
Modified dynamic movement primitives for joining
movement sequences

Tomas Kulvicius, KeJun Ning, Minija Tamosiunaite and Florentin Wörgötter
Georg-August-Universität Göttingen

Bernstein Center for Computational Neuroscience
Department for Computational Neuroscience

III Physikalisches Institut - Biophysik
Friedrich-Hund Platz 1, DE-37077 Göttingen, Germany

Email: {tomas; ning; minija; worgott}@physik3.gwdg.de

Abstract—The generation of complex movement patterns, in
particular in cases where one needs to smoothly and accurately
join trajectories, is still a difficult problem in robotics. This paper
presents a novel approach for joining of several dynamic move-
ment primitives (DMPs) based on a modification of the original
formulation for DMPs. The new method produces smooth and
natural transitions in position as well as velocity space. The
properties of the method are demonstrated by applying it to
simulated handwriting generation implemented on a robot, where
an adaptive algorithm is used to learn trajectories from human
demonstration. These results demonstrate that the new method is
a feasible alternative for trajectory learning and generation and
its accuracy and modular character has potential for various
robotics applications.

I. INTRODUCTION

Recently, dynamic movement primitives (DMPs) have be-
come very popular for motor control in robotics and led to
numerous studies [1]–[15]. DMPs are units of actions which
describe a particular movement trajectory and are formal-
ized as stable nonlinear attractor systems [16]–[19]. Such
movement primitives can be used to generate a movement
trajectory either in joint- or task-space. DMPs have advantages
over other trajectory generators, like splines [20], [21], for
several reasons: 1) robustness to perturbations, 2) ability to
generalize, and 3) ability to apply learning. However, the
original DMPs [1], [5], [16], [17] have some drawbacks,
too. There is a trade-off between path and end-point control
of the trajectory. Briefly: accurate path following will lead
to inaccurate endpoint and vice versa. There exist several
approaches to address this problem [7], [8]. Here we propose
a simple alternative way to modify the original DMPs [1], [5]
for solving this trade-off problem and show that it’s possible
to have control over the full movement trajectory while at the
same time guaranteeing convergence to the end-point.

DMPs have been applied in different robotics applications,
like movement with obstacle avoidance [7], [8], lifting [10],
pouring [9], [11], [15], hitting and batting [6], [12], [17],
flight control [4], drumming [14], [22], walking [2], [19] and
jumping [13]. However, not so much work has been done with
respect to joining of dynamic movement primitives [4], [11].
Another drawback of the original DMPs is that usually their
velocity profile has a long and shallow tail which is inappropri-

ate for obtaining natural speed profile of composite movements
when joining several dynamic movement primitives. This,
however, is needed to reproduce handwriting composed from
single letters as well as in many other cases in robotics.

In the following we will first describe the formalism for
DMP modification and our novel joining approach. Then
we will compare two joining approaches. Finally, we will
conclude our study with a Discussion section where we will
compare our approach to state-of-the-art methods.

II. METHODS

A. Modification of original DMPs

The original DMP system is formalized by second order
differential equations and consists of two dynamic systems:
the transformation system and the canonical [1], [16], [17] or
exponential decay system [5]. Here we will use the exponential
decay system since it is more closely related to our modifica-
tions. The transformation system is described as follows:

τ ż = αz (βz (r − y) − z) + f, (1)

τ ẏ = z, (2)

τ ṙ = αg (g − r), (3)

where g is a known goal state (end-point), αz , βz and αg are
time constants, τ is a temporal scaling factor (in this study we
used τ = 1), ż, ẏ and y correspond to acceleration, velocity
and position, respectively. Here r defines the delayed goal
function.

The exponential decay system is described by

τ v̇ = −αe
v v, (4)

where αe
v is a time constant. The nonlinear function f is given

by:

f =

n∑
i=1

ψi wi v∑
i ψi

, (5)

with
ψi = e−hi (v−ci)

2
, (6)

where ψi denote Gaussian kernels, hi - width of the i − th
kernel, ci - centers of the kernels, wi - weights, and n - number
of kernels. For more details see [1], [5].

