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Joining movement sequences: Modified dynamic
movement primitives for robotics applications

exemplified on handwriting
Tomas Kulvicius1, KeJun Ning1, Minija Tamosiunaite1,2, Florentin Wörgötter1

Abstract—The generation of complex movement patterns, in
particular in cases where one needs to smoothly and accurately
join trajectories in a dynamic way, is an important problem in
robotics. This paper presents a novel joining method based on the
modification of the original dynamic movement primitive (DMP)
formulation. The new method can reproduce the target trajectory
with high accuracy regarding both, position and velocity profile,
and produces smooth and natural transitions in position as well
as velocity space. The properties of the method are demonstrated
by applying it to simulated handwriting generation also shown on
a robot, where an adaptive algorithm is used to learn trajectories
from human demonstration. These results demonstrate that the
new method is a feasible alternative for joining of movement
sequences which has high potential for all robotics applications
where trajectory joining is required.

Index Terms—Joining of dynamic movement primitives, over-
lapping kernels, delta learning rule, handwriting generation

I. INTRODUCTION

Dynamic motion control in robotics requires to accurately
produce trajectories and control their dynamic parameters
(e.g., position, velocity and acceleration). Several state-of-the-
art methods exist for this. These can be based on splines [1],
[2], Gaussian Mixture Models [3] or dynamic movement prim-
itives (DMPs, [4]), to name only some of the most important
ones. Recently much focus has been directed onto DMPs and
they have been used in many studies [5]–[17]. DMPs are units
of actions which describe a particular movement trajectory and
are formalized as stable attractor systems [4], [18]–[20]. Such
movement primitives can be used to generate a movement
trajectory either in joint- or task-space. One observes that
DMPs are robust to perturbations, allow for generalization
of the trajectory and that they also allow for learning. Only
few attempts exist which address the problem of DMP joining
[7], [14], [15]. Here we present a modification of the original
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Fig. 1. Three samples of signatures signed by the same person. A) Position
profiles and B) corresponding velocity profiles (here we show velocities as
defined in Eq. 14).

DMP formulation and a novel method for joining of movement
sequences based on overlapping kernels. The novel method
allows us to apply such DMPs to very complex trajectories
and to also address the problem of dynamically joining them,
which is the main novel contribution of this study.

Humans are able to perform complex movement sequences,
for example in a manual construction task, in a highly elegant
and dynamic fashion. Robots begin to become as dexterous,
too. However, the problem to accurately combine trajectories
and control position and velocity, which exists in many
dexterous robotics applications still leaves many questions
open, in particular when wanting to do this in a dynamic
and perturbation-resistant way. We use human handwriting as
our test-bed. Although, in handwriting accuracy at the joining
point might not be so important due to “co-articulation”, i.e.,
the next letter is started before the previous one is completely
finished, we have nonetheless chosen it as a useful and
complex example. Consider, for example, signatures. Those
are not only defined in position- but also in velocity space
and modern biometric signature recognition makes use of
this [21]. In Fig. 1 A we show three samples of signatures
from the same person. One can see that, although all three
signatures are slightly different, the corresponding velocity
profiles (see Fig. 1 B) have highly similar patterns. How
can such complex dynamic profiles be generated in a simple,
robust and generalizable way? We solve this problem by
presenting a novel method for joining movement sequences
which can be also applied for other potential uses, especially
where precision at the joining point would be crucial, e.g., for
grasping and lifting an object.

In the following we will first describe the formalism for
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Fig. 2. Modification of the original DMP system. A) Goal functions r and
B) functions v are shown for the exponential decay system (original DMPs)
and the sigmoidal decay system (modified DMPs). The following parameters
were used: g = 10, αg = 0.1, T = 75, αev = 0.1 and αsv = 1.0. For more
details see section II-A.

DMP modification and our novel joining approach. One goal
here is to provide a powerful but simple method. Then we
will compare our approach to a basic DMP system. We want
to strongly emphasize that this comparison is not made to
devalue the old approach, but rather to show that the new
approach can perform equally well additionally allowing us
to join movement sequences in a smooth and accurate way.
To make this very clear we will, in the discussion section,
try to provide a scholarly and fair comparison of some of the
existing DMP methods.

II. METHODS

A. Modification of original DMPs

The original DMP system is formalized by second or third
order differential equations and consists of two dynamic sys-
tems: the transformation system and the canonical system [4],
[8], [18], [22]. Here we will use the third order system since it
more closely relates to our modifications. The transformation
system is described as follows:

τ ż = αz (βz (r − y)− z) + f, (1)

τ ẏ = z, (2)

τ ṙ = αg (g − r), (3)

where g is a known goal state (end-point), αz , βz and αg are
time constants, τ is a temporal scaling factor (in this study we
used τ = 1), ż, ẏ and y correspond to acceleration, velocity
and position, respectively. Here r defines the delayed goal
function.

The canonical system is described by an exponential decay
term:

τ v̇ = −αev v, (4)

where αev is a time constant. The nonlinear function f is given
by:

f =

n∑
i=1

ψi wi v∑
i ψi

(g − y0), (5)

with
ψi = e−hi (v−ci)2

, (6)

where ψi denote Gaussian kernels, hi - width of the i − th
kernel, ci - centers of the kernels, wi - weights, and n - number

of kernels. Here (g−y0) is the scaling term which guarantees
proper scaling when start- or end-point is changed. For more
details see [8]. In addition, coupling terms such as a phase
stopping can be added to the DMP system. In this case one
would need to replace Eq. 4 by the following equation as
suggested in [8]:

τ v̇ = − αev v

1 + αc(ydesired − yactual)2
, (7)

where αc is a time constant and defines the strength of the
phase stopping. The implications of systems with or without
phase-stopping will be addressed in the Discussion section.
Here, if not mentioned differently, we are going to use Eq. 4.

