron g. The weights

rb;g0 are set to a fixed value 1, all other weights are initially

0. The robot has a left and a right motor, which receive a
certain forward drive leading to a constant speed of
Sbasic ¼ 0:125m=s in all experiments. This signal is

modified by braking (jvbj) and steering (�vb) according

to: SL;R ¼ Sbasic � jv
bj � vb, where for the left motor we use

‘‘�’’ and for the right ‘‘+’’. For the chained architecture,

we use vg instead of vb in the equation.

3. Results

Results of the RFs development using the simple
neuronal setup on different tracks (track length is about
2m) are shown in Fig. 2. A total of 225 sensor fields of
1 pixel were used for the far-sensor (Fig. 2A). The resulting
right RFs xR

1 is shown in Fig. 2B–D where light colour
correspond to strong sub-fields and dark to weak sub-
fields. The left RF is the mirror image of the right one due
to the symmetry of the learning setup. Obtained RFs do
not change as soon as the appropriate behaviour is
achieved and the initially existing reflex is no longer
triggered (x0 ¼ 0). Results of the RF development using
the linear-chain are shown in Fig. 3. Here we used 100
sensor fields of 1 pixel for both predictors (Fig. 3A).
Results for the development of the primary RF of predictor

xR
1 are presented in Fig. 3B and for the secondary RF of

predictor xR
2 in Fig. 3C. Both fields are different: the

secondary field xR
2 is noisier than the primary xR

1 . This is to
be expected as a consequence of the large amount of
indirect input vb that it receives on its reflex line.

4. Discussion

The development of visual RFs has been in the centre of
research interest during the last decade and it had been
shown that cortical RFs can develop following a sparseness
principle and essentially implementing independent com-
ponent analysis [6,2]. However, only very few attempts
exist to develop RFs from signals of a behaving agent [3],
most notably in robot-models of hippocampal place fields
[1]. These models differ strongly from our approach
because they are still open loop. This is different for a
recent study by [5] who were able to close the loop and
derive path-following behaviour in a robot that is driven by
a complex multi-layer neuronal system supposed to mimic
parts of the cerebellar system. This is done by the neurons
in the simulated Inferior Olive which adapt following a
Hebbian learning rule. Synaptic weight matrices (RFs),
develop at several stages in the network, but it appears that
this type of learning will not lead to their final stabilisation.
By applying temporal sequence learning we developed RFs
in a closed-loop behavioural task. We also showed that it is
possible to generate and stabilise secondary RFs in a closed
loop context.
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