To solve the above discussed trade-off problem of the
original DMPs we modify the system by changing the delayed
goal function r and the exponential decay function v (Eq. 3, 4,
see Fig. 1). The exponential goal function r is replaced by a
piecewise-linear function and formalized as follows:

τ ṙ =
{

(g − s)/(T − ∆t), if t ≤ T
0, otherwise. (7)

Here g and s define the start- and end-point of the movement
trajectory, respectively; T is the duration of the movement and
∆t is the sampling rate (here we used ∆t = 200ms).

Instead of the exponential decay function we use a sig-
moidal decay function which is given by

v̇ =
(
1 + e[α

s
v(τ T−t)]2

)−1

αs
v e

αs
v(τ T−t). (8)

where αs
v defines the steepness of the sigmoidal function

centred at the time moment T .

0

2

4

6

8

10

0 25 50 75 100
0

0.2

0.4

0.6

0.8

1

Time (steps)

r v

A B exp.dec.
sigm.dec.

T
T

Fig. 1. Modification of the original DMP system. A) Goal functions r and
B) scaling functions v are shown for the exponential decay system (original
DMPs) and the sigmoidal decay system (modified DMPs). The following
parameters were used: g = 10, αg = 0.1, T = 75, αe

v = 0.1 and αs
v = 1.0.

For more details see section II-A.

We also use a slightly different nonlinear function f :

f = αw

n∑
i=1

ψi wi v∑
i ψi

, (9)

ψi = e−(t
τ T −ci)

2/2σ2
i , (10)

where σi is the width of the i− th kernel. Kernels are placed
evenly along the trajectory in time and normalized between
0 and 1, where 0 denotes the beginning of the movement
trajectory and 1 the end. The shape of the movement trajectory
is defined by weights wi. To learn the weights we use the
delta rule as explained in section II-B. Here αw is the scaling
factor for the learned weights (note that during learning we
always set αw = 1). In case of αw = 1 we obtain a squeezing
or stretching effect compared to the original trajectory when
different start- and/or end-points are chosen. If we use a
scaling factor αw 6= 1 then we get a scaling of the original
trajectory which leads either to a smaller (αw < 1) or bigger
(αw > 1) trajectory. Clearly, choosing αw (with scaling
or without) would depend on the particular application and
further in this study we will always use αw = 1.

With such a system we assure that the end-point g of the

movement trajectory y will be reached in time T + ξ (ξ � T)
with a given accuracy |g − y(t)| ≤ ε, where ξ depends on
the steepness of the sigmoidal function (Eq. 8) defined by
the parameter αs

v . Note that in the original DMP system the
exponential function (see Eq. 4) acts as a phase as well as a
weight scaling variable, whereas in our modified DMP system
the sigmoidal function (Eq. 8) acts only as a weight scaling
variable.

B. Trajectory learning

The shape of a trajectory in the DMP system is parametrized
by Gaussian kernels ψi and their corresponding weights wi.
Several methods exist for weight adaptation in order to learn
a target trajectory, like locally weighted regression methods
[16] or global regression methods [11]. We propose a simpler
learning rule to train weights wi. Thus, here we use the delta
learning rule as in artificial neural networks [23], where the
error between target signal and system’s output is used to
modify the weights. In our case this can be formalized by
the following equation:

∆wj
i = µ [γ(k) − yj(k)], (11)

where γ is the target trajectory (training trajectory), y is the
system’s output, µ is the learning rate, and k defines the center
of the i-th Gaussian kernel in the time period t = 0, . . . , T ;
where T is the duration of the training trajectory γ. Here
j = 1, . . . , L; where L is the number of learning iterations.
In this study we used the same training trajectory γ for
each training iteration j, but in general one can use different
training trajectories. Note that in case we have more than
one dimension we have to learn weights for each dimension
separately (e.g. for x and y position in a 2D case), which can
be done independently and in parallel.