In order to apply our new joining method using overlapping
kernels we modify the original DMP system by changing the
delayed goal function r and the exponential decay function
v (see Eq. 3, 4 and Fig. 2). The non-linear goal function r
is replaced by a piecewise-linear function and formalized as
follows:

τ ṙ =
{

∆t

T (g − s), if t ≤ T
0, otherwise.

(8)

Here s and g define the start- and end-point of the movement
trajectory, respectively; T is the duration of the movement
and ∆t is the sampling rate. In this study we used ∆t =
5ms which corresponds to 200Hz and is consistent with the
sampling rate of the pen tablet used for the recordings.

Instead of the exponential decay function we use a sig-
moidal decay function which is given by:

v̇ = − αsv e
αsv
∆t

(τ T−t)

(1 + e
αsv
∆t

(τ T−t))2
, (9)

where αsv defines the steepness of the sigmoidal function
centred at time moment T .

We also use a slightly different nonlinear function f :

f = αw

n∑
i=1

ψi wi v∑
i ψi

, (10)

ψi = e−( t
τ T −ci)

2/2σ2
i , (11)

where σi is the width of the i − th kernel. Here kernels are
placed evenly along the trajectory in time and spaced between
0 and 1, where 0 denotes the beginning of the movement
trajectory and 1 the end. The shape of the movement trajectory
is defined by weights wi. To learn the weights we use the delta
rule as explained in section II-B. Here we use αw as a general
scaling factor for all learned weights (note that during learning
we always set αw = 1), and in this study, if not specifically
mentioned, after learning we also set it to 1. For the influence
of αw on the movement trajectory see Fig. 4 D-G.

The modified system will reach the end-point g of the
movement trajectory y in time T + λ (usually λ � T )
with a given accuracy |g − y(t)| ≤ ε, where λ depends on
the steepness αsv , the center point of the sigmoidal function
(Eq. 9), and the movement trajectory itself. I.e., depending
on how far one is from the target point at the end T of
the movement, the additional time to arrival (λ) at the target
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may vary. This strongly depends on how well the nonlinear
function f fits the target trajectory. If it fits well, then the
trajectory might arrive at the target within little additional time.
Otherwise, the additional time required could be considerable,
such that one cannot always ensure reaching the target at a
specific time.

In the original DMP system the exponential function (see
Eq. 4) acts as a phase as well as a weight scaling variable. In
our modified DMP system the sigmoidal function (see Eq. 9)
acts only as a weight scaling variable as our DMP system
operates on a scalable time axis. We will in the last section
discuss the differences between a phase-defined or a time-
defined DMP system because advantages and disadvantages
of the different formulations are not easily discernible.

B. Trajectory learning

The shape of a trajectory in the DMP system is parameter-
ized by Gaussian kernels ψi and their corresponding weights
wi. Several methods exist for weight adaptation in order
to learn a target trajectory, like locally weighted regression
methods [4] or global regression methods [14]. As learning
is not in the focus of this study, here we just used the
delta learning rule as in artificial neural networks [23], where
the error between target signal and system’s output is used
to modify the weights. This rule is simple, but serves our
purposes. It can be formalized by the following equation:

∆wji = µ [γ(k)− yj(k)], (12)

where γ is the target trajectory (training trajectory), y is the
system’s output, µ is the learning rate, and k defines the center
of the i-th Gaussian kernel in the time period t = 0, . . . , T ;
where T is the duration of the training trajectory γ. Here
j = 1, . . . , L; where L is the number of learning iterations.
In this study we used the same training trajectory γ for each
training iteration j, but in general one can use different training
trajectories, e.g., from several demonstration examples. In
case we have more than one dimension then we have to
learn weights for each dimension separately (e.g. for x and
y position in a 2D case), which can be done independently
and in parallel. Note that here we learn weights in position
space as acceleration is noisier compared to position.

The presented simple learning approach is not optimal for
a single training trajectory. It is more suitable for cases where
many different training trajectories are used and this method
will then lead to an average trajectory. If desired any other
regression method (or more sophisticated methods like LWPR)
can be used to learn the kernel weights.

As already mentioned above, we tested our modified DMPs
on trajectories obtained from handwriting. Handwriting sam-
ples were taken from one person, where the person was asked
to sign, write single letters and couplets (e.g. “ab”). Data were
obtained by using a pen tablet (Wacom Intuos3 A3 Wide DTP)
with a size of 48.8 × 30.5 cm, resolution of 5, 080 lpi and a
sampling rate of 200Hz.

In order to evaluate the performance of our method and
compare it to the original DMPs we looked at the position
and velocity deviation of the learned trajectory from the target

Fig. 3. Illustration of the DMP joining method with overlapping kernels.
Here we show only signals for the ξ profile of joining two letters “a” and
“b”. A) Sigmoidal decay function v, B) goal function r, C) kernels (ψ′

iw
′
iv),

D) ξ position (yξ); in the inset we show the trajectory of the joined “a” and
“b”, and E) ξ velocity (ẏξ).

