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Introduction. To achieve adaptive and fast walk-
ing in artificial bipeds is still a very difficult problem,
the solution of which should contribute to our under-
standing of human locomotion [5]. We approach this
problem by combining a novel biomechanical design
of a small robot with a neural controller that is based
only on sensor-inputs and does not use CPGs [2] or spe-
cific trajectory planning. This way the robot achieves
a very high walking speed and is rather robust against
fast parameter changes [1]. This allows us to imple-
ment on-line adaptation using spike timing-dependent
plasticity (STDP) [3] to gradually change the robot’s
walking speed.

Figure 1: A picture of the planar robot.

Design of the robot. Our robot is 23 cm high, foot
to hip joint axis (see Fig. 1). It has four joints: left
hip, right hip, left knee, and right knee. Each joint is
driven by a modified RC servo motor. We constrain
the robot sagitally by a boom (planar robot). All three
axes (pitch, roll and yaw) of the boom can rotate freely
and have no influence on the dynamics of the robot in
the sagittal plane. A detailed description of the robot is

given in [1].
Neural network. We use a hybrid neural network

for control consisting of two components: 1) The mo-
tor control circuit (inside dashed box in Fig. 2) which
operates with linear, Hopfield-type neurons and 2) the
learning control circuit (outside box) which uses spik-
ing neurons to more realistically emulate plasticity.
The motor control circuit contains motor neurons (EM,
FM), which, being linear, can send their signals unal-
tered to the motors. Ground contact sensors (GL, GR)
influence all motor neurons of both legs. Stretch recep-
tors, sensitive to the anterior extreme position of the hip
(AL, AR), influence each joint individually (joint level)
and extensor as well as flexor sensor neurons (ES, FS),
sensitive to joint angles, only operate on their respec-
tive motor neuron (intra-joint level). The output of the
motor-neurons directly drives the motors of the joints,
not employing any kind of position or trajectory track-
ing control algorithms. Details of the controller and its
basic parameters are described in [1].

Learning scheme. The learner has inputs x1 from
the left and x0 from the right hip which converge onto
the learning unit L (Fig. 2) where signals from the left
leg (x1) preceed signals from the right (x0) as shown
in Fig. 3 A. We use a copy of input signal x1 delayed
by a time delay τ to be able to employ STDP. A time
delay T between x0 and delayed signal x1 depends on
a walking speed of the robot. When walking slowly,
time difference T between x0 and x1 is relatively large.
When walking speed is increasing, T is getting smaller
and when the robot reaches a desired speed specified
by the time delay τ of the input signal x1, the time
difference T equals 0 and according to STDP synaptic
weights stop changing [3]. Inputs x0 and x1 feed into
a summation unit v. The output is calculated by v =∑
j ρjuj , where u = h ∗ x is a convolution of input

x with resonator h. We define h(t) = 1
b e
at sin(bt),

where a = −πf/Q and b =
√

(2πf)2 − a2, with f =
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Figure 2: A hybrid neural network: control circuit (in-
side dashed box) and learning circuit (outside box).
Triangles and circles denote excitatory and inhibitory
synapses, respectively

5 Hz the frequency and Q = 0.6 the damping.
Only weight ρ1 changes according an STDP-like,

input-input correlation rule: ρ̇1 = µu1u̇0, j > 0,
µ = 4 × 10−6. The behaviour of this rule and its con-
vergence properties are discussed in [4].

Walking speed of the robot depends mostly on two
parameters of the hip: the threshold of the extensor
sensor-neuron θES and the gain of the motor-neuron
GM (see Fig. 2). Initial values are ΘES = 120 deg and
GM = 1.8. The learner unit L essentially excerts dis-
inhibition at neurons EM,FM and ES and this disin-
hibition increases as soon as weight ρ1 grows leading
to the desired changes in ΘES and GM and, hence, to
a speed increase.

Results. Learning results are shown in Fig. 3 B-E.
Synaptic weight ρ1 is presented in panel B and stabi-
lizes as soon as the desired speed is reached (in around
40 s) because at that point the order of the spikes be-
comes reversed (see Fig. 3 A). The robot reaches max-
imum speed (more than 90 cm/s) after 40 s and after-
wards oscillates around the speed of 80 cm/s (see panel
C). Changes of the controller parameters are presented
in panel D and E, which stabilize with a remaining
small oscillation as soon as T ≈ 0 is obtained. Due
to the symmetry of the circuitry, equivalently, the robot
would slow down if it is started with a high speed.

Conclusion. In this short paper we have shown that
it is possible to combine neural control with learning
in a fast walking robot and that the targeted control pa-
rameters will converge when implementing an STDP
rule to increase the robot’s speed. Hence, similar self-
stabilization should also be possible with other parame-
ters, which will allow investigating more general adap-
tive properties, like adaptation to changing terrain.

Figure 3: Results of the learning experiment. A) Inputs
of the learning unit. Φ - joint angle of left and right
hip, Ψ - threshold, inputs x0 and x1, τ - time delay of
x1, T - time difference between x1 and x0. B) Synaptic
weight ρ, C) change of the walking speed, D) threshold
θEM and E) gain GM .
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