As already mentioned above we tested our modified DMPs
on trajectories obtained from handwriting. Handwriting sam-
ples were taken from one person, where the person was asked
to sign, write single letters, couplets (e.g. “ab”) and whole
words. Data were obtained by using a pen tablet (Intuos3
A3 Wide DTP) with a size of 48.8 × 30.5 cm, resolution of
5, 080 lpi and a sampling rate of 200Hz.

In order to evaluate the performance of our method and
compare it to the original DMPs we looked at the position
and velocity deviation of the learned trajectory from the target
(training) trajectory. We calculated the position deviation by

dpos =
√

(yxt − yxl
)2 + (yyt − yyl

)2 (12)

and the velocity deviation as

velt,l =
√
ẏ2

xt/l
+ ẏ2

yt/l
, (13)

dvel = |velt − vell|, (14)

where yx/y and ẏx/y are position and velocity for x and y
profiles, and indices t and l stand for the target and learnt
profiles, respectively.

C. Joining of DMPs

A simple way to join several DMPs is to perform one DMP
until it reaches the end-point and then start the next DMP
at this point (in the text we will call this simple joining),
i.e. to use the end-point of the first DMP as the start-point
of the second DMP. This approach is very simple, but it has
some drawbacks due to the trade-off problem of the original
DMPs. As we will see later, either we get a slow down (around
zero velocity at the joining point) or we do not reach the-end
point of the first DMP with good enough accuracy for joining.
Here we propose a novel method for DMP joining which can
solve these problems. In our approach we construct a single
set of overlapping kernels ψ′ defined by centers c′ and width
of kernels σ′ for the whole joint trajectory in the following
way. We place centers c′ along the joint trajectory in time as
follows:

cij =

T1 (i−1)
T ′ (n−1) , if j = 1

Tj (i−1)
T ′ (n−1) + 1

T ′

j−1∑
k=1

Tk, otherwise,
(15)

c′ = c11, c
2
1, . . . , c

n
1 ; c12, c

2
2, . . . , c

n
2 ; . . . ; c1m, c

2
m, . . . , c

n
m. (16)

Here i = 1, . . . , n and j = 1, . . . ,m, where n is the number of
kernels for one DMP and m defines the number of DMPs, Tk

is the duration of the k-th DMP. T ′ =
m∑

k=1

Tk is the duration

of the joint trajectory. We define the width of kernels σ′ by

σi
j =

σi
jTj

T ′ , (17)

σ′ = σ1
1, σ

2
1, . . . , σ

n
1 ;σ1

2, σ
2
2, . . . , σ

n
2 ; . . . ;σ1

m, σ
2
m, . . . , σ

n
m,
(18)

where we scale the width of kernels σi
j of each DMP with

respect to the duration of the joint trajectory T ′. Corresponding
weights w′ for kernels ψ′ are obtained from the learned
weights wi

j of each dynamic movement primitive j:

w′ = w1
1, w

2
1, . . . , w

n
1 ;w1

2, w
2
2, . . . , w

n
2 ; . . . ;w1

m, w
2
m, . . . , w

n
m.

(19)

Finally we describe the goal function r′ by the following
equation:

τ ṙ′ =

 (gj − sj)/(Tj − ∆t), if
j−1∑
k=1

Tk ≤ t ≤
j∑

k=1

Tk

0, otherwise.
(20)

where j=1. . . m. We use the same equation for the sigmoidal
decay function as given in Eq. 8, only here we use T ′

instead of T . This way we construct a more “complex” DMP
from several “simpler” DMPs. A graphical illustration of this
DMP joining method is shown in Fig. 2, where we show
signals obtained from joining two letters “a” and “b” (see also
Fig.3 C).