(training) trajectory. We calculated the position deviation by

dpos =
√

(yξt − yξl)2 + (yηt − yηl)2 (13)

and the velocity deviation as

velt/l =
√
ẏ2
ξt/l

+ ẏ2
ηt/l

, (14)

dvel = |velt − vell|, (15)

where yξ/η and ẏξ/η are position and velocity, ξ and η denote
two coordinates in 2D Cartesian space and indices t and l
stand for the target and learned profiles, respectively.

C. Joining of DMPs

A simple way to join several DMPs is to perform one DMP
until it reaches the end-point and then to start the next DMP
at that point (in the text we will call this simple joining),
i.e., to use the end-point of the first DMP as the start-point
of the second DMP. This approach is very simple, but it has
some drawback due to the close to zero velocities at the end
of the movement trajectory in the original DMPs. Here we
propose a novel method for DMP joining which can solve
this problem and lead to natural and smooth transitions. In
our approach we construct a single set of overlapping kernels
ψ′ defined by centers c′ and width of kernels σ′ for the whole
joint trajectory in the following way. We place centers c′ along
the joint trajectory in time as follows:

cij =


T1 (i−1)
T ′ (n−1) , if j = 1

Tj (i−1)
T ′ (n−1) + 1

T ′

j−1∑
k=1

Tk, otherwise,
(16)

c′ = c11, c
2
1, . . . , c

n
1 ; c12, c

2
2, . . . , c

n
2 ; . . . ; c1m, c

2
m, . . . , c

n
m. (17)

Here i = 1, . . . , n and j = 1, . . . ,m, where n is the number of
kernels for one DMP and m defines the number of DMPs, Tk
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Fig. 4. Results of trajectory learning using modified DMPs (sigmoidal decay system). A) Trajectories before learning and B, C) trajectories and kernels
(ψiwiv) for ξ and η position profiles after learning (initially all weights were set to 0.01). D-G) Examples of generalization when different end-points are
used. D, E) Trajectories without weight scaling (αw = 1) and F, G) with weight scaling αw = |(gt − st)/(gl − sl)| (similar to the weight scaling used
in the original DMP system, [8]), where sl and gl denote the start- and end-points of the training trajectory used for learning, and st and gt are start- and
end-points of the test trial. The following system parameters were used for all cases: number of kernels n = 15, width of kernels σi = 0.05, i = 1, . . . , n,
number of learning iterations L = 100, and learning rate µ = 0.1. Red and green dots represent start- and end-points of the movement trajectory, respectively.

is the duration of the k-th DMP. T ′ =
m∑
k=1

Tk is the duration

of the joint trajectory. We define the width of kernels σ′ by

σij =
σijTj

T ′
, (18)

σ′ = σ1
1, σ

2
1, . . . , σ

n
1 ;σ1

2, σ
2
2, . . . , σ

n
2 ; . . . ;σ1

m, σ
2
m, . . . , σ

n
m,
(19)

where we scale the width of kernels σij of each DMP with
respect to the duration of the joint trajectory T ′. Corresponding
weights w′ for kernels ψ′ are obtained from the learned
weights wij of each dynamic movement primitive j:

w′ = w1
1, w

2
1, . . . , w

n
1 ;w1

2, w
2
2, . . . , w

n
2 ; . . . ;w1

m, w
2
m, . . . , w

n
m.

(20)

Finally we describe the goal function r′ by the following
equation:

τ ṙ′ =

 ∆t

Tj
(gj − sj), if

j−1∑
k=1

Tk ≤ t ≤
j∑

k=1

Tk

0, otherwise.
(21)

where j=1,. . . ,m. We use the same equation for the sigmoidal
decay function as given in Eq. 9, only here we use T ′ instead
of T . This way we construct a more “complex” DMP from
several “simpler” DMPs. A graphical illustration of this DMP
joining method is shown in Fig. 3, where we show signals
obtained from joining two letters “a” and “b”.

The joining method is designed in such a way that one can
control time of the whole joint DMP by setting T ′ and spatial
stretching and squeezing by setting gj and sj (see Eq. 21).
Note, similar to conventional DMPs, one can also join our

DMPs in a “reactive” way. To do so, one has to set start- and
end-points for the new joint DMP (see Eq. 21) and recalculate
kernel parameters (c′, σ′ and ω′) as soon as it is known that
a new DMP will be triggered. Then one continues with the
new DMP by using Eqs. 1, 2, 9-11 and 21 with the new
parameters. If one knows early that a new DMP is triggered
(e.g., in the middle of the currently executed DMP) then there
will be no differences at the joining point as compared to
“non-reactive” (pre-planned) joining. If we join the next DMP
when the current one is almost finished (around the joining
point Tj) then there will be a slowing-down in the velocity
profile (similar to conventional DMPs).

III. RESULTS

A. Learning and generalization

An example for trajectory learning is presented in Fig. 4.
As a training (target) trajectory we used a letter “a”. Position
profile before learning and position profile and corresponding
kernels for ξ and η positions after 100 learning iterations are
shown in panels A-C. We can see that initially the system
generates more or less a linear trajectory from the start-point
(red dot) to the end-point (green dot), whereas during learning
the weights adapt in such a way that after learning we obtained
a trajectory which is almost identical to the training trajectory.

To show how well our model can generalize we made an
experiment where we tested the response of the model after
learning when the end-point of the movement trajectory was
changed. In one case we set the end-point closer to the start-
point as compared to the target trajectory; in the second case
the end-point was moved further away from the start-point. In
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Fig. 5. A) Comparison of signatures signed by a person and generated
by the model (modified DMPs). Position profiles (top-left), corresponding
velocity profiles (top-right) as well as position deviation (bottom-left) and
velocity deviation (bottom-right) are shown. Those have been obtained by
using Eq. 13 and 15. B-E) Signatures generated by the model when different
start- and end-points where used, which correspond to horizontal stretching
and squeezing (B, C), and diagonal skewing (D, E). Position profiles (left) and
corresponding velocity profiles (right) are shown for each case. F) Signature
performed by the robot (compare to the case shown in panel A). The following
system parameters were used: number of kernels n = 100, width of kernels
σi = 0.01, i = 1 . . . n, number of learning iterations L = 100 and learning
rate µ = 0.1.

Fig. 4 D, E we show movement trajectories when the weight
scaling factor αw (see Eq. 10) was set to 1 (no scaling). In
this case we obtain a squeezing (D) or stretching (E) effect
compared to the original trajectory. If we use a scaling factor
which is proportional to the relation between start- and end-
points of the training and test trajectories (for equation see
the caption of Fig. 4) then we get a scaling of the original
trajectory which leads either to a smaller (F) or bigger letter
“a” (G). The scaling effect presented in panels F and G is
similar to the scaling used in the original DMPs [8] (data not
shown). Clearly, choosing αw would depend on the particular
application and further in this study we will always use αw =
1.

To get a better feeling for the dynamic reshaping and
generalization, Fig. 5 A shows a comparison between a human
signature and a signature generated by our modified DMPs.
Here, as in the previous case, we show results after 100
learning iterations, however, in this case narrower kernels were
used (for parameters see the caption of Fig. 5). We can see that
trajectories of both, signature shapes (left) and corresponding
velocities (right), are almost identical as can be judged by the
very small errors shown in the position and velocity deviation
curves (lower panels in Fig. 5 A). In Fig. 5 B-E we present
results of the model for stretching (B), squeezing (C) and for
two cases of diagonal skewing (D and E) to give an impression
how the new model generalizes when positions of the start-
and end-points are changed. The velocity profiles shown on
the right side remain almost identical for panels (B) to (E)
showing that the dynamics of the changed signatures remain
the same. We have also implemented our method on a simple
robotic manipulator platform (Neuro-Robotics, Sussex) in our
laboratory, letting the robot sign. The resulting trajectory1 is
shown in Fig. 5 F (compare to the signature shown in panel
A). Note that we scaled the output of the system in space and
time in order to implement it on the robotic platform.

B. Original vs. modified DMPs

A comparison between both systems, i.e., original and
modified DMPs, is shown in Fig. 6 (for statistics see Fig. 8 A,
B). Here we trained both systems with the letters “a” and “b”.
Results obtained with the original DMPs are shown in panels
A and C. We can see that in both cases the original DMPs can
follow the target trajectories very well. We can also observe
the drawback of the original DMPs which is a relatively long
and shallow tail of the velocity profile (see panels A3 and C3).
This means that the velocity decays slowly at the end of the
movement until the end-point of the trajectory is reached. In
comparison, results for the modified DMPs (sigmoidal decay
system) are shown in panels B and D, where one can see that,
as in the original DMPs, we can reproduce trajectories very
well, too. We note that modified DMPs reach the end-point
earlier compared to the original DMPs2. This is due to the
fact that we use a steep sigmoidal function at the end-point of
the movement trajectory which results in quicker convergence
to the goal. In our approach we obtain bigger errors compared
to the whole trajectory only at the end of the movement
trajectory (see panels E1, F1) due to the suppressed influence
of the kernels by the sigmoidal function, which is necessary to
assure convergence to the end-point. We observe that we can
reproduce not only the position but also the velocity profile
(see panels B3, D3). Here we get a relatively large error at
the end of the trajectory and this is due to the fact that here
humans lift the pen, whereas our system always stops at the
end of the trajectory. Also, in the modified approach we have
a much quicker velocity decay at the end of the movement
compared to the original DMPs (compare A3 to B3 and C3 to
D3). In general, we observe that modified DMPs can compete

1See supplementary video.
2Here we stopped the system as soon as it reached an accuracy of ε =

0.1mm with respect to the end-point.
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Fig. 6. Comparison between original DMPs (exponential decay system) and modified DMPs (sigmoidal decay system) for letters “a” and “b”. A, C) Results
for the exponential decay system. Here we used αsv such that the exponential decay function is 95% converged by the time the end-point g is to be reached
as suggested in [8]). B, D) Results for the sigmoidal decay system (we used αsv = 1.0). In panels A-D (from left to right) we show ξ and η trajectories
plotted over time, position profiles and the corresponding velocity profiles. E1, E2) show position (Eq. 13) and velocity (Eq. 15) deviations for the letter “a”
and F1, F2) for the letter “b”. The following system parameters were used for both systems: number of kernels n = 15, width of kernels σi = 0.05 (for the
exponential decay system we tuned h such that it has the same kernel width in time space as for the sigmoidal decay system), and learning rate µ = 0.1.
Number of learning iterations L for the exponential decay system was 500 and for the sigmoidal decay system it was 100. Red and green dots represent
start- and end-points of the movement trajectory, respectively.

with original approach very well with respect to position and
velocity accuracy (see panels E and F).