Time (s)

A

B

C

v

0

0.5

1

K
e

rn
e

ls

0 0.2 0.4 0.6 0.8
-0.2

-0.1

0

0.1

0.2

r

1

1.5

2

2.5

T'T1

1st DMP
2nd DMP

Time (s)

D

E

T'T1

0

1

2

3

0 0.2 0.4 0.6 0.8
-0.2

-0.1

0

0.1

0.2

1st DMP
2nd DMP

s1

g2g1/s2

x
 p

o
s
it
io

n
 (

c
m

)
x
 v

e
lo

c
it
y
 (

m
/s

)

Fig. 2. Illustration of the DMP joining method with overlapping kernels.
Here we show only signals for the x position of joining two letters “a” and
“b”. A) Sigmoidal decay function v, B) goal function r, C) kernels (ψ′

iw
′
iv),

D) x position (yx); in the inset we show the trajectory of the joined “a” and
“b”, and E) x velocity (ẏx).

III. RESULTS

A. Joining of several DMPs

A comparison between the simple joining method based on
original DMPs and joining with overlapping kernels based on
modified DMPs is shown in Fig. 3. Here we show the joining
of two letters “a” and “b” where samples “a” and “b” were
obtained from a handwritten couplet “ab” by splitting it apart.
Systems were trained separately with letters “a” and “b” in
order to obtain two DMPs and then these DMPs were joined by
using one joining method or the other. Results for the simple
joining method are presented in Fig. 3 A, B where in panel
A we show results for steep exponential function (αs

v = 0.1)
and in panel B for shallow one (αs

v = 0.02). Here we can see
that in case of a large exponent we are reaching the joining
point (see panel A, left), however, at this point the system’s
velocity is almost zero (see panel A, right), whereas in human
handwriting velocity at the junction is relatively high. If we
use a small exponent then velocity does not drop to zero (B,
right), however, here we do not reach the target joining point
(B, left). These drawbacks are inherited from the behavior of
the original DMP system. Results for the joining method with
overlapping kernels based on modified DPMs are shown in
panel Fig. 3 C, where, in contrast to the simple joining method,
we obtain high accuracy at the junction point with respect to
both, position and velocity, profiles. Better precision could be
obtained if one would use more kernels. Note that joining
with overlapping kernels based on original DMPs would not
improve the results much due to the suppressed influence of
the kernels at the junction point.

B. Statistical evaluation

We have also performed statistical evaluation of our join-
ing method and compared it to the corresponding statistical

0

1

2

3

0

0.1

0.2

0.3

0.4

0

1

2

3

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0 1 2 3
0

1

2

3

x position (cm) Time (s)

y
 p

o
s
it
io

n
 (

c
m

)

V
e
lo

c
it
y
 (

m
/s

)
V

e
lo

c
it
y
 (

m
/s

)
V

e
lo

c
it
y
 (

m
/s

)

y
 p

o
s
it
io

n
 (

c
m

)
y
 p

o
s
it
io

n
 (

c
m

)
A

B

C

Target
Learnt

Fig. 3. Comparison between simple DMP joining (exponential decay system)
and joining with overlapping kernels (sigmoidal decay system). A) Results for
the simple DMP joining when a large exponent is used (αe

v = 0.1) and B)
when a small exponent is used (αe

v = 0.02). C) Results for the joining
method with overlapping kernels. On the left side we show position profiles,
whereas corresponding velocity profiles are shown on the right side. Red
and green dots represent start- and end-point of the movement trajectory,
respectively, whereas circles represent junction points between two DMPs.
The following system parameters were used for both systems: number of
kernels n = 15, width of kernels hi = 150 (exp. dec.) and σi = 0.05
(sigm.dec.), i = 1, . . . , n, and learning rate µ = 0.1. Number of learning
iterations L for the exponential decay system was 500 and for the sigmoidal
decay system it was 100.

evaluations of joining the original DMPs. For the statistics
we used 20 different couplets as shown in Fig. 4 A and
the same procedures as explained in section III-A. Here we
compare position (dpos) and velocity deviation (dvel) of joint
DMPs at the junction point from the target junction point
(denoted by the red dot). Results of such an experiment
are shown in Fig. 4 B, C. We can see that the simple
joining method based on original DMPs with relatively steep
exponential function (αe

v = 0.1), as well as the joining method
with overlapping kernels based on modified DMPs, produce
significantly less deviation from the target junction point as
compared to the case when a relatively shallow exponential
function (αe

v = 0.02) is used (Fig. 4 B). As already presented
in Fig. 3, we also find that the proposed joining method is
significantly more accurate with respect to the velocity at the
junction point than the simple joining approach (Fig. 4 C).