C. Joining of DMPs

A comparison between the simple joining method based on
original DMPs and joining with overlapping kernels based on
modified DMPs is shown in Fig. 7. Here we show the joining
of two letters “a” and “b” where samples “a” and “b” were
obtained from a handwritten couplet “ab” by splitting it apart.
Systems were trained separately with letters “a” and “b” in
order to obtain two DMPs and then these DMPs were joined
by using one joining method or the other. Note that in the
simple approach we start a new DMP at time moment T1,
i.e., when the first DMP is supposed to finish according to
the training trajectory. As mentioned above, accuracy at the
joining point depends on the overlap of the kernels at that
point. To investigate this we varied the number of kernels

n and the width σ and analysed trajectories. In comparison
we also show results for different kernel parameters using
original DMPs. Results for four different cases are shown in
Fig. 7 (parameters are given in the caption) where in A we
show results for the simple joining method and in B for the
new approach. We observe that using more kernels leads to
better accuracy at the joining point for both approaches and
that the new method is more accurate at the joining point
as compared to the simple approach, especially, with respect
to the velocity profile. In the following we will discuss the
influence of kernel overlap at the joining point on the accuracy
at that point for our new method. In B1 we show position
and velocity profiles where we used few but relatively wide
kernels (n = 10, σ = 0.1). One can see that, although the
transition between two letters is relatively smooth, position
and velocity accuracy is much worse as compared to the case
when more narrower kernels (n = 15, σ = 0.05) are used
as shown in B2. If we use even narrower kernels (n = 30,
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Fig. 7. Comparison between A) simple DMP joining (exponential decay system) and B) joining with overlapping kernels (sigmoidal decay system) when
using different kernel parameters n (number of kernels) and σ (width of kernels): 1) n = 10, σ = 0.1; 2) n = 15, σ = 0.05; 3) n = 30, σ = 0.015;
4) n = 30, σ = 0.03. In the top panels we show position profiles, corresponding velocity profiles are shown in the bottom panels. In the insets we show
magnified trajectories around the joining point. The same system parameters were used as given in the caption of Fig 6. Red and green dots represent start-
and end-point of the movement trajectory, respectively, whereas circles represent junction points between two DMPs.

σ = 0.015; see B3) as compared to the case B2, we can
achieve better accuracy with respect to both, position and
velocity, profiles; however, this can lead to small jerks in
the velocity profile (see inset in panel B3, bottom) due to
such overly slim kernels. One can improve smoothness of the
velocity by increasing the width of the kernels as shown in
B4, but this might lead to bigger inaccuracy at the joining
point in the position profile due to larger overlap at this point.
Position and velocity deviations at the junction point for both
approaches are given in Table I. In general, one can see that the
new method performs better with respect to the accuracy at the
joining point as compared to the simple method. Concerning
the new approach, we can summarize that more kernels lead
to better accuracy, but if kernels are too narrow this might
produce jerky velocity profiles, whereas if kernels are too wide
this might lead to bigger inaccuracies at the joining point.

D. Statistical evaluation

We have also performed a statistical evaluation of our sys-
tem’s performance in order to compare it to the original DMPs.
First of all we compared the performance of both systems on
single letter experiments as presented in Fig. 6. For this we
used all handwritten letters from the English alphabet, except
“i”, “j” and “t” (in total 23 letters). Those letters were not
included in the statistics due to an additional dimension (pen-
up/down). We looked at the position and velocity deviation
(dpos, dvel) from the target trajectory at specific time points
along the movement trajectory. Results of such experiments
are shown in Fig. 8 A, B and are consistent with the results
shown in Fig. 6. We get similar performance along the whole
trajectory for both systems except at the end of the movement
where the modified DMP system has smaller deviations around
the time where the movement is suposed to finish, which leads
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TABLE I
DEPENDENCE OF ACCURACY AT THE JOINING POINT ON THE KERNEL

PARAMETERS n (NUMBER OF KERNELS) AND σ (WIDTH OR KERNELS).

Original DMPs Modified DMPs
n σ dpos (cm) dvel (m/s) dpos (cm) dvel (m/s)
10 0.100 0.3454 0.1867 0.1366 0.0669
15 0.050 0.2269 0.1601 0.0276 0.0383
30 0.015 0.1002 0.1440 0.0081 0.0036
30 0.030 0.1052 0.1158 0.0464 0.0203

to faster convergence compared to the original DMPs (see
panel A). Concerning velocities (see panel B) there are no
significant differences and both systems perform equally well
except for the fact that modified DMPs have faster velocity
decay at the end of the movement (see also Fig. 6 A3, B3 and
C3, D3).

Results for the statistical evaluation of the joining methods
are presented in Fig. 8 D, E. For the statistics we used
20 different couplets as shown in Fig. 8 C and the same
procedures as explained in section III-C. Here we compare
position and velocity deviation of joint DMPs at their junction
point from the target junction point (denoted by the red dot).
As demonstrated previously in Fig. 7 we observe that the
new joining method produces significantly smaller errors at
the joining point than the simple approach with respect to
both, position and velocity. We also see that accuracy at the
joining point depends on the overlap of the kernels and can
be improved by increasing the number of kernels. Note that
many too wide kernels might lead to worse accuracy in the
position profile due to large overlap of kernels at the joining
point (see case n = 30, σ = 0.03 in panel D).

E. Handwriting generation

Finally, we applied the novel DMP joining method to the
problem of generating handwriting. For this we trained the
system on separately written letters as shown in Fig. 9 A.
In this case we used samples with loops in order to avoid
overlapping letters when joining DMPs. After that we let the
system generate three words: “dmp”, “demo” and “norway”
(where two of the authors had gone fishing together). Position
and corresponding velocity profiles generated by the system
for the first two words are shown in Fig. 9 B-F, where we
can observe that connections between letters are smooth and
natural. As in the previous case this handwriting generation
was also implemented on the robotic manipulator platform3

and resulting trajectories are shown in Fig. 9 D, G. In addition
we also show the system’s performance by letting it generate
different handwriting styles for the word “norway”. This was
done by choosing different end-points with respect to the start-
point and rescaling the start- and end-points sj , gj (see Eq. 21).
Similarly, as already shown for the single letter “a”, we get
squeezing/stretching/skewing effects of the whole word by
setting the end-point closer/further away and/or higher/lower
with respect to the start-point and setting the scaling parameter
αw = 1 (words shown in the corners of panel H). If we move
the end-point further away but set αw > 1 we obtain spatial

3See supplementary video.

Fig. 8. A, B) Statistical comparison between original DMPs (exponential
decay system) and modified DMPs (sigmoidal decay system). A) Average
position deviation dpos and B) velocity deviation dvel obtained from 23
letters. C-E) Statistical comparison between joining with the simple method
based on original DMPs and the joining method with overlapping kernels
based on modified DMPs when using different kernel parameters n (number
of kernels) and σ (width of kernels). C) 20 couplets used for the statistical
evaluation shown in panels D, E. Red dots denote the junction points. D)
Average position deviation dpos and E) velocity deviation dvel computed at
the junction points as shown in panel C. Here error-bars denote confidence
intervals of the mean (95%). The same system parameters were used as given
in the caption of Fig. 6.

magnification of the word (corresponds to bigger font size) and
vice versa (see words in the middle of the panel H), moving
the end-point closer and setting αw < 1 leads to shrinking of
the word (corresponds to smaller font). By doing so, we can
see that we retain smooth and natural transitions between the
letters.

IV. DISCUSSION

In this study we presented a modification of the original
DMP formulation [4], [8], [22] and a novel method for joining
several DMPs which was applied for handwriting generation
and also implemented on a robot. Our new method has led to a
high accuracy for reproducing complex trajectories and joining
movement sequences. We have also statistically evaluated our
system’s performance and compared it against the standard
DMPs. In the following we will discuss our methods in
more detail and compare them to other approaches of DMP
joining, focusing on a robotics viewpoint. We think, it is clear
that handwriting was just chosen as a demonstration scenario
and we are neither interested nor will discuss details and
implications of handwriting biometry.
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Fig. 9. Results of handwriting generation using modified DMPs (sigmoidal
decay system). A) Samples of single letters used to generate the words
“dmp” (panels B-D), “demo” (panels E-G) and “norway” (panel H). B, E)
Position profiles and C, F) corresponding velocity profiles generated by the
modified DMP system. D, G) Trajectories of handwriting produced by the
robot. H) Example of different handwriting generation by changing end-points
(simulation results). The same system parameters were used as given in the
caption of Fig. 6.

In the first part of this study we proposed a modification
of the original DMP formulation in order to apply our new
joining method based on overlapping kernels. Here we made
two modifications: 1) instead of the delayed goal function
r we used a piece-wise linear goal function (see Eq. 3, 8)
and 2) we replaced the exponential decay function v with a
relatively steep sigmoidal function centered at the end-point
of the trajectory (see Eq. 4, 9). These modifications allow
reproducing target trajectories with respect to position as well
as velocity profile, while at the same time guaranteeing good
convergence to the end-point (see Fig. 6 B, D). Note that
we use the linear goal function r together with kernels ψ

which are independent of the function v, i.e., our system is
directly dependent on time (how to alter this will be discussed
below). This makes our approach more similar to splines,
but we have maintained attractive features of original DMPs,
like robustness to perturbations (see Fig. 10 B1, B2) and
generalization (see Fig. 4 D-G and Fig. 5 B-E). We think that
such features are very useful and provide some advantages
over splines, where they are not immediately present. An
unequivocal decision in favor or against any method, however,
depends for all these approaches much on the task and
sometimes splines might still be a better solution. We also
would like to stress that our system is easily scalable with
respect to the dynamics of the system (τ ) and space without
losing the qualitative trajectory appearance that was originally
coded in the DMP weights. Depending on the application, two
generalization options for the trajectory are possible with our
DMPs. In one case, if αw = 1 (see Eq. 10), then we get a
stretching or squeezing effect of the learned trajectory when
start- and/or end-point are changed (see Fig. 4 D, E), whereas
when αw 6= 1 we obtain a smaller or larger position profile
(see Fig. 4 F, G; similar to scaling proposed in [8]).