C. Handwriting generation

Finally, we applied the novel DMP joining method based
on modified DMPs to the problem of generating handwriting

by a robot. For this we trained the system on separately
written letters as shown in Fig. 5 A. In this case we used
samples with loops in order to avoid overlapping letters
when joining DMPs. After that we let the system generate
two words: “dmp” and “demo”. Position and corresponding
velocity profiles generated by the system for these words
are shown in Fig. 5 B, D and C, E, where we can observe
that connections between letters are smooth and natural. This
handwriting generation was also implemented on a simple
robotic manipulator platform (Neuro-Robotics, Sussex) in our
laboratory and the resulting trajectories1 are shown in Fig. 5 F,
G. Note that we scaled the output of the system in space and
time in order to implement it on the robotic platform.

V
e
lo

c
it
y
 d

e
v
ia

ti
o
n
 (

m
/s

)

P
o
s
it
io

n
 d

e
v
ia

ti
o
n
 (

c
m

)

exp.dec. (= 0.1)a
v

sigm.dec. (= 1.0)a
v

exp.dec. (= 0.02)a
v

e

s

e

A

B C

1 cm

0

0.1

0.2

0.3

0

0.1

0.2

0.3

Fig. 4. Statistical comparison between joining using the simple method based
on original DMPs and the joining method with overlapping kernels based on
modified DMPs. A) 20 couplets used for the statistical evaluation are shown
in panels B, C. Here red dots denote the junction points. B) Average position
deviation dpos and C) velocity deviation dvel computed at the junction points
as shown in panel C. Here error-bars denote confidence intervals of the mean
(95%). The same system parameters were used as given in the legend of
Fig. 3.

IV. DISCUSSION

In this study we presented a novel method for joining
of several dynamic DMPs based on a modification of the
original DMP formulation [1], [5], [16]. The new method was
applied to handwriting generation and also implemented on
a robot. Furthermore, we used standard delta-rule learning
to adapt the weights. These three components are all quite
simple and efficient. We have also statistically compared our
system against the simple joining with standard DMPs. In the
following we will discuss our methods in more detail and
compare them to other approaches of DMP joining, focusing
on a robotics viewpoint. We think, it is clear that handwriting

1Videos of these experiments can be downloaded at
http://sites.google.com/site/ktomsite/handwriting-with-dmps

was just chosen as a demonstration scenario and we are
neither interested nor will discuss details and implications of
handwriting biometry.

As already discussed above, original DMPs suffer from
a trade-off problem: either one can achieve good control
along the trajectory but then one will not reach the end-
point of the desired movement well enough or vice versa.
Another drawback of the original DMP system is the velocity
profile, which produces a long and shallow decay before
reaching the end-point. This means that the system has to stop
(to reach zero velocity) before a new DMP can be started,
which is not appropriate for joining several DMPs. Therefore,
first of all we proposed a modification of the original DMP
formulation in order to solve the trade-off problem. Here
we made two modifications: 1) instead of the delayed goal
function r we used a piece-wise linear goal function (see
Eq. 3, 20) and 2) we replaced the exponential decay function
v with a relatively steep sigmoidal function centered at the
end-point of the trajectory (see Eq. 4, 8). Such modifications
allow reproducing target trajectories with respect to position
as well as velocity profile, while at the same time guaranteeing
good convergence to the end-point. Here the steepness of
the sigmoid sets the limits. Note that use of the linear goal
function r together with kernels ψ which are independent of
v (see Eq. 6, 10) allows better generalization, especially in
cases when start and goal positions are relatively far away
compared to the training trajectory. We also would like to
stress that our system is easily scalable with respect to the
dynamics of the system (τ), the time (T) and space without
losing the qualitative trajectory appearance that was originally
coded in DMP weights. Depending on the application, two
generalization options for the trajectory are possible with our
DMPs. In one case, if αw = 1 (see Eq. 9), we get a stretching
or squeezing effect of the learned trajectory when start- and/or
end-point are changed, whereas when αw 6= 1 we obtain a
smaller or larger position profile.