As already mentioned in the Introduction section, several
methods exist for trajectory generation for example those
based on splines, dynamic movement primitives (DMPs), or
Gaussian Mixture Models (GMMs). In the following para-
graph we will discuss the behavior of different types of DMPs
for some specific cases and at the end compare those also to
results from the literature obtained with GMMs. Differences
will emerge, but before discussing those, it is important
to note that the now following comparison should not be
used to deduce quality assessments of the different methods.
Many times the actual quality of a method depends critically
on the task and a method that performs badly under some
conditions can be superior under different ones. Thus, fair
comparisons are difficult if not impossible. Still we think that
the behavior displayed in Fig. 10 might be helpful to appreciate
and understand the similarities and differences of the shown
methods.

Original DMPs are designed in such a way that they are
not directly dependent on time, which allows adding coupling
terms or phase resetting techniques [8]. By replacing time with
a phase variable one can manipulate the time evolution of
phase, i.e. by slowing down or speeding up the movement
as appropriate. One example of such a coupling is phase
stopping which prevents the actual trajectory from moving
too far away in case of a perturbation [8]. In Fig. 10 A1
and A2 we show the behavior of original DMPs in case of
a perturbation without (see Eq. 4) and with phase stopping
(see Eq. 7), respectively. Indeed, we can see that DMPs with
phase stopping behave differently compared to DMPs without
phase stopping by pushing the trajectory more towards the
perturbation point. Note, this example was specifically chosen
to show this particular effect and the response characteristics
of the system might be to some degree different for different
perturbations at other times. The effect of phase stopping in
this example is significant but not very strong and more time
will be required to allow for this compensation to happen, i.e.,
this makes the time of the movement execution longer. We
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Fig. 10. Comparison between A, C, E) original (exponential decay system)
and B, D, F) modified (sigmoidal decay system) DMPs. In panels A-D on
the left side we show results without phase stopping and on the right side
with phase stopping (see Eq. 7 and Eq. 22). A, B) Performance of different
DMP systems when a disturbance is applied. We disturbed the system by
∆yξ(t) = ∆yξ(t) + 2 and ∆yη(t) = ∆yη(t) − 1 at the time moment
t = 0.4 T ). C-F) Performance when the start-point is changed, where in case
E) a phase-cut and in case F) a time-cut was applied at the new start point.
Note that in cases C1, C2 and E we used Eq. 5 without scaling (g − y0)
in order to make it comparable to modified DMPs. Other system parameters
were as given in the caption of Fig. 6, only in this case we used 30 kernels
with width σ = 0.025.

can also extend our approach by adding the phase variable in
order to make it not directly dependent on time and obtain
phase stopping. This can be done by the following equations.
Let us add an additional phase variable

τ θ̇ =
∆t

1 + αc(ydesired − yactual)2
, (22)

with θ0 = 0 and replace Eq. 8 by

ṙ =
{
θ̇ (g − s)/(T ), if θ ≤ T
0, otherwise.

(23)

In doing this, we also need to replace everywhere the time

variable t with the phase variable θ. As demonstrated in
Fig. 10 B1 and B2 we can see that the modified DMPs behave
similarly to the original method.

In a second set of experiments, we compared the behavior
of the systems when the start-point is moved further away
along the trajectory as compared to the training trajectory.
With this we want to compare generalization properties of
the different systems. Results of such experiments are shown
in Fig. 10 C-F where a different behavior is observed for the
original DMPs (with and without phase stopping) as compared
to the modified DMPs (compare panels C1, C2 and D1, D2). In
case C1 the system first of all tries to go back to the originally
trained start-point and only later continues to follow the target
(training) trajectory, whereas phase stopping (C2) prevents the
system from going backwards. The behavior of our modified
DMPs is presented in panel D1, D2 where a squeezing effect
of the original trajectory is observed in both cases. Here
the phase stopping has no effect on the trajectory since our
modified system follows the new (squeezed) trajectory and
the phase stopping caused by the deviation from the training
trajectory only slows down the motion process but does not
change the shape of the trajectory. Instead of backtracking or
squeezing (C, D) one can also easily obtain a behavior where
the trajectory just begins at the shifted start-point (see panels
E and F). For this, one needs to set appropriate phase (E) or
time (F) at the corresponding position.

Another type of attractor-based trajectory generators are
Gaussian Mixture Models (GMMs, [3], [24]). In GMMs a
movement is described by a nonlinear time-invariant dynam-
ical system, where the convergence to the end-point of all
trajectories is ensured starting from any point in the target
space forming a trajectory-embedding surface which is ob-
tained by learning from a set of demonstrations (see Fig. 10
in [24]). The behavior of GMMs in case of perturbations much
depends on the obtained trajectory-embedding surface, which
may vary depending on the used learning method. So, in case
of a perturbation a GMM might first of all come back to
the target (training) trajectory and later continue along the
training trajectory or go directly from perturbation point to
end-point. In case the start-point is moved further away along
the trajectory as compared to the training trajectory the GMM
would continue following the target trajectory directly from the
shifted start-point (similar to the DMP behavior in Fig. 10 E,
F), since GMMs are time-invariant. Clearly, choosing a system
for movement generation much depends on the task and on
which type of behavior is desired. For example, whether it
is important to follow the trajectory or reach the goal at a
specified time, continue following the trajectory from the new
start-point or return to the trained start-point, and so on.