Several methods exist for imitation learning in order to learn
a target trajectory, like locally weighted regression methods
[5], [16] or global regression methods [11]. For instance, by
using locally weighted regression one can learn not only the
appropriate weights wi of the kernels but also the number
of kernels n, their centers ci and widths hi, automatically.
Here we proposed a simpler learning rule to train weights wi,
known as delta learning rule in artificial neural networks [23].
Although, here we adapt only the weights of the kernels, while
leaving their centers and widths fixed, we can still achieve
very high learning accuracy. In general we obtained that for
trajectories with relatively slow dynamics, like letters, one
needs fewer but wider kernels to accurately approximate the
trajectory, whereas for relatively complex trajectories with fast
dynamics, like signatures, more but narrower kernels are re-
quired. Clearly, our simple learning method could be replaced
by any of the more advanced approaches, which might be
advisable in case where the dynamics of the trajectory changes
strongly ”along the way”.

There are a few approaches existing for joining of dynamic

1 cm

-2

-1

0

1

2

3

0 1 2 3 4 5
-2

-1

0

1

2

3

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

x position (cm) Time (s)

y
 p

o
s
it
io

n
 (

c
m

)

V
e
lo

c
it
y
 (

m
/s

)
V

e
lo

c
it
y
 (

m
/s

)

y
 p

o
s
it
io

n
 (

c
m

)

A

B

D

C

E

F G

Fig. 5. Results of handwriting generation using modified DMPs (sigmoidal
decay system). A) Samples of single letters used to generate the words “dmp”
(panels B, C and F) and “demo” (panels D, E and G). B, D) Position profiles
and C, E) corresponding velocity profiles generated by the modified DMP
system. F, G) Trajectories of handwriting produced by the robot. The same
system parameters were used as given in the legend of Fig. 3.

movement primitives. A simple solution to avoid jumps in
velocity and acceleration when joining two DMPs, as demon-
strated by [11], would be to apply a first order low-pass filter
(augment original DMPs to a third order system). However,
if positions and velocities of both DMPs at the joining point
are too different from each other, one would need to smooth
the trajectory a lot, which, as a consequence, produces large
deviations from the target trajectory due to the delay produced
by the first order filter.

Another method to get smooth transitions when joining
several DMPs is presented by [4]. These authors use partial
contraction theory [24] to force the trajectory of one DMP to
converge to the other. In contrast to the presented methods, in
our approach we do not augment the system by the additional
equations but simply create one joint DMP by overlapping ker-
nels of several single DMPs. This way, a smooth and natural
transition, as shown by handwriting generation, emerges from
the system itself without a deceleration at the joining point (see
Fig. 3 C). This method inherits the properties of the modified
DMPs such as scalability and generalization, like stretching
and squeezing, when start- and end-points are changed. In
this case one only needs to appropriately scale time points Ti

(see Eq. 20). A drawback of our approach is that the trajectory
around the joining point will be slightly transformed and less
accurate compared to the target (training) trajectory due to the
overlap of kernels (see Fig. 3 C). To increase the accuracy
around the joining points one can use more but narrower
Gaussian kernels.

In summary, we presented a novel and easy to implement
method for joining several DMPs based on modified DMPs
and demonstrated that such method results in smooth and
natural transitions. We believe that attractive properties of our
model, like scalability, generalization and smoothness, have
some potential for different kind of robotics applications.

ACKNOWLEDGEMENTS

This research was supported by the European funded PACO-
PLUS project as well as by BMBF (Federal Ministry of
Education and Research), BCCN (Bernstein Center for Com-
putational Neuroscience) - Göttingen project W3 and BFNT
project 3a.

Authors are greatly thankful to Dr. Armin Bies from MPIDS
Göttingen who provided a pen tablet and helped with hand-
writing recordings.

REFERENCES

[1] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in International Symposium on Robotics Research (ISRR
2003), 2005, pp. 561–572.

[2] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of biped
locomotion,” Robotics and Autonomous Systems, no. 2-3, pp. 79–91,
2004.

[3] J.-X. Xu, W. Wang, P. Vadakkepat, and L. W. Yee, “ANN based internal
model approach to motor learning for humanoid robot,” in International
Joint Conference on Neural Networks (IJCNN 2006), 2006, pp. 4179–
4186.

[4] B. E. Perk and J. J. E. Slotine, “Motion primitives for robotic flight
control,” Tech. Rep. arXiv:cs/0609140v2, Sep 2008.

[5] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs. optimal
control–a unifying view,” Progress in Brain Research, vol. 165, pp. 425–
445, 2007.

[6] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.

[7] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement repro-
duction and obstacle avoidance with dynamic movement primitives and
potential fields,” in IEEE-RAS International Conference on Humanoid
Robotics, 2008, pp. 91–98.

[8] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in International Confer-
ence on Robotics and Automation (ICRA 2009), 2009, pp. 2587–2592.

[9] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation (ICRA 2009),
2009, pp. 763–768.

[10] S. Bitzer and S. Vijayakumar, “Latent spaces for dynamic movement
primitives,” in 9th IEEE-RAS International Conference on Humanoid
Robots, 2009, pp. 574–581.

[11] B. Nemec, M. Tamosiunaite, F. Woergoetter, and A. Ude, “Task
adaptation through exploration and action sequencing,” in 9th IEEE-
RAS International Conference on Humanoid Robots (Humanoids 2009),
2009, pp. 610–616.

[12] J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, and
J. Peters, “Movement templates for learning of hitting and batting,”
in IEEE International Conference on Robotics and Automation (ICRA
2010), 2010, pp. 1–6.

[13] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of
motor skills in high dimensions: A path integral approach,” in IEEE
International Conference on Robotics and Automation (ICRA 2010),
2010.

[14] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics and Automation, vol. accepted, 2010.

[15] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning
to pour combining goal and shape learning for dynamic movement
primitives,” Robotics and Autonomous Systems, vol. submitted, 2010.

[16] J. A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in International
Conference on Robotics and Automation (ICRA 2002), 2002, pp. 1398–
1403.

[17] A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in Advances in Neural Information
Processing Systems 15 (NIPS 2002), 2003, pp. 1547–1554.

[18] S. Schaal, “Dynamic movement primitives - a framework for motor con-
trol in humans and humanoid robots,” in The International Symposium
on Adaptive Motion of Animals and Machines (AMAM 2003), 2003.

[19] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control, plan-
ning, learning, and imitation with dynamic movement primitives,” in
Workshop on Bilateral Paradigms on Humans and Humanoids, IEEE
International Conference on Intelligent Robots and Systems (IROS
2003), 2003.

[20] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, planning and control. Springer Publishing Company, Incorpo-
rated, 2009.

[21] R. H. Castain and R. P. Paul, “An on-line dynamic trajectory generator,”
International Journal of Robotics Research, vol. 3, no. 1, pp. 68–72,
1984.

[22] S. Schaal, “Movement planning and imitation by shaping nonlinear
attractors,” in Proceedings of the 12th Yale Workshop on Adaptive and
Learning Systems, 2003.

[23] S. Haykin, Neural Nnetworks: A comprehensive foundation. 2nd
edition, Prentice Hall, 1999.

[24] W. Wang and J. J. Slotine, “On partial contraction analysis for coupled
nonlinear oscillators,” Biological Cybernetics, vol. 92, pp. 38–53, 2005.