Several methods exist for the imitation learning of a target
trajectory, like locally weighted regression methods [4], [8],
global regression methods [14] or Gaussian Mixture Regres-
sion [25]. For instance, by using locally weighted regression
one can learn not only the appropriate weights wi of the
kernels but also the number of kernels n, their centers ci and
widths hi, automatically. Here we used a simpler learning
rule to train weights wi, known as delta learning rule in
artificial neural networks [23], which is not optimal for a
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single training sample (regression methods would succeed
in one-shot learning in this case). On the other hand, in
our case position information obtained from demonstration
is enough for determining the DMP weights. We do not
have to measure acceleration or velocity (or obtain these by
calculating derivatives) as required for regression methods
in DMP weight learning procedures [8]. Although, here we
adapt only the weights of the kernels, while leaving their
centers and widths fixed, we can still achieve high learning
accuracy. In general we obtained that for trajectories with
relatively slow dynamics, like letters, one needs fewer but
wider kernels to accurately approximate the trajectory, whereas
for relatively complex trajectories with fast dynamics, like
signatures, more but narrower kernels are required. Similar
to other methods, such a learning procedure would lead to an
average trajectory when different training samples are used.
Clearly, our simple learning method could be replaced by any
of the more advanced approaches (e.g., regression methods),
which might be advisable in cases of single training samples or
where the dynamics of the trajectory changes strongly ”along
the way”.

Our approach assumes a single reference trajectory and
it can generalize quite well for points close enough to this
trajectory. Generalization, however, for example drops when
motion starts/ends at points too far away from this trajectory.
For robot tasks that require generalization over a larger do-
main, one might choose other learning alternatives, such as
GMM’s which forms a trajectory-embedding surface from a
set of demonstrations [3], [24]. Also, in our setup we learnt
weights along each dimension separately. However, such an
assumption of independent dimensions is not generally true for
many motions, especially in case of perturbations. Depending
on the application, one might use other methods, like Stable
Estimator of Dynamical Systems [24], which is a single multi-
dimensional model and considers correlations across several
dimensions.

A classical way to join several trajectories are spline based
solutions [1], [2] which allow joining trajectories smoothly
with predefined velocity and/or acceleration. This approach,
however, is not an on-line trajectory generator, and lacks
attractive features of DMPs, like robustness to perturbations
and generalization. Koga et al. [26] proposed a motion planner
for object manipulation which allows sequencing of actions.
In their approach complex motion is divided into transit paths
(e.g., approaching an object) that do not move objects and
transfer paths that move objects (e.g., grasping and carrying
an object). A manipulation is performed by concatenating
alternating sequences of such paths that connect the initial
system’s configuration to a final (goal) configuration. This
is a kinematic approach where the solution is based on the
configuration of manipulators and objects and, different from
DMPs, does not consider the dynamics of the movement, i.e.,
velocities and accelerations.

DMPs have been applied for different robotics applications,
like movement with obstacle avoidance [10], [11], lifting
[13], pouring [12], [14], hitting and batting [9], [15], [18],
flight control [7], drumming [17], [27], walking [5], [20] and
jumping [16]. However, not so much work has been done with

respect to joining of dynamic movement primitives [7], [14],
[15]. So, in this study we were mainly concerned with the
problem of joining several DMPs. This was motivated by a
drawback of the original DMP system, namely, its velocity
profile which produces a relatively long and shallow decay
until it reaches the end-point. This means that the system has
to stop (to reach zero velocity) before a new DMP can be
started. To avoid jumps in velocity and acceleration, a simple
solution for this problem, as demonstrated in [14], would be
to apply a first order low-pass filter (augment original DMPs
to a third order system). However, if positions and velocities
of both DMPs are at the joining point too different from
each other, one would need to smooth the trajectory a lot,
which, as a consequence produces large deviations from the
target trajectory due to the delay produced by the first order
filter. Another approach for joining movement sequences based
on a modification of the original DMPs is introduced by
Kober et al. [15] for learning of hitting and batting. In this
case the original DMPs are augmented by introducing two
additional terms, namely, moving target and final boundary
velocity. Such a method allows joining several DMPs at a
specific position with a predefined velocity. Perk et al. [7]
proposed a method to get smooth transitions when joining
several DMPs based on partial contraction theory [28]. In their
approach the trajectory of one DMP is forced to converge to
the other leading to a smooth transition between two DMPs.
In contrast to the presented methods, in our approach we do
not augment the system by the additional equations or terms
but simply create one joint DMP by overlapping kernels of
several single DMPs. This way, a smooth, natural and accurate
transition, as exemplified on handwriting, emerges from the
system itself without a deceleration at the joining point (see
Fig. 3 ). This method inherits the properties of the modified
DMPs such as scalability and generalization, like stretching
and squeezing, when start- and/or end-points are changed as
shown in Fig. 9 H. In this case one only needs to appropriately
scale start- and end-points (sj and gj , see Eq. 21) at the joining
points. The trajectory around the joining point is dependent on
the overlap of kernels (see Fig. 7 B-E) and some tuning would
be required in cases where high accuracies at the joining point
are required.

We believe that the attractive properties of our joining
method, like scalability, generalization and smoothness, have
some potential for different kind of robotics applications. Us-
ing robots to actually forge signatures will however (luckily!)
still remain only a possible topic for entertaining science
fiction. After all, it is unlikely that human-like (”android”)
machines will exist in the next 50 or more years, with an
appearance that could deceive a customer clerk and let him/her
forget that actually a robot hand does the writing.
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